
	
	

Conditional and Unconditional ANOVA Tests: An 
Empirical Comparison of Type I Error Control and 

Statistical Power under Variance Heterogeneity and Non-
Normality 

 
Yan Wang1, Zhiyao Yi1, Thanh Pham1, Diep Nguyen 1, Yi-Hsin Chen 1, 

Eun Sook Kim1, Jeffrey Kromrey1, Yue Yin1 

1 University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620 
 
 
 

 
Abstract 
The analysis of variance (ANOVA) F test is a commonly used method to test the mean 
equality among two or more populations. A critical assumption of ANOVA is homogeneity 
of variance (HOV), that is, the compared groups have equal population variances. Although 
it is encouraged to test HOV as part of the regular ANOVA procedure, the efficacy of the 
initial HOV screening that leads to the choice between the ANOVA F test and robust 
ANOVA methods (namely, conditional ANOVA) has not been investigated systematically. 
This simulation study examined the efficacy of conditional ANOVA methods under 
various research conditions. Results suggested that under a small sample size (e.g., 5 per 
group) the combination of the Brown-Forsythe test of means with the Levene or O’Brien 
test of variances is the best choice; with large sample sizes, structured means modeling 
with maximum likelihood or the Bartlett’s correction coupled with Levene or O’Brien are 
the best combinations; and alpha levels between .20 and .30 for the test of variances are 
most appropriate. 

 
Keywords: Analysis of variance, Homogeneity of variance, Non-normality, Type I error 
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1. Introduction 
 
The analysis of variance (ANOVA) F test is a commonly used method to test the equality 
of group means in psychology (e.g., Ames, Wilson, Barnett, Njoh, & Ottomanelli, 2017; 
Mas et al., 2016; Molina & Musich, 2016; Walsh et al., 2017). A critical assumption of 
ANOVA is homogeneity of variance (HOV), that is, the compared populations have equal 
variances. Given the importance of the HOV assumption in testing mean differences 
(Zimmerman, 2004), a conditional procedure has been a common practice in the t test 
which is a special case of ANOVA with two independent sample means. That is, if the 
HOV assumption is satisfied, the regular t test is conducted; if violated, an alternative test 
such as the Satterthwaite approximate t test, which is robust to the violation of the HOV 
assumption, is conducted. The conditional testing procedure has also been recommended 
for ANOVA when two or more group means are compared (e.g., Lix, Keselman, & 
Keselman, 1996). Specifically, the ANOVA F test is conducted if variances are 
homogeneous and otherwise, robust ANOVA methods, such as the Brown-Forsythe test 
(Brown & Forsythe, 1974) and the Wilcox test (Wilcox, 1988, 1989), can be employed.  
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The selection of a conditional testing procedure involves both the choice of tests to be used 
(both the test of variances and the test of means) and the selection of an alpha level for the 
test of variances. Simulation studies have evaluated the performance of HOV testing 
methods (e.g., Lee, Katz, & Restori, 2010; Wang et al., 2017) and robust ANOVA 
approaches (e.g., Fan & Hancock, 2012; Nguyen et al., 2016), based on which 
recommendations have been made regarding the selection of optimal methods. Yet, those 
recommendations might not be applicable to the conditional ANOVA procedure because 
they were made assuming the test of variances and the test of means were conducted 
separately. In conditional ANOVA, however, a combination of an HOV test and an 
ANOVA method is used, and the ANOVA results might be affected by the initial screening 
of variance heterogeneity. For example, the HOV test might not detect variance 
heterogeneity (i.e., lack of power) and thus the F test is conducted instead of the robust 
ANOVA methods (Olejnik, 1987); or the HOV test incorrectly shows variance 
heterogeneity (i.e., inflation of Type I error rates) so the robust ANOVA methods are used 
instead of the F test. The selection of an alpha level for the HOV test is also important 
because of its influence on the power of this test, which would further impact the test of 
mean equality.  

 
Olejnik (1987) examined the Type I error rates of the conditional F test under variance 
homogeneity and heterogeneity through Monte Carlo simulations. Note that this 
conditional F test referred to the procedure that the F test was conducted for replications 
where researchers failed to reject the null hypothesis of equal variances based on the HOV 
test results, whereas no test of mean equality was conducted for replications that showed 
unequal variances. The author found that the conditional F test using O’Brien or Brown-
Forsythe tests of HOV performed well in terms of the Type I error control with variance 
homogeneity, except that it became conservative for skewed and leptokurtic distributions. 
Under variance heterogeneity, both unconditional and conditional F tests had adequate 
Type I error control when sample sizes were relatively large (i.e., average 20 per group). 
When sample sizes were small and unequal, both tests were liberal if sample size and group 
variance were negatively correlated and conservative when they were positively correlated. 
Regarding the alpha level for the HOV test, Olejnik (1987) noted that increasing the alpha 
level from .05 to .10 improved the power of the HOV test, but power was still not 
acceptable with unequal sample sizes and/or skewed and leptokurtic distributions.  

