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Abstract
Individualized treatment rule (ITR) recommends treatment on the basis of individual patient char-

acteristics and the previous history of applied treatments and their outcomes. Despite the fact there
are many ways to estimate ITR with binary treatment, algorithms for continuous treatment have only
just started to emerge. We propose a novel approach to continuous ITR estimation based on explicit
modelling of uncertainty in the subject’s outcome as well as direct estimation of the mean outcome
using gaussian process regression. Our method incorporates two intuitively appealing properties -
it is more inclined to give a treatment with the outcome of higher expected value and lower vari-
ance. Experiments show that this direct incorporation of the uncertainty into ITR estimation process
allows to select better treatment than standard indirect approach that just models the average. Com-
pared to the competitors (including OWL), the proposed method shows improved performance in
terms of value function maximization, has better interpretability, and could be easier generalized to
multiple interdependent continuous treatments setting.

Key Words: Dose Finding, Individualized Treatment Rule, Gaussian Process Regression, Contin-
uous Treatment, Personalized Medicine

1. Introduction

Many clinician studies conclude that reactions to a fixed treatment could vary significantly
among individuals in a population (Ishigooka et al., 2000; Havlir et al., 2011; Bolondi et al.,
2012). Such heterogeneity of treatment effects (Kravitz et al., 2004) raises a question about
the applicability of this ”one size fits all” approach to clinical practice and leads naturally
to personalized medicine paradigm – the idea of healthcare improvement as a result of
tailoring treatments on the basis of patient individual characteristics.

1.1 Treatment rules

One of the crucial concepts in personalized medicine research is individualized treatment
rule (ITR) (aka individualized treatment regime) which is usually defined as a mapping
from measured patient characteristics to recommended treatment (Laber and Qian, 2017).
An obvious goal of ITR construction is a maximization of patients’ response to treatment
averaged over all individuals in a population. This goal is sometimes referred to as expected
reward in a population or value function. ITR estimation is a procedure which uses data
from either observational or randomized clinician studies to fulfill this goal.

Personalized medicine often comes in one of the two forms (Lipkovich et al., 2017):
either identification of the subgroups of patients who benefit from a given treatment, or
identification of the optimal treatment for a specific patient. The latter form (which we also
adhere to in this work) could be further subdivided by the approach to ITR estimation:

1. Indirect approach usually consists of a two-stage procedure. First, modeling of ei-
ther conditional mean outcomes or contrasts between mean outcomes takes place.
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Second, the ITR is derived as the rule assigning the treatments that maximize the
model of the conditional mean outcome.

2. Direct approach approximates expected reward in a population with its sample esti-
mate as a function of ITR. Maximization of this expected reward estimate with regard
to parameters of ITR yields the desired treatment rule.

Specific ITR estimation methods differ a lot depending on whether the treatment is dis-
crete or continuous. In the latter case ITR is also called individualized dose rule (IDR)
and is of a particular practical importance because of its usage in therapies balancing drug
dose between insufficient (not causing any effect) and excessive (causing severe adverse
effects). One example of such dose administering therapies is thrombosis prevention using
a drug called warfarin, which is shown to be more effective when prescribed on the basis of
environmental and genetic patient factors (International Warfarin Pharmacogenetics Con-
sortium et al., 2009). Another illustrative example is a treatment of inflammatory bowel
disease with thiopurines (Teml et al., 2007). These examples motivate a strong need in
developing reliable and efficient methods for ITR estimation.

There is a substantial amount of literature devoted to ITR estimation dealing with
discrete (mostly binary) treatment using an indirect approach (Qian and Murphy, 2011;
Moodie et al., 2014; Zhang and Zhang, 2015; Tao and Wang, 2017) as well as a direct one
(Zhao et al., 2012; Zhou et al., 2015). However, despite its importance, as far as we know,
there are very few methods dealing with IDR estimation.

IDR estimation poses additional challenges because the set of admissible treatments
has a cardinality of the continuum. There are infinitely many treatments to choose from,
only a few of which might be actually present in the data. These difficulties yield triv-
ial generalization of discrete methods to continuous treatment cases either impossible or
intractable.

