
TRUMP: Tuned Ratio Unbiased Mean Predictor 
 
 

Sarjinder Singh and Stephen A. Sedory 

 
Department of Mathematics 

Texas A&M University-Kingsville 

Kingsville, TX 78363, USA 
E-mail: kuss2008@tamuk.edu 

 
Abstract 

In this paper, we introduce what we call a tuned ratio unbiased mean predictor 
(TRUMP) and which we show that has smaller variance than the ratio predictor 
for simple random and with replacement sampling. The proposed TRUMP can be 
made even more efficient than the Best Linear Unbiased Predictor (BLUP) by 
appropriate choice of what we call a TRUMP Care coefficient. The generalized 
regression (GREG) predictor and linear regression predictors are also considered 
in the comparison while doing simulation study. 
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1. Introduction 

 
Let iy  and ix , ,,...,2,1 Ni   be the values of the study variable and auxiliary variable, 
respectively, of the ith unit in the population  . Here we consider the problem of 
estimating the population mean  
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by assuming that the population mean  
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of the auxiliary variable is known.   
 
Let  ii xy , , ni ,...,2,1 , be the values of the study variable and auxiliary variable of the 
ith unit in the sample s  drawn using the simple random and with replacement sampling 
(SRSWR) scheme.    
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be the sample means for the study variable and the auxiliary variable respectively. 
 
Cochran (1940) defined a ratio estimator of the population mean given by 
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When the regression line passes through the origin, the well known mean predictor model 
is given by: 
 

iii eRxy   (1.6) 
where  
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is the ratio of the population mean of the study variable to that of the auxiliary variable; 
 0)|( iim xeE  (1.8) 
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(1.9) 

and 
 0)|,()|(  jijimjijim xxeeCxxeeE  

(1.10) 

where mE , mV , and mC  denote the model expectation, variance and covariance, 
respectively.  
 
Under model (1.6), the Best Linear Unbiased Predictor (BLUP), see Singh (2003, page 
222), BLUPy ,   is given by  
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(1.11) 

 
It is easy to verify that both the ratio and BLUP estimators are unbiased and the BLUPy  
is always more efficient than Raty .  The readers should note that only final results are 
given in this paper, and that detailed results will be available in the near future (See Singh 
and Sedory 2017b). 
 
In this paper, in section 2 we define a few new terms such as TRUMP Cuts, 
TRUMP Care Coefficient, First Basic Information (FBI), and finally introduce the 
TRUMP Predictor. In section 3, we look for what is behind TRUMP?  It is shown 
that there is a ratio which helps the proposed TRUMP to perform better than 
BLUP.   In section 4, we attempt to look for which family is supportive of the 
proposed TRUMP? 
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 2. TRUMP: Tuned Ratio Unbiased Mean Predictor  

 
Consider a sample s  of n  observations taken by the simple random and with 
replacement (SRSWR) design and the observed values are ),( ii xy , ni ,...,2,1 .  
Following Singh, Sedory, Rueda, Arcos and Arnab (2015), we now consider a new 
estimator of the population mean Y  defined as: 
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are called TRUMP Cuts (TC), and )( jnw  are called tuned calibrated weighs to be 
determined based on certain criterion.  
 

 
Fig.2.1. TRUMP Cuts versus Jackknifing 

 
The TC is obtained by calibrating the jth sampled observation jy  by gn , and then 

subtracting the sampled mean value ny .  The value of 0g  is called TRUMP Care 
Coefficient and its value depends on the First Basic Information (FBI) in hands based on 
past experience or otherwise.  For example, if 1g , then 
 
 )(

11
)( jy

n

yyn

n

yny
jy n

jnnj
TCn 









  

 
(2.3) 

which is the usual jackknifing due to Quenouille (1956) and was first used by Tukey 
(1958)  to estimate the variance.   
 
Singh and Sedory (2017a) made use of the jackknifing idea to create what they called a 
Tuned Ratio Unbiased Mean Predictor (TRUMP) and which was presented at the Seventh 
Annual Statistics Day, hosted on the campus of Texas A&M University-Kingsville. 
Improvements were made and a later version was presented at the Joint Statistical Meting 
2017, Baltimore, Maryland, USA. 
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Singh and Sedory (2017b) constructed a new calibration constraint   
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which is same constraint as that used in Deville and by Särndal (1992) and Singh et al. 
(2015), except that the jackknifed means are replaced by “TRUMP Cuts”, given by  
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Next they considered minimizing the model variance 
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They developed the TRUMP weights which lead to the estimator TRUMPy   given by: 
 

         

X

jx

jxjy

y
n

j
TCn

n

j
TCnTCn































2

1

1
TRUMP

})({

)()(
                                              (2.7) 

 
which became the Tuned Ratio Unbiased Mean Predictor (TRUMP) under the “TRUMP 
Cuts” model; 
 
 TCnTCnTCn jejxRjy )()()(                                               (2.8) 
        
They also showed that the variance of the proposed TRUMPy  is given by: 
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where  pE denotes the design expectation.  
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3. What is behind TRUMP? 

