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Abstract
In a clinical study, the primary endpoint may have different distributions in different cases. Thus,

the primary analysis could be based on the finite mixture model. In order to consider these different
distributions, this paper will present a method of sample size calculation based on the finite mixture
model. We assume that the components in the finite mixture model are normally distributed and
the corresponding mixing proportions have a multinomial distribution. According to the Central
Limit Theorem, the sample size can be determined using sample mean and variance of this finite
mixture model, which are calculated through the conditional expectation and conditional variance.
This method is applied to an example for showing the impact of different assumptions on the sample
size calculation.
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1. Introduction

In clinical studies, subjects may respond to treatment quite differently. This may depend on
genetic polymorphism or other baseline characteristics. Thus a finite mixture model is an
appropriate choice in modeling and analyzing these clinical data. Kessler and McDowell
(2012) introduced SAS FMM Procedure for analyzing data with finite mixture models.
Schlattmann P. (2009) discussed finite mixture models in much details.

However, available statistical literature, and many current statistical sample size soft-
ware such as PASS, nQuery and SAS do not provide a direct solution on the sample size
calculation based on the finite mixture model. While the primary endpoint in a clinical
trial follows a finite mixture model, how to calculate the sample size for this study is a
major interest. This motivates my research on sample size calculation based on a finite
mixture model. In this paper, we assume that the components in the finite mixture model
are normally distributed and the corresponding mixing proportions have a multinomial dis-
tribution.

2. Model Setting

Assume that the primary endpoint in a clinical study follows a finite mixture model. Let YT
and YC be the primary endpoints for active treatment group and control group respectively,
which can be simply expressed in the following notation:

YT ∼
∑K
i=1 ptiXti YC ∼

∑K
i=1 pciXci (1)

We may further assume that

• For i = 1, 2, ...K,
E(Xti) = µti V ar(Xti) = σ2ti
E(Xci) = µci V ar(Xci) = σ2ci
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• pti and pci are the probability of belonging to category i for active treatment group
and control group respectively, andE(pti) = θti andE(pci) = θci, where

∑K
i=1 θti =

1 and
∑K
i=1 θci = 1.

Note pti (pci) for i = 1, 2, ...K are dependent.
Let us denote FT (x) and FC(x) are the distribution functions of YT and YC respec-

tively, Fti(x) and Fci(x) are the distribution function of Xti and Xci respectively, then
based on Theorem of Total Probability,

FT (x) =
∑K
i=1 ptiFti(x) FC(x) =

∑K
i=1 pciFti(x)

Thus their corresponding density functions fT (x), fC(x), fti(x) and fci(x) have the
following relationship:

fT (x) =
∑K
i=1 ptifti(x) fC(x) =

∑K
i=1 pcifci(x) (2)

which are the common definition of the finite mixture model.

3. Statistical Properties

Assume that in a clinical study, the primary endpoint is observed for n subjects in active
treatment group and n subjects in control groups respectively. For active treatment group,
i = 1, 2, ...K and j = 1, 2, ...n, let

Ztij =

{
1 if jth subject in category i
0 otherwise

(3)

then np̂ti =
∑n
j=1 Ztij (i = 1, 2, ...K ) has a multinomial distribution with parameters n

and θt1, θt2, .... θtK . Similarly for control group, Zcij has similar definition as in (3), thus
np̂ci =

∑n
j=1 Zcij has a multinomial distribution with parameters n and θc1, θc2, .... θcK .

Note that
E(p̂ti) = θti E(p̂ci) = θci (4)

E(p̂tip̂tj) =
(n− 1)θtiθtj

n
E(p̂cip̂cj) =

(n− 1)θciθcj
n

E(p̂2ti) =
n(n− 1)θ2ti + nθti

n2
E(p̂2ci) =

n(n− 1)θ2ci + nθci
n2

Thus for i = 1, 2...K, and j = 1, 2, ...K (i 6= j)

V ar(p̂ti) = E(p̂2ti)− (E(p̂ti))
2 =

θti(1− θti)
n

(5)

Cov(p̂ti, p̂tj) = −θtiθtj
n

(6)

Similarly,

V ar(p̂ci) =
θci(1− θci)

n
(7)

Cov(p̂ci, p̂cj) = −θciθcj
n

(8)

Assume Xti1, Xti2, ....Xtinti are the nti samples from active treatment group and category
i (i = 1, 2...,K), where

∑K
i=1 nti = n, and Xci1, Xci2, ....Xcinci are the nci samples from
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control group and category i (i = 1, 2...,K), where
∑K
i=1 nci = n. Then the sample mean

for active treatment group is

X̄t =
1

n

K∑
i=1

nti∑
j=1

Xtij =
K∑
i=1

nti
n
X̄ti =

K∑
i=1

p̂tiX̄ti (9)

where p̂ti = nti/n, and

X̄ti =
1

nti

nti∑
j=1

Xtij (10)

which is the sample mean for active treatment group in category i, thus E(X̄ti|p̂ti) = µti
and V ar(X̄ti|p̂ti) = σ2ti/nti = σ2ti/(np̂ti). From (4) to (6),

µt = E(X̄t) =
∑K
i=1E(p̂tiX̄ti) =

∑K
i=1E[p̂tiE(X̄ti|p̂ti)]

