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Abstract 

 

In this study, we introduce a generalization of the zero inflated Poisson process to model 
time series of count data that exhibit both generalized conditional heteroskedastic 
volatility and cyclical behavior in the zero inflation factor. This is a generalization of the 
zero-inflated Poisson-GARCH model proposed by Fukang Zhu in 2012, which in turn 
can be considered a generalization of the Autoregressive Conditional Poisson model 
proposed by Andreas Heinen in 2003. While Heinen's Autoregressive Conditional 
Poisson model accommodates GARCH type behavior, Zhu introduces zero inflation. Our 
proposed model goes one step further by incorporating the flexibility to allow the zero 
inflation parameter to vary cyclically or be driven by an exogenous variable. A method 
for estimating the proposed model is introduced and its performance studied using 
Monte-Carlo methods. 
 

Key Words: Integer Valued, Discrete Time Series, Generalized Conditional 
heteroskedasticity, Periodicity 

  

 
1. Introduction 

 

The Poisson distribution is used for modeling the number of events occurring in a fixed 
time interval. However in many real world situations zero counts occur at a higher 
frequency than one would expect under a regular Poisson process. In order to model these 
real applications, a zero inflated Poisson model can be considered. The zero-inflated 
Poisson model considers two mechanisms for generating zeros. One is a binary process 
where zeros are generated with a certain probability. This is the zero inflation component 
of the process. If the binary process indicates a non-zero, the actual count is determined 
by a Poisson process, which in turn can generate additional zeros.  Overdispersion can 
result due to these excessive (Yang et al. 2009), but this may be an added advantage in 
many situations. The proposed model allows the parameter of the binary mechanism that 
induces zero inflation to vary either cyclically or be driven by an exogenous variable. In 
addition, it incorporates a conditional Poisson model where the intensity parameter is 
dependent on the past. 
  
The Autoregressive Conditional Poisson model was first proposed by Andreas Heinen 
(2003) and the Integer Valued GARCH Process was proposed by Ferland et al. (2006). 
They utilized the formulation of the classical generalized autoregressive conditional 
heteroskedastic (GARCH) (p, q) model to describe how the intensity parameter in a 
Poisson process would propagate over time, and addressed the problem of maximum 
likelihood estimation of the parameters. Combining such models with a zero inflation 
component is obviously a natural step. 
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Zhu (2011) discussed the modelling of integer valued time series with overdispersion and 
potential extreme observations. These integer GARCH models are known by their 
acronym INGARCH. Zhu (2012) stated that the integer INGARCH model is a popular 
tool for modelling time series of counts and further mentioned that the negative binomial 
models can also deal with overdispertion. A negative binomial INGARCH model, which 
is a generalization of the Poisson INGARCH model, was proposed and the stationary 
conditions were given as well, as the autocorrelation function by Ye et al. (2012). These 
authors also allowed the negative binomial INGRACH (NB-INGARCH) model to 
incorporate covariates, so that the relationship between a time series of counts and 
correlated external factors can be properly modeled. Further, Zhu (2012) extended the 
previous study and introduced the zero inflated Poisson integer-valued GARCH model 
and showed how the EM algorithm can be used to estimate the parameters of the model. 
The underlying processes in Zhu’s models are based on either zero inflated Poisson or 
zero-inflated negative binomial but do not allow such inflation to be cyclical or governed 
by any external factor. 
 
In this paper, we try to introduce a generalization of the zero inflated Poisson Process for 
modeling time series of count data that exhibit both zero inflation and autoregressive 
conditional Poisson type behaviour while at the same time have the flexibility to allow 
the zero inflation parameter to vary cyclically or be driven by exogenous set of variables.  
 
2. The Zero Inflated Poisson (ZIP) INGARCH Model with Cyclically Varying Zero 

Inflation 

 
As given in Zhu (2012), probability mass function (pmf) of ZIP (𝜆, 𝜔) can be written in 
the form  
 

               Pr(𝑋 = 𝑘) = 𝜔𝛿𝑘,0 + (1 − 𝜔)
𝜆𝑘𝑒−𝜆

𝑘!
  𝑘 = 0,1,2, … , where 0 < 𝜔 < 1, 

                 𝛿𝑘,0 = {
1, 𝑘 = 0
0, 𝑘 ≠ 0.

  
 
Again, from Zhu (2012), the mean and the variance of the ZIP distribution are as follows: 
 
              𝐸(𝑋) = (1 −  𝜔) 𝜆  , 𝑣𝑎𝑟(𝑋) = (1 −  𝜔)𝜆(1 + 𝜔𝜆) > 𝐸(𝑋). 
 