 
Note that the BLUPy  can be written as: 
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which is similar to the unbiased ratio estimator found in Beale (1962).  Note that the 
Beale (1962) estimator is design unbiased, but BLUPy  is a model unbiased predictor, see 
Singh (2003, page 222). 
 
The proposed TRUMPy  can be written as: 
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(3.2) 

 
On comparing (3.1) with (3.2), one can see that the ratio:  
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is playing some role to make TRUMP more efficient or less efficient. 
 
If )ln(/)5.0ln( ng  , then the BLUP is a special case of the proposed TRUMP.   Note 
that the “Ratio” is in the middle of the estimator, thus it will not be as so easy to beat 
BLUP for an obvious choice of TRUMP Care Coefficient g . 
 
In the next section, we perform a simulation study to see if there is any First Basic 
Information (FBI) about the value of TRUMP Care Coefficient ( g ) that could help the 
performance of the proposed TRUMP. 
 
 

4. Which family is supporter of TRUMP? 

 

The generator of data (GOD) produces the set of all data sets, including the “big” ones, 

which are surely subsets of it.  To discover which family of distributions might support 
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TRUMP, we borrowed a bivariate dataset from GOD, and did a simulation study.   The 

bivariate data set is found using the model 

        iii exRy   (4.1) 
 
where we generated ),(~ baGxi  and )1,0(~ Nei . In the simulation study, we have 
compared six estimators including those considered above, which we define again for the 
convenience of the readers: 
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and 
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We note that the GREG predictor is due to Deville and Sárndal (1992), and the linear 
regression predictor is due to Hansen, Hurwitz and Madow (1953). 
 
For different sample sizes, n , we computed the percent relative efficiency of the jth 

predictor j̂  over the sample mean predictor 0̂  as: 
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where NITR  stands for the number of iterations, that is the number of times we make a 

prediction of the population mean Y  using the particular predictor.  

 
For the simulation study, we set 1050N  8.0R , 0.3a , and 8.0b , where N  

represents population size, R  represent the ratio of two population means, and a  and b  

are the shape and scale parameters in a Gamma distribution. Such choice of parameters 

results in a bivariate population with correlation coefficient value of 8595791..0xy .  

A pictorial presentation of such a population is given in Figure 4.1.  

 

From the population of 1050N  units, we select  000,10NITR  samples each of 

sizes 30n  (say) and then change the value of the TRUMP care coefficient from 

5.0g  to 2.5 with a step of 0.05. Next we changed the sample sizes from 30 to 55 with 

a step of 5.  Using R-programming, we retained those results when RE(5) is greater than 

or equal to RE(4), that is, when the proposed TRUMP is at least as efficient as the BLUP 

estimator.   

 

 
Fig. 4.1.  Scatter plot of 1050 data values 
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Similarly we retained the results for each of the other estimators had relative efficiencies 

(RE(1), RE(2),  RE(3), and RE(4) ) greater than 100%. This was done limit ourselves to 

cases where the counterparts - ratio, regression, GREG and BLUP estimators are more 

efficient than the sample mean estimator. Under the homoscedastic model considered 

here, it is not easy to beat or develop another predictor which could beat the BLUP.  

However, here the proposed TRUMP shows efficient results for a good choice of 

TRUMP Care Coefficient g . Thus the First Basic Information (FBI) in hands about the 

choice of g  is helpful.  There are many choices of values of g  where the value of 

)4()5( RERE  . We first provide a range of First Basic Information (FBI) which could 

be useful for selecting a value of the TRUMP Care Coefficient ( g ) for different sample 

sizes in Table 4.1. 

 
Table 4.1. Range of the TRUMP Care Coefficient vs sample size. 