One of the recent works devoted to IDR estimation Laber and Zhao (2015) follows
a direct approach with the focus on policy interpretability, which is achieved through the
use of decision trees with splits guided by complicated purity measure. This split criterion
is based on the usual value function from discrete ITR with additional smoothing. The
proposed smoothing is analogous to introducing a stochastic policy with probability mass
concentrated around the deterministic policy assignments observed in the training data. An
interesting peculiarity of the work is that only treatments observed in the training data are
considered as a split candidates.

Another recent approach to IDR estimation (Chen et al., 2016) is devoted to developing
an extension of O-learning algorithm (Zhao et al., 2012). It resembles in spirit the work of
Laber and Zhao (2015) because of chosen direct approach to IDR estimation and the pres-
ence of smoothing in value function estimate. However, unlike in Laber and Zhao (2015),
the smoothing is used only as an intermediate step required for optimization purposes, so
that the annealing of the kernel bandwidth to zero gives precisely the same value function
as is used for discrete ITR estimation.

Specifically, Chen et al. (2016) introduced a regression based approach inspired by the
Zhao et al. (2012) and SVM; the proposed algorithm comprises global optimization task
tackled by DC procedure which is known to depend on initialization and could guarantee
only local convergence.

All of the aforementioned algorithms follow the direct approach to IDR estimation
consisting of maximizing mean conditional reward over individuals in a population (aka
value function), but do not deal with variance of the patients’ potential outcome, which
might be crucial for a real world application.

Consider a simple example when patient is told to choose between two mutually exclu-
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sive options:

1. Take a drug A with 0.99 chance of recovery (reward = 100) and 0.01 probability to
acquire physical disability (reward = -1000).

2. Take a drug B with 0.85 chance of recovery (reward = 100) and 0.15 probability not
to experience any effect (reward = 0).

Mean reward in the first case is 89 while in the second one it is 85, suggesting that
rational patient should always choose the first option. However, it is known that people
are not rational and tend to averse losses (Kahneman and Tversky, 1979). This common
behavior was also shown to be true in a health domain (Attema et al., 2013). Therefore,
it seems very natural to explicitly incorporate reasoning about mean and variance of a
possible outcome into an ITR. Nevertheless, such reasoning is impossible when using direct
approach.

1.2 Indirect methods

Our work aims to develop an indirect approach to ITR estimation. Indirect methods are
usually criticized for potential overfitting during the first stage (fitting regression model to
rewards) and for possible model misspecification.

In defense of indirect methods, we argue that the concerns about misspecification could
be reduced to a great extent through the use of a flexible model that could fit the data well
(Taylor et al., 2015).

However, the more powerful model is, the more it is susceptible to overfitting. To
cope with the overfitting problem on the level of model design, we have chosen to follow
Bayesian paradigm, which allow to do natural regularization through the averaging over
model parameters and is known to be free of overfitting problem (Bishop, 2006). Nev-
ertheless, any Bayesian model becomes prone to overfitting as soon as optimization with
regards to hyperparameters is involved (so-called type II maximum likelihood procedure).
Careful treatment of overfitting requires either very small number of hyperparameters or
fully Bayesian inference with Markov chain Monte Carlo methods (Neal, 1997; Gramacy,
2007).

Another argument in favor of indirect methods is their capacity to estimate the uncer-
tainty of the expected outcome. Such estimation is impossible when following direct ap-
proach but could be invaluable in practice, providing the means for balancing exploration
and exploitation.

General task of ITR estimation is similar to the classic reinforcement learning (RL)
setting (Sutton and Barto, 1998): patient characteristics, their treatments and responses are
direct analogs of state, action and reward concepts from RL literature. Moreover, direct
and indirect approaches to ITR estimation in RL community are called value-based and
policy-based approaches. Recently, it was shown (O’Donoghue et al., 2016; Schulman
et al., 2017) that these two approaches share much more in common than it was believed
before. To some extent this finding reconciles two different ITR estimation approaches and
gives rise to an unexplored idea of their combination.

The contributions of this work are summarized as follows.

1. We propose a new indirect approach to IDR estimation that benefits from separation
of uncertainty due to finite sample estimation and irreducible variance of patient
outcomes.