Let us consider the time series of counts {𝑋𝑡}. Assume that, conditional on Ƒ𝑡−1 , the 
random variables 𝑋1𝑋2, … , 𝑋𝑛 are independent, and the conditional distribution of  𝑋𝑡 is 
specified by a ZIP (𝜆𝑡 , 𝜔𝑡)distribution. Here 𝜔𝑡 is the probability that the observation is 
zero and 𝜆𝑡 is the mean of the Poisson process at time 𝑡. To be specific, we consider the 
following model: 
 
            𝑋𝑡|Ƒ𝑡−1~𝑍𝐼𝑃(𝜆𝑡, 𝜔𝑡) , where 𝜔𝑡 = 𝑔(𝑆, 𝛤)   
 
            𝜆𝑡 = 𝛼0 + ∑ 𝛼𝑖

𝑝
𝑖=1 𝑋𝑡−𝑖 + ∑ 𝛽𝑗𝜆𝑡−𝑗

𝑞
𝑗=1 ,              (2.1) 

 
where  0 < 𝜔𝑡 < 1 ∀𝑡 and  𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0, 𝑖 = 1, . , 𝑝 , 𝑗 = 1, . , 𝑞, 𝑝 ≥ 1, 𝑞 ≥ 0.           
 Ƒ𝑡−1  is the 𝜎 − field generated by {𝑋𝑡−1, 𝑋𝑡−2, … } , 𝜔𝑡 = 𝑔(𝑆, 𝛤)   is the cyclically 
varying zero inflation function. Note that 𝑆 is the duration of a cycle and 𝛤 is the vector 
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of parameters. The above model is denoted by ZIP-INGARCH(𝑝, 𝑞)  with cyclically 
varying zero inflation. The conditional mean and conditional variance of 𝑋𝑡 are given by  
 
       𝐸(𝑋𝑡|Ƒ𝑡−1) = (1 − 𝜔𝑡)𝜆𝑡 ,  𝑉𝑎𝑟(𝑋𝑡|Ƒ𝑡−1) = (1 − 𝜔𝑡) 𝜆𝑡(1 + 𝜔𝑡𝜆𝑡)      (2.2) 
 
Then, 
 
  𝑉𝑎𝑟(𝑋𝑡|Ƒ𝑡−1) = (1 − 𝜔𝑡)𝜆𝑡(1 + 𝜔𝑡𝜆𝑡) > 𝐸(𝑋𝑡|Ƒ𝑡−1) = (1 − 𝜔𝑡)𝜆𝑡. 
 
 
Furthermore, using arguments similar to those used by Zhu (2012),  
 
           𝑉𝑎𝑟(𝑋𝑡) = 𝐸(𝑉𝑎𝑟(𝑋𝑡|Ƒ𝑡−1)) + 𝑉𝑎𝑟(𝐸(𝑋𝑡|Ƒ𝑡−1))  
 
                            = 𝐸[(1 − 𝜔𝑡)𝜆𝑡(1 + 𝜔𝑡𝜆𝑡)] + 𝑉𝑎𝑟[(1 − 𝜔𝑡)𝜆𝑡]  
 
                         = (1 − 𝜔𝑡)𝐸[𝜆𝑡] + (1 − 𝜔𝑡)𝜔𝑡𝐸[𝜆𝑡

2] + 𝑉𝑎𝑟[(1 − 𝜔𝑡)𝜆𝑡]  
 
                            = (1 − 𝜔𝑡)𝐸[𝜆𝑡] + (1 − 𝜔𝑡)𝜔𝑡𝑉𝑎𝑟[𝜆𝑡] + (1 − 𝜔𝑡)𝜔𝑡(𝐸[𝜆𝑡])2 +
                                 𝑉𝑎𝑟[(1 − 𝜔𝑡)𝜆𝑡]  
 
                           = 𝑉𝑎𝑟 (𝑋𝑡) > (1 − 𝜔𝑡)𝐸[𝜆𝑡] = 𝐸[𝑋𝑡] .                     (2.3) 
 
The above result (2.3) indicates that ZIP-INGARCH(𝑝, 𝑞) with cyclically varying zero 
inflation can be used to model integer valued time series with overdispersion.  
 
In this study we consider two different cases. 
 