 Value of g  
n  Minimum Median Maximum Frequency 

30 0.50 1.50 2.50 41 
35 0.50 1.50 2.50 41 
40 0.50 1.50 2.50 41 
45 0.50 1.50 2.50 41 
50 0.50 1.50 2.50 41 
55 0.50 1.50 2.50 41 

 
There is a huge number of results in favour of TRUMP; we provide for each of the 

sample sizes considered, the average relative efficiency values over all values of g . (See 

Table 4.2) The last column in Table 4.2 provides only standard deviation of the TRUMP 

)5(RE .  Note that there is no value of SD for )( jRE , 4,3,2,1j , because those 

estimator are free from the value of g .  The values of standard deviations of )5(RE  are 

not very small indicating that there is a variation in the value of )5(RE , thus choosing a 

value of TRUMP care coefficient g  close of its median values listed in Table 4.1 will be 

a safe value for different sample sizes.  It is interesting to note that for each sample size 

between 30 to 55 with a step of five, there was always a value of g  between 0.5 to 2.5 

such that the condition )4()5( RERE    holds.  
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Table 4.2. Average )( jRE , 5,4,3,2,1j  for different sample sizes n   over all possible 
values of g  considered.  

 Ratio GREG LR BLUP TRUMP SD of 
n  )1(RE  )2(RE  )3(RE  )4(RE  )5(RE   )5(RE  
30 964.29 1142.10 2463.20 3402.30 3805.00 788.00 
35 508.30 606.81 1388.40 1591.80 1728.10 263.20 
40 651.28 771.18 1818.90 1754.70 1863.20 208.10 
45 883.15 1077.70 3466.40 3623.50 3994.00 765.00 
50 564.13 621.64 923.48 1116.90 1150.00 62.70 
55 467.36 523.86 788.51 1711.10 1824.80 230.00 

 
A pictorial presentation of all )( jRE , 5,4,3,2,1j values for different sample sizes are 
shown in Fig. 4.2.   
 

555045403530

4000

3000

2000

1000

0

n

Y
-
D

a
t
a

RE(1)

RE(2)

RE(3)

RE(4)

RE(5)

Variable

Scatterplot of RE(1), RE(2), RE(3), RE(4), RE(5) vs n

 
Fig. 4.2.  Comparison of the five predictors with mean. 

 
From Fig 4.2, one can see that the ratio, and GREG fall into one category and, the Linear 
Regression, the BLUP and TRUMP form another efficient category. We conclude that 
the proposed TRUMP can be made at least as efficient as the natural BLUP when the 
regression line passes through the origin.  
 
Figure 4.3 shows the actual values of RE(1), RE(2), RE(3), RE(4) and RE(5) versus the 
value of g  for a sample of size .30n  
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Fig. 4.3. 1,2,3,4,5j RE(j),   values for sample size of 30 units. 

 
It is easy to visualize that as the value of the TRUMP Care Coefficient varies between 0.5 
and 1.5, the proposed TRUP is better than all the other four competitors.  As soon as the 
value of g  reaches 1.5 then the proposed TRUMP and BLUP are showing almost equal 
efficiency. However, both BLUP and TRUMP are better than the linear regression 
estimator, which in turn is more efficient than the both ratio and GREG estimator.  The 
graphs for RE(1), RE(2), RE(3), and RE(4) are straight horizontal lines because these 
value are not dependent on the value of g .  As the value of g   increases from 0.5 
towards 2.5, the RE(5) value seems to decrease exponentially. 
 
In the same way, the Figures 4.4 through 4.8 are devoted to displaying the values of 

1,2,3,4,5j RE(j),   for different sample sizes from 35 to 55 with a step of 5. 
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Fig. 4.4. 1,2,3,4,5j RE(j),   values for sample size of 35 units. 
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Fig. 4.5. 1,2,3,4,5j RE(j),   values for sample size of 40 units. 
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Fig. 4.6. 1,2,3,4,5j RE(j),   values for sample size of 45 units. 
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Fig. 4.7. 1,2,3,4,5j RE(j),   values for sample size of 50 units. 
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Fig. 4.8. 1,2,3,4,5j RE(j),   values for sample size of 55 units. 
 
One straightforward conclusion can be made from these figures that the trend of the 
percent relative efficiency values as a function of TRUMP Care Coefficient remains same 
for different sample sizes in the range 30 to 55 with a step of 5. 
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Fig. 4.9.  Box plots  for TRUMP 

 
Figure 4.9 shows the box plots obtained from the relative efficiency RE(5) for different 
sample sizes for different values of the TRUMP Care Coefficient.  More outliers are 
observed for sample sizes 30 and 45 in comparison other sample sizes considered. 
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