2. We show how to reduce the hard task of continuous inversion to simple univariate
global optimization problem which is well-known in active learning and Bayesian
optimization literature.
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3. We evaluate the proposed method on various simulation studies, confirming its supe-
rior performance for randomized dose-finding clinical trials.

2. Proposed method

We assume that train data comes from randomized dose trial and every training record
consists of three major components:

1. patient covariates c ∈ Rp;

2. treatment doze a ∈ [0, 1], selected at random within safe bounded dose range, which
w.l.o.g. is assumed to be equal to [0, 1] interval;

3. patient outcome r ∈ [rlo, rhi], rlo, rhi ∈ R.

Note that we do not restrict the sign of outcomes but do require them to be bounded. We
also introduce a shorthand notation xi = [c>i , ai]

> for a concatenation of covariate vector
and a treatment value.

As was mentioned previously, indirect approach to IDR estimation requires building
a model of the outcome value given patient covariates and treatment doze. One of the mod-
els meeting all criteria of being sufficiently flexible, robust to overfitting due to Bayesian
nature, and able to make probabilistic inference is Gaussian process (GP) regression model
(Rasmussen and Williams, 2005), which is the basis of this work.

2.1 Gaussian process framework

We proceed with minimal introduction to GP regression. For more thorough discussion one
could refer to Rasmussen and Williams (2005).

Gaussian process is a collection of random variables any finite number of which have
joint Gaussian distribution. A GP is completely specified with its mean and covariance
functions which we will denote as m(x) and k(x,x′) respectively. For clarity and without
loss of generality (Rasmussen and Williams, 2005) we will consider Gaussian process f
with zero mean m(x) = 0 and denote f(x) ∼ GP(0, k(x,x′)).

We assume that we were given a training dataset {(xi, yi) | i = 1, ..., n} that consists
of pairs of object description xi and noisy observation of function realization, i.e. yi =
f(xi) + ε, where the noise ε ∼ N (0, σ2n).

Having specified a joint Gaussian prior over the test output f∗ and noisy train outputs y,
the inference is carried out with conditioning on observed train outputs. This procedure
allows to compute the mean and the variance of f∗ posterior distribution given the test
point x∗ using the following equations:

f∗ ∼ N (f̄∗, Var [f∗])

f̄∗ = k>∗
(
K + σ2nI

)−1
y

Var [f∗] = k(x∗,x∗)− k>∗
(
K + σ2nI

)−1
k∗,

(1)

where k>∗ = (k(x∗,x1), ..., k(x∗,xn)) and covariance matrixK has entriesKij = k(xi,xj).
To reduce clutter we will subsequently denote

(
K + σ2nI

)−1 as Λ.
One of the main constitutes of GP flexibility is covariance function. The choice of

covariance function for particular application can be guided by Bayesian model selection
(Rasmussen and Williams, 2005), however, for illustration purposes we have chosen proba-
bly the most commonly used squared exponential function with separate length-scales. We
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also extend this covariance function with the noise (aka nugget) term:

k(xp,xq) = σ2f exp

{
−

p∑
i=1

(xpi − xqi)2

2θi

}
+ σ2nδpq,

where θi is called length-scale, xpi is a p-th feature of i-th object and δpq is the Kronecker
delta function.

Note that all of the subsequent derivations could be replicated with other popular choices
of covariance function (i.e. the Matérn class) and are not unique to squared exponential co-
variance function.

2.2 Method formulation

Motivation of the proposed method is as follows. To solve the prescription problem for
a new patient with characteristics c∗, doctor, given the history of previously seen patients
{(ci, ai, ri)}ni=1, have to simultaneously solve two conflicting tasks:

1. Doctor has to be confident about potential dose effect and this confidence should be
based on previous cases. The more similar are patient characteristics c∗ to the ones
from previous practice ci, the more doctor is sure that giving the same ai to patient
with c∗ will result in ri.