2.1 Case 1: Sinusoidal zero inflated Function 

In this case cyclically varying zero inflation function 𝜔𝑡 = 𝑔(𝑆, 𝛤)   is a sinusoidal 
function of time stated as follows: 
 
                𝜔𝑡 = 𝑔(𝑆, 𝛤) = 𝐴( sin (

2𝜋

12
∗ 𝑡) + 1) = 𝐴( sin (

𝜋

6
∗ 𝑡) + 1),                         (2.4) 

 
where  𝑆 is the seasonal length and 𝛤 = 𝐴; 0 < 𝐴 < 0.5.   
 
2.2 Case 2: Zero inflated function is driven by an exogenous variable 

In this study we also accommodate inflation to be driven by exogenous variable and in 
this case   𝜔𝑡 = 𝑔(𝑆, 𝛤)  is a logistic regression function of some exogenous variable

t
V , 

which follows a purely seasonal autoregressive(𝐴𝑅(𝑆)) time series model. Thus, 
 
                 𝑉𝑡 = η𝑉𝑡−𝑠 + 𝜀𝑡; where 𝜀𝑡 is 𝑖. 𝑖. 𝑑. ~𝑁(0,1); 
 
                 𝜔𝑡 = 𝑔(𝑆, 𝛤) =

1

1+𝑒(−𝛿0−𝛿1𝑣𝑡) ,                                                                                  (2.5)                                                                    
 

where  𝑆 is the seasonal length as before and 𝛤 = [
𝛿0

𝛿1
]

2∗1

. 

 

1762



3. Estimation 

 
In this section EM algorithm and Maximum Likelihood (MLE) is used to estimates the 
parameters. The EM algorithm was used in the cyclically varying model while MLE was 
used in the exogenous variable case. 
 
3.1 The ZIP-INGARCH (p, q) model with sinusoidal zero inflation function 

Let 𝑋1, 𝑋2, … , 𝑋𝑛  be generated from the model (2.1) and let  tZ  be a binary process 
such that 𝑍𝑡~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜔𝑡). Also let 𝒁 = (𝑍1, 𝑍2, … , 𝑍𝑛) , 
𝜽 = (𝛼0, 𝛼1, . . , 𝛼𝑝, 𝛽1, . . , 𝛽𝑞)𝑻 = (𝜃0, 𝜃1, … , 𝜃𝑝+𝑞), ɸ = (𝝎𝒕, 𝜽𝑻)𝑻. 

 
By emulating the proof of Zhu (2012), the conditional log likelihood can be written as, 
 

𝒍(ɸ) = ∑ {𝑍𝑡 . log(𝜔𝑡) + (1 − 𝑍𝑡)[log(1 − 𝜔𝑡) + 𝑋𝑡 log(𝜆𝑡) − 𝜆𝑡 − log(𝑋𝑡!)]}𝑛
𝑡=𝑝+1  , 

 
       where 𝝎𝒕 = 𝒈(𝑺, 𝜞) = 𝑨( 𝐬𝐢𝐧 (

𝝅

𝟔
∗ 𝒕) + 𝟏).          (3.1) 

 
The first derivatives of the log-likelihood with respect to 𝐴 are given by: 
 
                     

𝑑𝑙

𝑑𝐴
= ∑ [

𝑍𝑡

𝐴
−

(1−𝑍𝑡)𝐶𝑡

1−𝐴𝐶𝑡
]𝑛

𝑡=𝑝+1   ; Here 𝐶𝑡 = sin (
𝜋

6
∗ 𝑡) + 1        (3.2) 

 
                   

𝑑𝑙

𝑑𝜃𝑖
= ∑ (1 − 𝑍𝑡)𝑛

𝑡=𝑝+1 (
𝑋𝑡

𝜆𝑡
− 1)

𝑑𝜆𝑡

𝑑𝜃𝑖
 ,𝑖 = 0,1, … , 𝑝 + 𝑞.        (3.3) 

 
EM algorithm is used to estimate the parameters by maximizing 3.1 in the same manner 
as done by Zhu (2012). 
E Step: If ɸ is known. The missing data 𝑍𝑡 are replaced by their expectations, conditional 
on parameter 𝜃 and on the observed data 𝑋, which are denoted by 𝜏𝑡, Then; 
 

 𝜏𝑡 = {

𝐴𝐶𝑡

𝐴𝐶𝑡 + (1 − 𝐴𝐶𝑡)𝑒−𝜆𝑡
, 𝑖𝑓 𝑋𝑡 = 0

0, 𝑖𝑓 𝑋𝑡 ≠ 1,2, …

 