 
Although the study conducted by Olejnik (1987) shed some light upon the behaviors of the 
conditional F test, the efficacy of the conditional ANOVA procedure has not been 
systematically examined yet. First, it is not clear how the initial screening of variance 
heterogeneity might impact the ANOVA results when the choice of the F test and robust 
ANOVA tests depends upon the results of HOV. Second, among many possible 
combinations of the HOV test and the ANOVA method, it is not known which combination 
performs well under what circumstances. Third, it remains unclear what alpha level should 
be used for the HOV test that would lead to the optimal results for ANOVA. Therefore, to 
better understand the performance of the conditional ANOVA procedure with various 
combinations of the HOV and ANOVA tests and different alpha levels, a Monte Carlo 
simulation study was conducted.  

 
Specifically, this study investigated the Type I error rates and statistical power of four 
robust ANOVA approaches coupled with five HOV methods, under a wide range of alpha 
levels for the HOV method. The goal was to provide recommendations for applied 
researchers regarding the selection of an optimal combination of the HOV and ANOVA 
tests as well as an appropriate alpha level for the HOV test. The HOV and ANOVA 
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methods considered in this study will be introduced in the following section. Selections of 
those particular methods were based on their superior performance in Type I error control 
and statistical power reported in the methodological literature (e.g., Fan & Hancock, 2012; 
Lee et al., 2010; Nguyen et al., 2016; Ramsey & Ramsey, 2007; Sharma & Kibria, 2013; 
Wang et al., 2017), which will be discussed shortly as well. 

 
2. Statistical Tests Examined 

 
Table 1 presents a summary of the HOV and ANOVA tests, including the test statistics and 
equations. Brief descriptions of each test are provided in this section. 
 
2.1 Statistical Methods for Testing Homogeneity of Variance 
2.1.1 Levene with Squared Deviations Test (Levene) 
Levene (1960) proposed to transform the dependent variable values into either the absolute 
values of deviations from group means (residuals) or squared residuals. These transformed 
values will then be used in the ANOVA model as values of the new dependent variable. 
Thus a test of variances is transformed into a test of means. This study only examines the 
Levene’s test with squared residuals, because it had better Type I error control than the test 
with absolute residuals (Wang et al., 2017). The obtained W test statistic is compared to 
the F critical value (Fcrit) with degrees of freedom (k −1) and (N − k) for numerator and 
denominator, respectively. The null hypothesis that the group variances are equal is 
rejected if W > Fcrit.  

 
2.1.2 Brown-Forsythe Test (BFHOV) 
This test (Brown & Forsythe, 1974) differs from the Levene’s test in that it uses the group 
median instead of the group mean to calculate absolute deviations. The obtained statistic 
W is computed using the same formula as that in the Levene’s test. The Brown-Forsythe 
test is more robust than the Levene’s test with skewed distributions.  
 
2.1.3 Bootstrap Brown-Forsythe Test (bootstrap BFHOV) 
Boos and Brownie (2004) recommended a bootstrap approach for testing variances based 
on the BFHOV test. The test draws bootstrap samples from residuals (i.e., deviations from 
group medians) in the original sample. The residuals are pooled across groups for the 
bootstrapping, rather than drawing a separate bootstrap sample from each of the groups. In 
each bootstrap sample, a test statistic for variances is computed and the p-value for the 
bootstrap test is obtained as the proportion of bootstrap samples with a statistic’s value that 
is greater than that observed in the original data. 

 
2.1.4 O’Brien Test (OB) 
O’Brien (1979) proposed a method that transforms original scores and then uses these 
scores in ANOVA or the Welch test as the new dependent variable. The transformation he 
proposed is the weighted average of a modified Levene’s squared deviations. The weighted 
average, 𝑟#$ 𝑤  is a modification of Levene’s squared deviations from the group mean (w 
= 0), and a jackknife pseudo value of 𝑆$'	 𝑤 = 1 . It is suggested to set w = .5 as default 
(O’Brien, 1981). The mean of the transformed values for a particular group equals the 
corresponding group variance, that is, 𝑟+ =

,-.
/.

= 𝑆$'.  