=
∑K
i=1 µtiE(p̂ti) =

∑K
i=1 µtiθti

(11)

V ar(p̂tiX̄ti) = V ar[E(p̂tiX̄ti|p̂ti)] + E[V ar(p̂tiX̄ti|p̂ti)]
= V ar[p̂tiE(X̄ti|p̂ti)] + E[p̂2tiV ar(X̄ti|p̂ti)]

= V ar[p̂tiµti] + E[p̂2ti
σ2ti
np̂ti

]

= µ2tiV ar[p̂ti] +
σ2ti
n
E[p̂ti]

=
µ2tiθti(1− θti) + σ2tiθti

n

(12)

and for i 6= j,

Cov(p̂tiX̄ti, p̂tjX̄tj) = E(p̂tiX̄tip̂tjX̄tj)− E(p̂tiX̄ti)E(p̂tjX̄tj)
= E[p̂tip̂tjE(X̄ti|p̂ti)E(X̄tj |p̂tj)]
−E[p̂tiE(X̄ti|p̂ti)]E[p̂tjE(X̄tj |p̂tj)]
= µtiµtj [E(p̂tip̂tj)− E(p̂ti)E(p̂tj)]
= µtiµtjCov(p̂ti, p̂tj)

= −µtiµtjθtiθtj
n

(13)

Therefore

V ar(X̄t) =
σ2t
n

=
1

n
[
K∑
i=1

(µ2tiθti(1− θti) + σ2tiθti)

−2
∑

1<=i<j<=K

µtiµtjθtiθtj ]
(14)

Similarly for control group,

µc = E(X̄c) =
K∑
i=1

µciθci (15)

V ar(X̄c) =
σ2c
n

=
1

n
[
K∑
i=1

(µ2ciθci(1− θci) + σ2ciθci)

−2
∑

1<=i<j<=K

µciµcjθciθcj ]
(16)
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4. Sample Size Calculation

Let the sample mean difference between active treatment group and control group be

D = X̄t − X̄c =
K∑
i=1

p̂tiX̄ti −
K∑
i=1

p̂ciX̄ci (17)

Then

µD = E(X̄t)− E(X̄c) =
K∑
i=1

(µtiθti − µciθci) (18)

V ar(D) = σ2D = V ar(X̄t) + V ar(X̄c) =
σ2t + σ2c

n
(19)

For a large sample size n,
X̄t − X̄c − µD

σD
(20)

approximately has a standard normal distribution. Thus

X̄t − X̄c

σD
(21)

has a normal distribution with mean of µ∗ = µD/σD and standard deviation of 1, which is
denoted as N(µ∗, 1). Under Hypothesis

H0 : µt = µc HA : µt > µc

the statistical power

P (
X̄t − X̄c

σD
> zα) = P (N(µ∗, 1) > zα) = P (N(0, 1) > zα − µ∗) = 1− β (22)

Thus zα − µ∗ = −zβ , it can easily derived that the sample size per group is

n = (σ2t + σ2c )

(
zα + zβ
µD

)2

(23)

The above sample size calculation is based on one-sided test. For two-sided test, we only
replace α with α/2 in (23).

5. Example

Assume that the primary variable in active treatment group and control group follows the
mixture models with two components.

YT ∼ ptN(µt1, σ
2
t1) + (1− pt)N(µt2, σ

2
t2)

YC ∼ pcN(µc1, σ
2
c1) + (1− pc)N(µc2, σ

2
c2)

where pt follows a binomial distribution B(n, θt) and pc follows a binomial distribution
B(n, θc). Table 1 shows the sample size results under different scenarios.
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Table 1: Sample Size Based on a Finite Mixture Model
θt µt1 µt2 σt1 σt2 θc µc1 µc2 σc1 σc2 α Power n

0.3 5 8 6 7 0.3 4 5 6 6 0.05 0.8 90
0.4 5 8 6 7 0.4 4 5 6 6 0.05 0.8 106
0.5 5 8 6 7 0.5 4 5 6 6 0.05 0.8 126
0.6 5 8 6 7 0.6 4 5 6 6 0.05 0.8 152
0.7 5 8 6 7 0.7 4 5 6 6 0.05 0.8 189
0.3 5 8 6 7 0.3 4 5 6 6 0.05 0.9 124
0.4 5 8 6 7 0.4 4 5 6 6 0.05 0.9 146
0.5 5 8 6 7 0.5 4 5 6 6 0.05 0.9 174
0.6 5 8 6 7 0.6 4 5 6 6 0.05 0.9 211
0.7 5 8 6 7 0.7 4 5 6 6 0.05 0.9 261

6. Summary

This paper developed a sample size calculation method for a finite mixture model under
the assumptions that the components in the finite mixture model are normally distributed
and the corresponding mixing proportions have a multinomial distribution. Actually, it can
be seen from Section 3 that this method is also applied to the situation when the compo-
nents in a finite mixture model are not normally distributed. This method can incorporate
information from all components of a finite mixture model into the sample size calculation.
The sample size can be determined using sample mean and variance of the finite mixture
model, which are calculated through the conditional expectation and conditional variance.
It is recommended to use this method in those cases when the primary endpoint in a clinical
study follows a finite mixture model.
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