 
M Step: Assume that the missing data are known. The estimates of ɸ can be obtained by 
maximizing (3.1). Then; 
 

                                       𝐴̂ =
∑  𝜏𝑡

𝑛
𝑡=𝑝+1

∑ (sin(
𝜋𝑡

6
)+1)𝑛

𝑡=𝑝+1

           (3.4) 

 

                                    ∑ (1 −  𝜏𝑡)𝑛
𝑡=𝑝+1 (

𝑋𝑡

𝜆𝑡
− 1)

𝑑𝜆𝑡

𝑑𝜃𝑖
⃒𝜃 =0 𝑖 = 0,1, … , 𝑝 + 𝑞                    (3.5) 

 
Since there is no closed form solution for equation (3.5) Newton Raphson algorithm is 
used to obtain estimates. The estimates of ɸ are obtained by iterating E steps and M steps 
until convergence. 
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3.2 The ZIP-INGARCH (p, q) model where the zero inflated function is driven by 

an exogenous variable  

The likelihood function for the ZIP-INGARCH model (2.1) is 
 

                                  ∏ [𝜔𝑡 + (1 − 𝜔𝑡)𝑒−𝜆𝑡] ∗ ∏ ⌊(1 − 𝜔𝑡)
𝜆𝑡

𝑋𝑡𝑒−𝜆𝑡

𝑋𝑡!
⌋𝑋𝑡>0𝑋𝑡=0  .      (3.6) 

 
Then the log-likelihood function is 
 
∑ log[𝜔𝑡 + (1 − 𝜔𝑡)𝑒−𝜆𝑡] + ∑ [log(1 − 𝜔𝑡) + 𝑋𝑡𝑙𝑜𝑔𝜆𝑡 − 𝜆𝑡 − log (𝑋𝑡!)]𝑋𝑡>0𝑋𝑡=0     (3.7) 
 
By maximizing the log likelihood function we can estimate the parameters of the        
ZIP-INGARCH model (2.5). 
 

4. Simulation 

 
Finite sample performance of the estimators was evaluated using a simulation study. 
Matlab software was utilized to carry out the simulation, and the relevant data were 
generated by the function poissrnd. Length of the time series studies was set to 𝑛 =
120 and also 𝑛 = 360. Three thousand (3,000) simulations runs were carried out for each 
parameter sample size combination.  Parameters combinations used in the simulation can 
be inferred from Tables 1 – 3 for the sinusoidal case and Table 4 for the exogenous 
variable case. The profile likelihood functions (3.1) and (3.7) were maximized using the 
constrained nonlinear optimization function fmincon in Matlab. The zero inflation 
(= 𝜔𝑡 = 𝑔(𝑆, 𝛤))  was used to vary cyclically or be driven by an exogenous set of 
variable. As was done by Zhu (2012), the Mean Absolute Deviation Error (MADE) was 
utilized as the evaluation criterion. The MADE is defined as, 1

  𝑚
∑ |ɸ̂𝑗 − ɸ𝑗|𝑚

𝑖=1   where 𝑚 
is the number of replications. Samples of simulated data are given in Figures 1 through 4. 
Simulation results are reported in Tables 1 through 4. 
 

 
 

Figure 1: Sample of simulated data for INGARCH (1, 1) model with 𝐴 = 0.01 and 
𝑛 = 360 
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Figure2: Sample of simulated data for INGARCH (1, 1) model with 𝐴 = 0.4 and 

𝑛 = 360 
 
 
It can be clearly seen that the more number of zeros were generated whenever the 
parameter 𝐴 increases. 
 

 
Figure 3: Sample of simulated data for INGARCH (1, 1) model with η= 0.90 and 

𝑛 = 360 
 

4.1 Simulation results for Case 1: Sinusoidal zero inflation function 

Tables 1 through 3 provide the simulation results for the case where the zero inflation 
varied in s sinusoidal fashion. The frequency of the sinusoidal wave was set at 12, 
mimicking a 12 month cycle in monthly data. The parameter A was set at 0.01, 0.1, and 
0.4, representing, minimal, moderate, and large zero inflation.   
 