 
2.1.5 Ramsey Conditional Test: Brown-Forsythe or O’Brien (Ramsey) 
Ramsey (1994) proposed a conditional procedure based on the Brown-Forsythe method 
and the O’Brien method. He suggested the appropriate test between the two methods 
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should be selected conditional on a test of kurtosis. The kurtosis value for each group (𝑏'$) 
is compared to critical values obtained from a table provided by Ramsey and Ramsey 
(1993). A score of -1, 0, or 1 is recorded depending on the test being significantly 
platykurtic, nonsignificant, or significantly leptokurtic, respectively. A total score, S, 
across groups then is calculated and used to identify the population as platykurtic if S ≤ -1, 
mesokurtic if S = 0, or leptokurtic if S ≥ 1. The O’Brien method will be implemented if the 
data are platykurtic and the Brown-Forsythe method will be applied if the data are 
mesokurtic or leptokurtic. 

 
2.2 Statistical Methods for Testing Mean Equality  
 
2.2.1 The ANOVA F Test 
The ANOVA F test has been commonly used to test the equality of group means. 
The F statistic follows the F distribution with (𝑘 − 1) and (𝑁 − 𝑘) degrees of freedom. 
The F test is known to be sensitive to the violations of the HOV assumption, especially 
when sample sizes are unequal across groups. 
 
2.2.2 Brown-Forsythe (BF) Test 
The Brown-Forsythe test (Brown & Forsythe, 1974) is a modification of the F test. It has 
been recommended when the HOV assumption is violated and sample sizes are unequal. 
The test statistic, F*, has an F distribution with (k − 1) and f degrees of freedom where f 
is defined by the Satterthwaite approximation: 

5
6
=	 and 	𝑐# =

58/. 9 :.
;

58/. 9 :.;<
.=>

. 

 
2.2.3 Structured Means Modeling (SMM) Approach with Maximum Likelihood (ML) 
Estimation (SMM with ML or ML) 
Originated from the framework of structural equation modeling (SEM), the SMM approach 
can be applied to test the mean equality of the measured variable (Fan & Hancock, 2012). 
That is, the dependent variable y can be expressed as 𝑦 = 	𝑣$ + 	𝛿, where 𝑣$  is a p x 1 
vector of intercept values (or means) for group j, δ is a p x 1 vector of normal errors, and p 
is the number of observed variables (p = 1 in ANOVA). The null hypothesis is tested by 
constraining means to be equal across groups while still allowing for variances of 𝛿 to be 
heterogeneous. In other words, the assumption of homogeneity of variance is relaxed with 
the SMM approach. Estimation within SMM is commonly handled by maximum 
likelihood. The test statistic TML follows the 𝜒' distribution with degrees of freedom kp(p 
+ 3)/2 − q, where q is the number of parameters estimated across all groups. 

 
2.2.4 SMM with Bartlett’s Correction to the ML Test Statistic (SMM with Bartlett 
Correction or Bartlett) 
Bartlett (1950) suggested a correction to the ML test statistic in order to accommodate non-
normality. The test statistic with correction, TBC, is expected to follow the 𝜒' distribution 
more closely than TML.   

 
2.2.5 Wilcox Test 
The Wilcox method (Wilcox, 1988) was contrasted with James’s second-order (James, 
1951) method. The modification of the Wilcox's procedure was proposed by Wilcox 
(1989). The null hypothesis is rejected when the test statistic 𝐻E  exceeds the (1 – α) 
quantile of the chi-square distribution with (k – 1) degrees of freedom. In this study, the 
Wilcox test was conducted after grand mean centering in each sample, because poor Type 
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I error control has been observed if the population grand mean differed from zero (Hsiung, 
Olejnik, & Huberty, 1994).  

3. Literature Review on the Performance of the Included HOV and ANOVA Tests 
Based on simulation studies that have evaluated the performance of HOV testing methods 
(e.g., Lee et al., 2010; Wang et al., 2017), several patterns have been observed. For 
example, the Type I error rate inflation under nonnormal distributions was evidenced in 
the Levene test (Wang et al., 2017). The Levene test was inferior to OB and Ramsey which 
performed well in terms of Type I error control across a wide range of shapes (Lee et al., 
2010; Ramsey & Ramsey, 2007; Sharma & Kibria, 2013; Wang et al., 2017). BFHOV and 
bootstrap BFHOV had adequate Type I error control across all shapes except for the 
extremely leptokurtic distribution (e.g., kurtosis = 25) where they became conservative. 
When the group size was small (e.g., 5), OB outperformed the other tests in maintaining 
good Type I error control (Wang et al., 2017). Inconsistent findings regarding the statistical 
power of the HOV tests have been found in the literature. For instance, Parra-Frutos (2012) 
observed that the power of the BFHOV test was low for small sample sizes and decreased 
when coupled with unbalanced samples; on the other hand, its statistical power increased 
with larger samples, both balanced and unbalanced. Wang et al. (2017) found that BFHOV, 
as well as bootstrap BFHOV and Ramsey, outperformed other tests in power regardless of 
the sample sizes. Ramsey and Ramsey (2007) observed that the Ramsey test had higher 
power than the BFHOV test.  