2. Doctor has to prescirbe the best treatment possible. The bigger is ri, the more doctor
wants a∗ to be similar to ai.

These two intuitive observations coupled with the notion of loss aversion in health do-
main (Attema et al., 2013) motivate prescription of the dose which maximizes probabilistic
lower surface for the potential outcome. That is, in terms of mean and variance of posterior
distribution over f∗

a∗ = arg max
a

f̄∗ − s
√

Var [f∗], (2)

where s is a scaling coefficient controlling the penalty for the uncertainty in the outcome.
We argue that this simple heuristic, which hereinafter will be referred to as LCSL (lower

confidence surface learning):

1. is a strong IDR competitive with the previously proposed approaches;

2. provides the means to account for loss aversion and uncertainty;

3. provides the means to perform adaptive trial design;

4. allows to explicitly address an exploration-exploitation tradeoff.

2.3 Modelling correlation with exponential power family

Formula (2) does not gives us a method to perform maximization over treatment domain.
So we need to design a constructive way to carry out such an inversion.

Lets rewrite each of the terms in (2) separately assuming that covariance function is
squared exponential with separate length-scales. For the sake of brevity we omit length-
scales in following derivations

k(xp,xq) = σ2f exp

{
−||xp − xq||22

2

}
= σ2f exp

{
−||cp − cq||22

2

}
exp

{
−||ap − aq||

2
2

2

}
Lets denote

K(c∗) = σ2f · diag

(
exp

{
−||c∗ − c1||22

2

}
, . . . , exp

{
−||c∗ − cn||22

2

})
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Then one could write f̄∗ in a form of a linear combination of exponential terms where αi

depends only on the train data and known covariates c∗ of test object:

f̄∗ =

(
exp

{
−||a− a1||

2

2

}
, . . . , exp

{
−||a− an||

2

2

})
K(c∗)

>Λy

=
∑
i

αi exp

{
−||a− ai||

2

2

}
,

where αi =
[
K(c∗)

>Λy
]
i
.

The same transformation could be done for Var [f∗]:

Var [f∗] = k(x∗,x∗)− k>∗ Λk∗

= k(x∗,x∗)−
∑
i,j

γij exp

{
−||a− ai||

2 + ||a− aj ||2

2

}

Here γij = σ4fΛij exp
{
− ||c∗−ci||

2+||c∗−cj ||2
2

}
and ∀x∗ k(x∗,x∗) = σ2f , so neiter βij nor

k(x∗, x∗) depends on unknown a.
To sum up, our optimization task could be simplistically formulated as follows

max
a

∑
i

αi exp

{
−(a− ai)2

2

}
−s

√√√√k(x∗,x∗)−
∑
i,j

γij exp

{
−(a− ai)2 + (a− aj)2

2

}
(3)

2.4 Global optimization

As is easily seen, the objective (3) is a sum of unnormalized exponential functions with
coefficients αi, γij of arbitrary sign. Thus, to allow for explicit maximization of this non-
convex objective, one need to employ global optimization methods.

Even though the task (3) is a very hard one, it is surely not a new one – problems
of this type are inevitable in Bayesian optimization (Brochu et al., 2010), arising during
maximization of the so-called acquisition function.

There are many methods to solve global optimization problem of the form (3), i.e. DI-
RECT (Jones et al., 1993), which is derivative free and deterministic. In this work we
adhere to a simpler yet efficient two-step approach to global optimization that is often im-
plemented in Bayesian optimization frameworks (Bayesian Optimization, 2014; Spearmint,
2014). First, seeds are generated – either uniformly at random, in a form of fixed step grid
or as a Sobol’ sequence (Sobol’, 1967). Second, function is evaluated at each seed and (op-
tionally) local optimization method is started with each seed as an initial point. Frequent
choice of such local optimization algorithm is L-BFGS-B (Zhu et al., 1997).

2.5 Interpretability of the model

Flexibility of any model usually comes with the price of reduced interpretability which
is often of particular interest for practical applications. However, as is evident from for-
mula (1), mean predictions of GP regression are additive with respect to covariance terms
k∗. This means that, given test object x∗, one could argue which objects from the train
dataset influence mean prediction the most based on the components of covariance vector
k∗ and coefficients [Λy]i. The same reasoning holds for variance interpretation with the
only difference of quadratic dependence replacing the linear one.
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Additionally, the learned values of length-scales could serve as indicators of feature
importances, giving rise to the so-called automatic relevance determination (ARD) effect.