In case of minimal zero inflation, the parameters of the GARCH portion of the model 
were estimated quite accurately, for both samples sizes and for all parameter 
combinations.  When the parameter A was set to 0.1, indicating moderate zero inflation, 
the parameter estimates were reasonable, especially the estimate of A, but the other 
parameter estimates showed some bias. This decline in the estimate accuracy magnified 
when the zero inflation was high (A=0.4), but the parameter A was estimated very 
accurately. Note that the simulation study of Zhu did not consider the high zero inflation 
scenarios we considered. The probability of getting a zero value in the binary component 
of the model was set to 0.1 by Zhu throughout their study. 
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Table 1: Means of Estimates and MADE (within parentheses), for sinusoidal zero 
inflated parameter INGARCH (1, 1) models and A = 0.01 

 
Sample 
Size(n) 

True Value Estimated Value (MADE) 
A 𝛼0 𝛼1 𝛽1 𝐴̂ 𝛼̂0 𝛼̂1 𝛽̂1 

120 0.01 1 0.4 0.2 0.0148 
(0.0147) 

1.0629 
(0.1915) 

0.3924 
(0.0667) 

0.1812 
(0.0804) 

360 0.01 1 0.4 0.2 0.0113 
(0.0094) 

1.0264 
(0.1435) 

0.4003 
(0.0408) 

0.1874 
(0.0688) 

120 0.01 1 0.2 0.5 0.0172 
(0.0146) 

1.1912 
(0.3526) 

0.2090 
(0.0600) 

0.4294 
(0.1542) 

360 0.01 1 0.2 0.5 0.0161 
(0.0108) 

1.1421 
(0.3062) 

0.2183 
(0.0433) 

0.4369 
(0.1375) 

120 0.01 1 0.2 0.2 0.0217 
(0.0212) 

1.0522 
(0.1649) 

0.1952 
(0.0610) 

0.1804 
(0.0911) 

360 0.01 1 0.2 0.2 0.0154 
(0.0138) 

1.0290 
(0.1335) 

0.1993 
(0.0420) 

0.1848 
(0.0847) 

120 0.01 2 0.4 0.2 0.0107 
(0.0090) 

2.1070 
(0.3683) 

0.3938 
(0.0663) 

0.1816 
(0.0798) 

360 0.01 2 0.4 0.2 0.0103 
(0.0056) 

2.0431 
(0.2691) 

0.4066 
(0.0398) 

0.1818 
(0.0674) 

120 0.01 2 0.2 0.5 0.0110 
(0.0085) 

2.2857 
(0.6220) 

0.2215 
(0.0605) 

0.4270 
(0.1505) 

360 0.01 2 0.2 0.5 0.0105 
(0.0052) 

2.2006 
(0.5126) 

0.2376 
(0.0499) 

0.4271 
(0.1302) 

120 0.01 2 0.2 0.2 0.0133 
(0.0116) 

2.0584 
(0.3043) 

0.1947 
(0.0593) 

0.1873 
(0.0905) 

360 0.01 2 0.2 0.2 0.0110 
(0.0076) 

2.0302 
(0.2586) 

0.2004 
(0.0403) 

0.1889 
(0.0834) 

120 0.01 5 0.4 0.2 0.0100 
(0.0073) 

5.1346 
(0.7822) 

0.4120 
(0.0641) 

0.1749 
(0.0781) 

360 0.01 5 0.4 0.2 0.0102 
(0.0043) 

5.0140 
(0.6013) 

0.4270 
(0.0439) 

0.1700 
(0.0670) 

120 0.01 5 0.2 0.5 0.0100 
(0.0074) 

5.3915 
(1.2012) 

0.2528 
(0.0735) 

0.4190 
(0.1334) 

360 0.01 5 0.2 0.5 0.0100 
(0.0042) 

5.0975 
(0.9028) 

0.2756 
(0.0785) 

0.4131 
(0.1112) 

120 0.01 5 0.2 0.2 0.0099 
(0.0072) 

5.0827 
(0.7118) 

0.2021 
(0.0583) 

0.1856 
(0.0882) 

360 0.01 5 0.2 0.2 0.0102 
(0.0044) 

5.0062 
(0.6107) 

0.2127 
(0.0396) 

0.1846 
(0.0807) 
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Table 2: Means of Estimates and MADE (within parentheses), for sinusoidal zero 
inflated parameter INGARCH (1, 1) models and 𝐴 = 0.1 

 
Sample 
Size(n) 

True Value Estimated Value (MADE) 
A 𝛼0 𝛼1 𝛽1 𝐴̂ 𝛼̂0 𝛼̂1 𝛽̂1 

120 0.1 1 0.4 0.2 0.1028 
(0.0343) 

0.9947 
(0.1687) 

0.4194 
(0.0759) 