 
For the ANOVA tests, it has been long known that the conventional F test is sensitive to 
heterogeneous variances, especially when sample sizes are unequal across groups 
(Harwell, Rubinstein, Hayes, & Olds, 1992; Lix et al., 1996; Rogan & Keselman, 1977). 
Alternative robust ANOVA tests that are based on SMM, such as SMM with ML or 
Bartlett, have been shown to provide adequate Type I error control across a wide range of 
distribution shapes, sample sizes, and variance heterogeneity patterns (Fan & Hancock, 
2012; Nguyen et al., 2016). Inconsistent findings have been observed in terms of the Type 
I error control of the BF test. Fan and Hancock (2012) found the BF test had inflated Type 
I error rates under heterogeneous variances regardless of sample sizes being equal or 
unequal across groups and the inflation was very severe with moderate or large sample 
sizes. Lix et al. (1996) also cautioned the use of the BF test with heterogeneous variances 
regardless of the equal or unequal sample sizes. By contrast, Nguyen et al. (2016) found 
the robustness of the BF test to variance heterogeneity. That is, the test well controlled 
Type I error rates across various heterogeneous variance patterns and sample sizes. They 
also noticed the adequate Type I error control of the Wilcox test, when average sample size 
per group increased from 5 to 10 and 20. There was no substantial difference in the 
statistical power of the SMM with ML, Bartlett, and BF tests. 

 
As discussed earlier, those studies examined the performance of HOV or ANOVA methods 
separately, whereas combinations of both methods in the conditional ANOVA procedure 
have not been investigated systematically. Thus this study compared the efficacy of 
combinations of HOV and ANOVA methods across a wide range of alpha levels for the 
HOV test. The combinations included five HOV tests (i.e., Levene, BFHOV, bootstrap 
BFHOV, OB, and Ramsey) coupled with four robust ANOVA approaches (i.e., BF, SMM 
with ML, SMM with Bartlett correction, and Wilcox), which created 20 conditional 
ANOVA tests. 
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4. Method 
 

In this simulation study, the design factors included: number of groups (4 and 8), average 
number of observations per group (or cell size; 5, 10, and 20), sample size pattern (4 
patterns, see Table 2), variance pattern (7 patterns, see Table 3), mean pattern (4 patterns), 
maximum group variance ratio (1, 4, 8 and 16), Cohen’s f effect size (0, .10, .25. and .4), 
and population shape (γ1 and γ2 were [0.00, 0.00], [1.00, 3.00], [1.50, 5.00], [2.00, 6.00], 
[0.00, 25.00], and [0.00, -1.00], where γ1 and γ2 represent skewness and kurtosis, 
respectively). Non-normal populations were generated by implementing Fleishman’s 
transformation (Fleishman, 1978). Mean patterns included: (1) equal population means; (2) 
progressive with all population means equally spaced; (3) one extreme where one mean 
differed from the others, and (4) split where half the group means were different from the 
other half. We considered 11 alpha levels for the tests of variances: .01 and .05 to .50 with 
an incremental increase of .05. Thus this factorial design had a total of 300,960 conditions 
(27,360 data conditions * 11 alpha levels for tests of variances). 

 
Continuous data for this study were generated using a random number generator, 
RANNOR in SAS/IML statistical software, using a different seed value for each execution 
of the program. For each condition, 5,000 samples were generated, which provides a 
maximum standard error of an observed proportion (e.g., Type I error rate estimate) of 
.003, and a 95% confidence interval no wider than ± .006 (Robey & Barcikowski, 1992). 