These simple model interpretations coupled with the recent work devoted to the trade-
off between accuracy and interpretability (Plate, 1999) along with possible interpretability
increase due to additive GP modelling (Duvenaud et al., 2011) allow to get even closer to
interpretability level of linear and tree-based models.

2.6 Applicability to observational dose trials

The requirement of training data being obtained from randomized study is by no means
necessary. Under usual assumptions in casual inference literature (Hernán and Robins,
2017) the proposed method could be seen as a model of counterfactual mean outcome.
These assumptions are as follows:

1. Conditional exchangeability (aka strong ignorability) – potential outcomes Ra are
conditionally independent of A given covariates C, i.e. ∀a, Ra ⊥ A |C.

2. Positivity – there is nonzero probability of assigning any of the treatment levels to
any of possible objects, i.e. ∀C : p(C) > 0, ∀a p(a |C) > 0 .

3. Consistency – each observed outcome is precisely the one that would have been
observed under given treatment level, i.e. R = RA.

In case these assumptions hold true, structural model E [Ra |C = c] of counterfactual
outcome Ra is equal to conditional mean model E [R |C = c, A = a]. This imply that the
proposed method falls under umbrella of outcome regression causal inference models.

3. Numerical results

All experiments, unless stated otherwise, were conducted as follows. Train and test sample
generation was repeated 50 times for each combination of scenario, train sample size, algo-
rithm and variance penalty factor. Test sample size was fixed at the value of 1000. Rewards
in train dataset were scaled to fit into [0, 1]. For each train dataset we fit a Gaussian pro-
cess regression that was allowed to internally restart optimization of marginal likelihood
10 times. The model maximizing marginal likelihood across these 10 restarts is chosen
for subsequent evaluation on test data. Approximate model performance is obtained by
plugging predicted optimal dose for test objects into the true underlying state-action value
function Q(C, A). Method quality is reported in terms of V̂(f), which is defined as ap-
proximate model performance averaged over all data generations.

We have empirically observed that the choice of a particular global optimization method
out of those described in section 2.4 does not change performance much. Thus, we report
all of the results using the simplest one – fixed step grid evaluation with number of grid
point fixed at 50 for all of the simulation scenarios and settings.

In this section we refer to our method as LCSL.X , where X specifies the value of
variance penalty (3) by the equation s = Φ−1(X/100), where Φ is normal CDF.

All our experiments are built on top of Gaussian process framework GPy (2012).

3.1 Simulation study

In this section we first present results of two simulation experiments which show that for
simple scenarios our method works remarkably well.
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We denote C for patient covariates matrix, i.e. C = [c1, ..., cn]>, where ci is a
column vector of i-th patient characteristics; A for a column vector of treatments, i.e.
A = [a1, ..., an]>; Ci for an i-th column of C matrix.

Our first scenario simulates optimal treatment dependence on single covariate in a form
of parabola (figure 1, left):

R ∼ N (Q1(C, A), 0.01), A ∼ U(0, 1), ci ∼ U(0, 1)

Q1(C, A) = −100 · (fopt1 (C)−A)2

fopt1 (C) = 4 · (C1 − 0.5)2

Our second scenario is a more complex one – it simulates optimal treatment assignment
as a highly nonlinear function with local periodicity and abrupt change in the middle of
covariate space (figure 1, right) :

R ∼ N (Q2s(C, A), 0.01), A ∼ U(0, 1), ci ∼ U(0, 1)

Q2(C, A) = −100 · (fopt2 (C)−A)2

f runge(x) = cos(3π(4x− 0.3))/(1 + 25(4x− 0.55)2)

fstep(x) = 0.1x · (10 + sin(20x) + sin(50x))− 1.3

fopt2 (C) = (f runge(C1) + fstep(C1) · I(C1 > 0.5))/1.5− 0.7
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Figure 1: Illustration of fopt(C) from each of the proposed scenarios 1 and 2.

Because true fopt(C) is nonlinear in both scenarios, we don’t include linear OWL
(L-OWL) from Chen et al. (2016) into comparison. Kernel OWL (K-OWL) results are
obtained by reusing the code from the supplementary material of Chen et al. (2016).