0.1652 
(0.0831) 

360 0.1 1 0.4 0.2 0.1031 
(0.0194) 

0.9936 
(0.1187) 

0.4345 
(0.0537) 

0.1545 
(0.0741) 

120 0.1 1 0.2 0.5 0.1157 
(0.0343) 

0.9817 
(0.2276) 

0.2667 
(0.0776) 

0.4075 
(0.1259) 

360 0.1 1 0.2 0.5 0.1147 
(0.0216) 

0.9535 
(0.1724) 

0.2861 
(0.0871) 

0.3976 
(0.1146) 

120 0.1 1 0.2 0.2 0.1013 
(0.0403) 

0.9939 
(0.1553) 

0.2090 
(0.0630) 

0.1777 
(0.0909) 

360 0.1 1 0.2 0.2 0.1038 
(0.0236) 

0.9780 
(0.1253) 

0.2218 
(0.0470) 

0.1783 
(0.0832) 

120 0.1 2 0.4 0.2 0.1026 
(0.0241) 

1.9198 
(0.2951) 

0.4544 
(0.0790) 

0.1523 
(0.0813) 

360 0.1 2 0.4 0.2 0.1021 
(0.0139) 

1.9374 
(0.1909) 

0.4347 
(0.0693) 

0.1380 
(0.0765) 

120 0.1 2 0.2 0.5 0.1076 
(0.0242) 

1.8090 
(0.3930) 

0.2943 
(0.0949) 

0.4053 
(0.1125) 

360 0.1 2 0.2 0.5 0.1086 
(0.0156) 

1.7368 
(0.3441) 

0.2997 
(0.0997) 

0.4110 
(0.0925) 

120 0.1 2 0.2 0.2 0.1019 
(0.0263) 

1.9383 
(0.2838) 

0.2254 
(0.0632) 

0.1789 
(0.0885) 

360 0.1 2 0.2 0.2 0.1017 
(0.0148) 

1.9100 
(0.2301) 

0.2396 
(0.0525) 

0.1750 
(0.0811) 

120 0.1 5 0.4 0.2 0.1001 
(0.0211) 

4.5829 
(0.5818) 

0.5073 
(0.1094) 

0.1233 
(0.0854) 

360 0.1 5 0.4 0.2 0.1005 
(0.0124) 

4.637 
(0.4128) 

0.5168 
(0.1168) 

0.1096 
(0.0910) 

120 0.1 5 0.2 0.5 0.1009 
(0.0214) 

4.1472 
(1.0011) 

0.2999 
(0.0999) 

0.4194 
(0.0893) 

360 0.1 5 0.2 0.5 0.1002 
(0.0123) 

3.9018 
(1.1166) 

0.3000 
(0.1000) 

0.4371 
(0.0673) 

120 0.1 5 0.2 0.2 0.1013 
(0.0217) 

4.6403 
(0.6020) 

0.2630 
(0.0723) 

0.1696 
(0.0832) 

360 0.1 5 0.2 0.2 0.1003 
(0.0125) 

4.6896 
(0.4269) 

0.2795 
(0.0800) 

0.1486 
(0.0772) 
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Table 3: Means of Estimates and MADE (within parentheses), for sinusoidal zero 
inflated parameter INGARCH (1, 1) models and 𝐴 = 0.4 

 
Sample 
Size(n) 

True Value Estimated Value (MADE) 
A 𝛼0 𝛼1 𝛽1 𝐴̂ 𝛼̂0 𝛼̂1 𝛽̂1 

120 0.4 1 0.4 0.2 0.4040 
(0.0388) 

0.9332 
(0.1759) 

0.4338 
(0.0999) 

0.1700 
(0.0861) 

360 0.4 1 0.4 0.2 0.4507 
(0.0226) 

0.9330 
(0.1231) 

0.4511 
(0.0736) 

0.1585 
(0.0805) 

120 0.4 1 0.2 0.5 0.4204 
(0.0388) 

0.8314 
(0.2560) 

0.2745 
(0.0854) 

0.4352 
(0.1381) 

360 0.4 1 0.2 0.5 0.4210 
(0.0273) 

0.7978 
(0.2398) 

0.2929 
(0.0936) 

0.4266 
(0.1062) 

120 0.4 1 0.2 0.2 0.4050 
(0.0407) 

0.9316 
(0.1686) 

0.2164 
(0.0731) 

0.1890 
(0.0931) 

360 0.4 1 0.2 0.2 0.4062 
(0.0233) 