 
Type I error rates and statistical power of the conditional ANOVA tests were evaluated as 
the simulation outcomes. The unconditional ANOVA tests were also evaluated, serving as 
a reference for the conditional tests. The Type I error rate was defined as the proportion of 
replications where the null hypothesis of equal means was rejected when there was no mean 
difference, regardless of the ANOVA test being conducted. That is, although for each 
condition, replications followed either the traditional F test or a certain robust ANOVA 
test based on the HOV test results of equal or unequal variances, respectively, Type I error 
rates were calculated by taking together the replications that rejected the null hypothesis 
for both tests. Statistical power was defined likewise. For Type I error rates, we also 
investigated the robustness of conditional ANOVA tests using Bradley’s (1978) liberal 
criterion. This criterion is set at 0.5α around nominal alpha. For instance, a test is 
considered robust when the Type I error rate falls between .025 (= 0.5*.05) and .075 (= 
1.5*.05) at alpha level of .05. Finally, eta-square analyses were conducted to explore the 
impact of design factors on variability of the estimated Type I error rates and power. 
Cohen’s (1992) moderate effect size of .0588 was set as a cutoff value for eta-square 
analyses. 

 
5. Results 

 
5.1 Type I Error Rates under Homogeneous Variances 
The overall distributions of Type I error rates for conditional ANOVA tests under the 
homogeneous variances conditions were investigated using boxplots. Figure 1 shows the 
distribution of Type I error rates for the conditional BF test (BF paired with all HOV tests) 
at 11 alpha levels of HOV tests and unconditional ANOVA tests. As the alpha level of the 
HOV test increased from .01 to .50, Type I error rates of the conditional test deviated more 
from the nominal alpha level. This might be because with the increase of statistical power 
of the HOV test, the robust ANOVA tests were more frequently selected over the ANOVA 
F test, whereas the Type I error control of the robust ANOVA tests was inferior to that of 
the F test. Therefore, increasing the alpha level of the HOV test would lead to less adequate 
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Type I error control for the test of means under variance homogeneity. This pattern was 
also observed from a series of boxplots like Figure 1 for other conditional ANOVA tests. 
Similarly, the proportion of conditions meeting the Bradley’s criterion decreased from 1 
close to that of the corresponding unconditional test as the alpha of HOV tests increased.    
 
Eta-square analyses revealed that cell size by test of means (η2=.119), test of means 
(η2=.102), shape (η2=.085), and cell size (η2=.063) had substantial impact on the Type I 
error rates of conditional ANOVA procedures. When sample size increased to 20, Type I 
error control notably improved across the tests of means, particularly for Wilcox. 
Conditional tests using BF, Bartlett, and ML as tests of means had adequate Type I error 
control with normal data. When data were nonnormal, the BF controlled Type I error rates 
better than Bartlett and ML which showed inflated Type I error rates. Regardless of the 
distribution shape, Wilcox tended to have inflated Type I error rates. Although there was 
no significant difference in the Type I error control of tests of means paired with different 
HOV tests, conditional tests using Levene and OB outperformed those using BFHOV, 
Ramsey, and bootstrap BFHOV across all simulation conditions. For example, the 
proportions of conditions meeting the Bradley’s criterion were .60 and .55 for conditional 
Bartlett with Levene and OB, respectively, as opposed to .50, .52, and .50 with BFHOV, 
Ramsey, and bootstrap BFHOV, when the cell size was 10 and the HOV alpha level was .40.     

 
5.2 Type I Error Rates under Heterogeneous Variances 
The series of boxplots in Figure 2 presents the overall distributions of Type I error rates for 
5 unconditional tests of means and the conditional BF test (with BFHOV as test of variances) 
at 11 alpha levels under the heterogeneous variances conditions. As displayed in Figure 2, 
the performance of the conditional tests became closer to their unconditional counterparts 
as the alpha level of HOV tests increased. Bartlett performed slightly better than ML, 
followed by BF, and Wilcox had the worst Type I error control. Conditional tests using 
Levene and OB as the HOV tests prior to testing mean equality had better Type I error 
control than those using BFHOV, Ramsey, and bootstrap BFHOV, which is consistent with 
the finding under homogeneity of variance. These patterns were also evidenced when the 
proportions of conditions meeting the Bradley’s liberal criterion were examined. In 
addition, as can be seen from Figure 3, among the conditional tests, Bartlett, ML, and BF, 
paired with Levene and OB had higher proportions of conditions meeting Bradley’s 
criterion across different alpha levels. The BF test of means paired with Levene seemed to 
excel the rest based on the largest proportion of replications that met the Bradley’s criterion 
across all alpha levels of HOV.  