Simulation results (table 1, 2) show that the proposed method works extremely well in
both scenarios, showing unimprovable results for the first scenario.

Table 1: Mean and std of V̂(f), Scenario 1
Sample size LCSL.95 K-OWL

50 -0.01 (0.00) -2.30 (1.37)
100 0.00 (0.00) -0.93 (0.50)
200 0.00 (0.00) -0.42 (0.18)
400 0.00 (0.00) -0.23 (0.08)
800 0.00 (0.00) -0.17 (0.06)
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Table 2: Mean V̂(f), Scenario 2
Sample size LCSL.95 K-OWL

50 -3.78 (1.39) -3.92 (0.63)
100 -2.19 (1.31) -3.63 (0.37)
200 -0.40 (0.26) -3.37 (0.23)
400 -0.22 (0.21) -3.21 (0.20)
800 -0.10 (0.06) -3.06 (0.19)

We proceed with results of LCSL on several more complex and higher dimensional
simulations first introduced in Chen et al. (2016). In particular, we evaluate and compare
our method on three scenarios, first two of which simulate randomized trial and the last one
simulates observational trial.

Scenario 3, randomized trial:

R ∼ N (Q3(C, A), 1), A ∼ U(0, 2), ci ∼ U(−1, 1)30

Q3(C, A) = 8 + 4C1 − 2C2 − 2C3 − 25 · (fopt3 (C)−A)2

fopt3 (C) = 1 + 0.5C1 + 0.5C2

Scenario 4, randomized trial:

R ∼ N (Q4(C, A), 1), A ∼ U(0, 2), ci ∼ U(−1, 1)10

Q4(C, A) = 8 + 4 cos(2πC2)− 2C4 − 8C3
5 − 15 · |fopt4 (C)−A|

fopt4 (C) = 0.6 · I(|C1| ≥ 0.5) + C2
4 + 0.5 log(|C7|+ 1)

Scenario 5, observational trial:

R ∼ N (Q5(C, A), 1), A ∼ TruncN (fopt5 (C), 0, 2, 0.5), ci ∼ U(−1, 1)10

Q5(C, A) ≡ Q4(C, A)

fopt5 (C) ≡ fopt4 (C)

Results of randomized study simulation (tables 3, 4) allow to conclude that our method
outperforms every other competitor (often by a large margin) in a randomized trial set-
ting. Such superiority originates from the randomization of treatment assignment, which
increases the accuracy of global response surface model and, as a result, improves quality
of treatment recommendations.

Table 3: Scenario 3: Mean and (std) of V̂(f). Results with ∗ are from Chen et al. (2016)
Sample size LCSL.95 K-OWL* L-OWL* SVR* Lasso*

50 7.65 (0.92) 4.78 (0.48) 4.83 (1.40) -12.21 (7.53) -15.62 (6.61)
100 7.87 (0.11) 5.69 (0.40) 5.39 (0.93) -2.57 (6.34) -9.76 (5.21)
200 7.93 (0.11) 6.68 (0.26) 6.85 (0.34) 3.46 (1.97) -1.91 (4.65)
400 7.97 (0.09) 7.28 (0.15) 7.41 (0.14) 6.13 (0.47) 7.95 (0.01)
800 7.99 (0.09) 7.54 (0.08) 7.67 (0.08) 7.36 (0.12) 7.97 (0.01)

However, for simulation of observational study (table 5) we observe that out method
yields superior results only when given enough data. Small samples do not allow to prop-
erly model response surface because all of the points are already concentrated in near op-
timal regions, giving insufficient information about treatment dependence on covariates.
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Table 4: Scenario 4: Mean and (std) of V̂(f). Results with ∗ are from Chen et al. (2016)
Sample size LCSL.95 K-OWL* L-OWL* SVR* Lasso*