0.9187 
(0.1349) 

0.2345 
(0.0603) 

0.1872 
(0.0866) 

120 0.4 2 0.4 0.2 0.4023 
(0.0321) 

1.8112 
(0.2929) 

0.4707 
(0.0983) 

0.1558 
(0.0848) 

360 0.4 2 0.4 0.2 0.4029 
(0.0182) 

1.8213 
(0.2152) 

0.4919 
(0.0954) 

0.1380 
(0.0802) 

120 0.4 2 0.2 0.5 0.4105 
(0.0312) 

1.5307 
(0.5276) 

0.2979 
(0.0980) 

0.4311 
(0.1120) 

360 0.4 2 0.2 0.5 0.4111 
(0.0197) 

1.4628 
(0.5481) 

0.3000 
(0.1000) 

0.4421 
(0.0785) 

120 0.4 2 0.2 0.2 0.4021 
(0.0315) 

1.7941 
(0.3096) 

0.2428 
(0.0731) 

0.1907 
(0.0900) 

360 0.4 2 0.2 0.2 0.4032 
(0.0187) 

1.7881 
(0.2560) 

0.2637 
(0.0703) 

0.1797 
(0.0816) 

120 0.4 5 0.4 0.2 0.4005 
(0.0299) 

4.4100 
(0.6361) 

0.5239 
(0.1258) 

0.1293 
(0.0855) 

360 0.4 5 0.4 0.2 0.4002 
(0.0169) 

4.4922 
(0.5123) 

0.5366 
(0.1366) 

0.1093 
(0.0920) 

120 0.4 5 0.2 0.5 0.4024 
(0.0292) 

3.5185 
(1.4834) 

0.3000 
(0.1000) 

0.4516 
(0.0749) 

360 0.4 5 0.2 0.5 0.4009 
(0.0169) 

3.4089 
(1.5911) 

0.3000 
(0.1000) 

0.4584 
(0.0565) 

120 0.4 5 0.2 0.2 0.4010 
(0.0289) 

4.3594 
(0.7155) 

0.2790 
(0.0828) 

0.1808 
(0.0834) 

360 0.4 5 0.2 0.2 0.4006 
(0.0168) 

4.3913 
(0.6203) 

0.2913 
(0.0932) 

0.1656 
(0.0720) 

 
 

        

 
4.2 Simulation study for case 2: Zero inflation function is driven by exogenous 

variable  

 

In this study, the exogenous variable was allowed to generate zeros through a logistic 
model as described in Equation (2.5). The parameters in the logistic model 0  and 1  
were set to values -3 and 2 for 0  and -2, 0, and 1 for 1 . Note that larger values result in 
higher zero inflation.   Results show that the estimates of the GARCH parameters are 
biased towards the lower values, but the estimates for 0  and 1  are accurate for all 
parameter and sample size combinations. 
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Table 4: Means of Estimates and MADE (within parentheses), for INGARCH (1, 1) 
models where zero inflation is driven by exogenous variable  

 
Sample  
size (n) 

True Value Estimated Value (MADE) 
𝛿0 𝛿1 𝛼0 𝛼1 𝛽1 𝛿0̂ 𝛿1̂ 𝛼0̂ 𝛼1̂ 𝛽1̂ 

.25             
120 2 0 1 0.4 0.3 2.0357 

(0.3005) 
-0.0023 
(0.1644) 

0.9016 
(0.1780) 

0.3257 
(0.1242) 

0.2389 
(0.1024) 

360 2 0 1 0.4 0.3 2.0812 
(0.2636) 

0.0000 
(0.2636) 

0.8970 
(0.1779) 

0.3230 
(0.1251) 

0.2374 
(0.1029) 

120 2 1 1 0.4 0.3 2.0660 
(0.4020) 

1.0357 
(0.2890) 

0.9005 
(0.1776) 

0.3247 
(0.1255) 

0.2382 
(0.1040) 

360 2 1 1 0.4 0.3 2.0256 
(0.3012) 

1.0291 
(0.1921) 

0.9036 
(0.1758) 

0.3235 
(0.1253) 

0.2366 
(0.1037) 

120 2 1 1 0.3 0.3 2.0594 
(0.2881) 

1.0398 
(0.2881) 

0.8999 
(0.1823) 

0.2461 
(0.1143) 

0.2461 
(0.1143) 

360 2 1 1 0.3 0.3 2.0173 
(0.3160) 

1.0298 
(0.1958) 