 
Eta-square analyses showed that variance pattern (η2=.163), cell size (η2=.113), cell size 
by variance pattern (η2=.073), variance pattern by cell size pattern (η2=.071), and cell size 
by test of means (η2=.063) had substantial impact on Type I error rates under variance 
heterogeneity. Table 4 presents the Bradley results by test, cell size, and variance pattern. 
Note that only a few selected conditional tests are presented, including BF, Bartlett, and 
ML each paired with Levene and OB, due to their better performance in Type I error control. 
As shown in Table 4, when cell size was 5, the conditional BF seemed to have better control 
of Type I error rates than the rest across all variance patterns, except when the pattern was 
one extreme inversely where none of the conditional tests meets Bradley’s liberal criterion. 
As cell size increased to 10, the advantage of the conditional BF was only present for split 
inversely and progressive inversely patterns, whereas with cell size 20, the conditional BF 
was inferior to the conditional Bartlett and the conditional ML across all variance patterns. 
Put it another way, increasing the cell size improved the Type I error control substantially 
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for Bartlett and ML, but BF seemed to be least affected in terms of Type I error rates by 
cell size. 

 
In addition, we examined the Type I error rates and proportions of conditions meeting the 
Bradley’s liberal criterion (see Table 5) by test, cell size pattern and variance pattern. Taken 
together, several major trends emerged. When cell sizes were equal, the conditional BF 
controlled Type I error rates more adequately with split, progressive, split inversely, and 
progressive inversely patterns than the conditional Bartlett and ML tests. When cell sizes 
were unequal, Bartlett and ML seemed to have good Type I error control consistently 
across all heterogeneous patterns, while BF outperformed them only with progressive, split 
inversely, and progressive inversely variance patterns. Type I error rates were inflated 
noticeably across all conditional tests under one extreme inversely, split inversely, and 
progressive inversely variance patterns. This was expected because with these three 
patterns, smaller cell sizes were paired with larger variances. Despite this, the conditional 
BF paired with Levene seemed to have a relatively large proportion (above .700) meeting 
the Bradley’s criterion under split inversely and progressive inversely patterns, except 
when the cell size pattern was split.  
 
5.3 Statistical Power Analyses 
This section presents the analyses of statistical power among conditional and unconditional 
ANOVA tests. Based on the performance of conditional ANOVA tests in controlling for 
Type I error rates, we selected 6 conditional tests that had adequate Type I error control to 
include in the power analyses. These conditional tests are the combinations of BF, Bartlett, 
and ML with Levene and OB. The power of the ANOVA F test was analyzed for the 
homogeneous conditions but not for the heterogeneous conditions due to the adequate 
control of Type I error in the first scenario but not the second one. In addition, there were 
eleven alpha levels examined for each conditional test, resulting in 70 (11*6 conditional 
plus 4 unconditional) tests for homogeneous conditions and 69 (11*6 conditional plus 3 
unconditional) tests for heterogeneous conditions.   

 
We excluded the conditions that did not have all tests satisfying the Bradley criterion for 
homogeneous and heterogeneous conditions separately. Thus among 144 homogeneous 
conditions, 29 conditions (or 20.14%) were excluded from the statistical power analysis. 
Generally, those excluded conditions involved different levels of nonnormal distributions 
for cell size of 5 and extremely nonnormal conditions (particularly, skewness = 2 and 
kurtosis = 6) for cell sizes of 10 and 20. Regarding heterogeneous conditions, 772 out of 
2,592 (29.78%) null conditions met the Bradley criterion for all 69 tests. These 772 
conditions were distributed relatively equally among population shapes (from 130 to 170 
conditions for each shape), except for the shape of with skewness = 2, kurtosis = 6 that had 
a smaller number of conditions (only 49 conditions) included in the power analysis. Among 
these 772 conditions, a majority (549 conditions) had one extreme, split, or progressive 
variance patterns with a small variance ratio (1:4). These Type I error conditions in which 
Type I error was adequately controlled across tests were then matched with non-null 
conditions to define the conditions used for power analysis. As a result, we selected 1,035 
homogeneous and 6,948 heterogeneous conditions to use in power analyses.  

 
The distributions of statistical power for each conditional test under homogeneous and 
heterogeneous variances were examined. In general, there were no substantial differences 
in power estimates across conditional tests for homogeneous or heterogeneous variances 
conditions. Note that eta-square analyses for statistical power estimates were not conducted 
due to the unbalanced designs. Instead, the summaries of estimated power by alpha level 
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for each test are presented for homogeneous and heterogeneous variances conditions (see 
Table 6). Overall, as the alpha level increased from .01 to .50, the power of the conditional 
tests decreased gradually and slightly under homogeneous variances conditions. This was 
because the robust ANOVA test was selected more frequently than the F test, and the robust 
test had slightly lower power than the F test. The opposite scenario was observed with 
heterogeneous variances. That is, when the alpha level increased, the power became greater 
for all conditional tests and was very close to that of the unconditional tests with alpha 
level of .50. Among the six conditional tests, Bartlett and ML paired with OB tended to 
have higher power than the rest. 