50 2.19 (1.97) 2.00 (0.29) 1.16 (0.71) -1.96 (1.70) -5.58 (2.27)
100 4.46 (0.76) 2.19 (0.43) 1.57 (0.52) 0.24 (1.42) -4.12 (2.17)
200 5.30 (0.24) 2.84 (0.37) 2.02 (0.30) 2.01 (0.84) -3.37 (1.38)
400 5.58 (0.20) 3.69 (0.27) 2.30 (0.18) 3.47 (0.37) -0.92 (3.12)
800 5.75 (0.21) 4.41 (0.19) 2.49 (0.10) 4.35 (0.19) 1.92 (0.69)

Table 5: Scenario 5: Mean and (std) of V̂(f). Results with ∗ are from Chen et al. (2016)
Sample size LCSL.95 K-OWL K-OWL* SVR*

50 -1.15 (2.55) 1.88 (0.60) NA NA
100 -0.45 (3.91) 2.43 (0.42) NA NA
200 2.23 (3.94) 3.27 (0.32) 3.29 (0.28) -0.95 (1.57)
400 4.26 (3.17) 4.22 (0.28) NA NA
800 5.56 (0.65) 4.95 (0.21) 4.91 (0.14) 3.04 (0.52)

This effect could be mitigated to some extent by large variance penalty (figure 2, last col-
umn).

LCSL performance dependence on the variance penalty coefficient, denoted by s in
objective (3), needs additional elaboration. We have varied s on standard normal quantile
grid (from 0.5 to 0.99 quantile with a 0.01 step) and observed a sustainable relationship
between penalty value and method performance (figure 2).

The first interesting effect, equally present in all scenarios, is that strong variance
penalty always improves upon mean prediction given very small train data (positive trend
on every plot in the first row of figure 2).

The second observation is that increasing train sample size in randomized studies re-
duces the optimal variance penalty (first two columns in figure 2). This observation could
be explained by increase of model accuracy and, as a consequence, diminished need in
variance penalty. Note that for more complex setup (scenario 2) optimal penalty shrinks
slower than for a simpler one (scenario 1). However, we also report a consistent small im-
provement in average V̂(f) irrespective of train data size for small values of penalty (figure
2). This effect can be viewed as a regularization, preventing the model of too assertive
extrapolation.

The last noteworthy remark concerns observational study (last column of figure 2).
In such setting we observe that large variance penalty increases performance irrespective
of train sample size. That is because data generation policy (A ∼ N (fopt4 (C), 0.5)) is
by design close to optimal. Thus, in observational studies the value of variance penalty
should be treated as a proxy of prior knowledge about the degree of data generation policy
optimality.

We conclude that different setups need to treat variance penalty differently. Random-
ized studies benefit most when treating variance penalty as a regularization. In contrast,
observational studies should treat variance penalty as a means for explicit reasoning about
degree of data generation policy optimality.
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Figure 2: Dependence of average quality V̂(f) on s-factor values (see (3)), which are
represented as normal percentile levels, i.e. 95 percentile level means s = Φ−1(0.95),
where Φ is normal CDF.
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4. Conclusions

We have presented an indirect approach to IDR estimation which is based on Gaussian
process regression.

In spite of obvious difficulties of indirect IDR estimation, we have shown that it is
possible to reduce such an intractable problem to a univariate global optimization setting
which is ubiquitous in Bayesian optimization and active learning.

We have discussed the advantages and disadvantages of the proposed method includ-
ing explicit probability reasoning about potential outcome and computational challenges
arising as a consequence of using flexible nonparametric model.

We have also reported various simulation results which not only show that our method
is highly competitive with other algorithms of ITR estimation, but uncover unexpected
variance penalty interpretations.

5. Future work

As was previously noted, ITR estimation shares many similarities with policy search prob-
lem arising in reinforcement learning (RL). This suggests researches dealing with ITR and
DTR (dynamic treatment regime) estimation could get inspiration from already existing
methods in reinforcement learning world.

For example, it would be very interesting to see an adaptation of reward weighted re-
gression (Peters and Schaal, 2007) to direct DTR estimation. Also, an extension of the
proposed LCSL method to multi-stage treatment assignments would be of a great inter-
est. Such extension could probably inherit some of the useful ideas from data-efficient RL
algorithm called PILCO (Deisenroth and Rasmussen, 2011).

Diffusion of statistical science and reinforcement learning may bring benefits to all
parties and thus is highly desirable.
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