0.8996 
(0.1770) 

0.2454 
(0.1125) 

0.2454 
(0.1125) 

120 -3 1 2 0.3 0.4 -3.4852 
(0.7600) 

1.0127 
(0.3423) 

1.9035 
(0.1742) 

0.2384 
(0.1015) 

0.3256 
(0.1229) 

360 -3 1 2 0.3 0.4 -3.4679 
(0.7047) 

1.0199 
(0.2804) 

1.9024 
(0.1784) 

0.2380 
(0.1015) 

0.3247 
(0.1238) 

120 3 0 1 0.5 0.4 3.2883 
(0.5551) 

-0.0038 
(0.3297) 

0.9020 
(0.1783) 

0.3864 
(0.1160) 

0.2974 
(0.1026) 

360 3 0 1 0.5 0.4 3.1748 
(0.3693) 

0.0014 
(0.2425) 

0.9033 
(0.1716) 

0.3899 
(0.1121) 

0.3004 
(0.0996) 

120 -3 -2 1 0.5 0.4 -3.1550 
(0.9625) 

-1.9478 
(0.5986) 

0.9037 
(0.1783) 

0.3847 
(0.1150) 

0.2976 
(0.1024) 

360 -3 -2 1 0.5 0.4 -3.1042 
(0.9321) 

-1.9037 
(0.5294) 

0.9006 
(0.1777) 

0.3841 
(0.1179) 

0.2951 
(0.1049) 

η = 0.90 
120 2 0 1 0.4 0.3 2.0945 

(0.3973) 
-0.0010 
(0.1746) 

0.8970 
(0.1779) 

0.3221 
(0.1242) 

0.2365 
(0.1021) 

360 2 0 1 0.4 0.3 2.0357 
(0.3013) 

-0.0011 
(0.0844) 

0.9016 
(0.1780) 

0.3237 
(0.1222) 

0.2369 
(0.1004) 

120 2 1 1 0.4 0.3 2.0744 
(0.4215) 

1.0488 
(0.2596) 

0.9025 
(0.1768) 

0.3243 
(0.1249) 

0.2374 
(0.1031) 

360 2 1 1 0.4 0.3 2.0092 
(0.3356) 

1.0360 
(0.1921) 

0.9001 
(0.1791) 

0.3222 
(0.1238) 

0.2360 
(0.1017) 

120 2 1 1 0.3 0.3 2.0656 
(0.4411) 

1.0558 
(0.2625) 

0.9052 
(0.1771) 

0.2490 
(0.1113) 

0.2490 
(0.1113) 

360 2 1 1 0.3 0.3 1.9973 
(0.3286) 

1.0360 
(0.1972) 

0.9009 
(0.1796) 

0.2474 
(0.1131) 

0.2474 
(0.1131) 

120 -3 1 2 0.3 0.4 -3.4007 
(0.8053) 

1.0386 
(0.2727) 

1.8915 
(0.1817) 

0.2346 
(0.1034) 

0.3198 
(0.1256) 

360 -3 1 2 0.3 0.4 -3.3078 
(0.7399) 

1.0218 
(0.2128) 

1.9001 
(0.1805) 

0.2386 
(0.1003) 

0.3256 
(0.1222) 

120 3 0 1 0.5 0.4 3.3286 
(0.5869) 

0.0039 
(0.2488) 

0.9020 
(0.1783) 

0.3843 
(0.1173) 

0.2954 
(0.1046) 

360 3 0 1 0.5 0.4 3.1822 
(0.3786) 

0.0004 
(0.1272) 

0.9033 
(0.1716) 

0.3821 
(0.1184) 

0.2935 
(0.1065) 

120 -3 -2 1 0.5 0.4 -3.0822 
(1.0605) 

-1.9617 
(0.5567) 

0.8975 
(0.1784) 

0.3843 
(0.1183) 

0.2954 
(0.1046) 

360 -3 -2 1 0.5 0.4 -2.9669 
(1.0405) 

-1.8792 
(0.5001) 

0.9024 
(0.1798) 

0.3864 
(0.1164) 

0.2941 
(0.1029) 
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5. Conclusions 

 
The study indicates that the parameters of the proposed model with cyclically varying 
zero-inflation can be estimated by reasonable accuracy by using EM algorithm in cases 
where the zero inflation is moderate or low. In cases where the zero inflation is 
influenced by a exogenous process, MLE method can produce fair estimates of the 
parameter, especially those associated with the zero inflation mechanism.  
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