 
6. Discussion and Conclusions 

 
Testing the HOV assumption has been recommended as a critical procedure prior to testing 
mean equality. If the assumption appears to be satisfied, the ANOVA F test is 
recommended; otherwise, alternative ANOVA methods, i.e., robust ANOVA methods, can 
be applied. To our knowledge, this simulation study was the first study to comprehensively 
examine the efficacy of this conditional ANOVA procedure, aiming to select optimal 
combinations of the HOV and ANOVA tests and identify an appropriate alpha level for the 
HOV test. Evidence from this study indicates that overall Bartlett, BF, and ML coupled 
with Levene and OB are the best performing conditional ANOVA methods. Particularly, 
Levene and OB provided notably superior Type I error control in the conditional tests than 
the two BF tests and Ramsey’s test. Between the Levene and OB tests, the latter resulted 
in conditional tests with more statistical power although the power advantages were small.  

 
In addition, the choice among Bartlett, BF, and ML in the conditional ANOVA procedure 
appears to be dependent upon the sample sizes in the study. With the smallest samples 
examined in this simulation (average nj = 5), the BF test of means, coupled with Levene 
and OB, provided the best Type I error control. Conversely, as sample size increased the 
ML and Bartlett tests used in SMM were superior to the BF test of means. Further, these 
SMM tests provided more statistical power than the BF test under both homogeneous and 
heterogeneous conditions, when these tests were paired with Levene and OB. 

 
The selection of an alpha level for the test of variances is important because of its influence 
on the power of this test. Larger alpha levels allow the test of variances to steer researchers 
away from the ANOVA F test under conditions in which it is likely to perform poorly in 
terms of Type I error control. Concomitantly, larger alpha levels for this test also steer 
researchers away from the ANOVA F test more often under conditions of variance 
homogeneity, conditions in which it is the most powerful test of means. Alpha levels near 
the middle of the range examined in this study appear to be a reasonable compromise 
between these competing effects. Alpha levels between .20 and .30 in conditional tests 
provide adequate Type I error control in heterogeneous variance conditions, while 
providing nearly as much power as the unconditional robust tests. 

 
To conclude, ANOVA is a popular method used to compare the means of several groups. 
The sensitivity of ANOVA to violations of the homogeneity of variance assumption is well 
known, which calls for a conditional procedure where the choice of the F test and robust 
ANOVA methods depends upon the test of variances. Despite this, the efficacy of such a 
conditional testing procedure has not been well investigated. The current study 
systematically examined tests of variance homogeneity coupled with tests of means for 
one-factor models in terms of Type I error control and statistical power. Results of the 
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study contribute to the literature by evaluating the performance of such conditional testing 
procedures for testing group means under a wide variety of conditions. 
 
Table  1  
Statistics of Methods for Testing Homogeneity of Variance (HOV) and Mean Equality   
Test Test Statistic Notation 

HOV 

Levene 
(Squared 
Deviations) 

𝑍#$ = (𝑌#$ − 𝑌.$)' 

𝑊 =	
(𝑁 − 𝑘) 𝑛$(𝑍.$ − 𝑍. . )'K

$L5

(𝑘 − 1) (𝑍#$ − 𝑍.$)'
/.
#L5

K
$L5

 

𝑌#$  = raw score of 
individual i in group 
j;  
𝑌.$  = mean of the jth 

group; 
𝑍.$  = group mean of 
𝑍#$;  
𝑍..  = grand mean; 
N  = total sample 
size;  
𝑛$     = group j sample 
size;  
k = number of 
groups.   

Brown-
Forsythe 
(BFHOV)a 

𝑍#$ = 	 𝑌#$ − 	𝑌.$  

𝑊 =	
(𝑁 − 𝑘) 𝑛$(𝑍.$ − 𝑍. . )'K

$L5

(𝑘 − 1) (𝑍#$ − 𝑍.$)'
/.
#L5

K
$L5

 

𝑌.$ = median of the jth 
group. 

O’Brien 

𝑟#$(𝑤)

=
𝑤 + 𝑛$ − 2 𝑛$ 𝑌#$ − 𝑌.$

'
− 𝑤𝑠$'(𝑛$ − 1)

(𝑛$ − 1)(𝑛$ − 2)
 

 

𝑠$'  = within-group 
unbiased estimate of 
variance for group j;  
w (0≤w≤1) = 
weighting factor. 

Ramsey 
Conditional 
Test 

𝑏' = 𝑚P/𝑚'
', where 𝑚,= Σ(Yij – 𝑌.$)

r / 𝑛$ 

𝑏'$ =

𝑌#$	– 	𝑌.$
P

𝑛$

∑ 𝑌#$	– 	𝑌.$
'

𝑛$

'  

 

ANOVA 

F test 𝐹 =
𝑛$ 𝑌.$ − 𝑌. .

'
/(𝑘 − 1)K

$L5

𝑛$ − 1 𝑠$'/(𝑁 − 𝑘)K
$L5
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Brown-
Forsythe 
(BF) Test 

 

𝐹∗ =
𝑛$ 𝑌.$ − 𝑌. .

'K
$L5

1 − 𝑛$/𝑁 𝑠$'K
$L5

 

 

 
 

 

SMM with 
ML 𝑇WX = (𝑁 − 1)𝐹WX 

FML is the ML fit 
function. 

SMM with 
Bartlett’s 
Correction 
to the ML 
Test 
Statistic 
(Bartlett) 

 
TBC = (N	− p/3 − 2m/3 −	11/6) FML 

p = number of observed 
variables (p = 1 in 
ANOVA); m= the 
number of latent 
constructs (m = 0 in 
ANOVA); q = number 
of parameters estimated 
across all groups. 

Wilcox 

𝐷$ = 𝑛$ 𝑠$', 
𝑊: = 𝐷$, 
𝑌∗ = 𝐷$𝑌$∗ 𝑊: , where 𝑌$∗ =

	𝑌/.$ 𝑛$ + 	 1 − 5
/.

𝑌#$/(𝑛$
/.85
#L5 + 1), 

𝐻E = 	 𝐷$(𝑌$∗ − 	𝑌∗)'. 

 

Note. aThe bootstrap version of the BF test was also evaluated. ANOVA = analysis of 
variance; SMM = structured means modeling; ML = maximum likelihood.  
 
Table 2 
 Sample Size Patterns  

Sample Sizes 
 Progressive N  Equal N  Split N  One Extreme 
K=8                
1 2   3 8  5 10 20  2   5 10  4   8 16 
2 3   5 10  5 10 20  2   5 10  4   8 16 
3 4   7 14  5 10 20  2   5 10  4   8 16 
4 5   9 18  5 10 20  2   5 10  4   8 16 
5 5 11 22  5 10 20  8 15 30  4   8 16 
6 6 13 26  5 10 20  8 15 30  4   8 16 
7 7 15 30  5 10 20  8 15 30  4   8 16 
8 8 17 32  5 10 20  8 15 30  12 24 48 
Average 
N 

5 10 20  5 10 20  5 10 20  5 10 20 

K=4                
1 2   7 14  5 10 20  2   5 10  3   6 12 
2 4   9 18  5 10 20  2   5 10  3   6 12 
3 6 11 22  5 10 20  8 15 30  3   6 12 
4 8 13 26  5 10 20  8 15 30  11 22 44 
Average 
N 

5 10 20  5 10 20  5 10 20  5 10 20 
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Note. K=number of groups, Progressive N = progressive increase of sample size, Split 
N=half of groups has the same sample size.  
 
Table 3 
 Variance Patterns  

Population Variances 
 Progressive  Split  One Extreme          Equal 
Max 
Variance 
Ratio 

1:4 1:8 1:16  1:4 1:8 1:16  1:4 1:8 1:16  1:1 

K=8              
1 1 1 1  1 1   1  1 1   1  1 
2 1.43 2 3.14  1 1   1  1 1   1  1 
3 1.86 3 5.28  1 1   1  1 1   1  1 
4 2.29 4 7.42  1 1   1  1 1   1  1 
5 2.72 5 9.56  4 8 16  1 1   1  1 
6 3.15 6 11.70  4 8 16  1 1   1  1 
7 3.58 7 13.84  4 8 16  1 1   1  1 
8 4 8 16  4 8 16  4 8 16  1 
K=4              
1 1 1   1  1 1   1  1 1 1  1 
2 2 3.30   6  1 1   1  1 1 1  1 
3 3 5.70 11  4 8 16  1 1 1  1 
4 4 8 16  4 8 16  4 8 16  1 

 
Population Variances 

 Progressive 
Inversely  Split Inversely  One Extreme 

Inversely 
Max 
Variance 
Ratio 

4:1 8:1 16:1  4:1 8:1 16:1  4:1 8:1 16:1 

K=8            
1 4 8 16  4 8 16  4 8 16 
2 3.58 7 13.84  4 8 16  1 1   1 
3 3.15 6 11.70  4 8 16  1 1   1 
4 2.72 5 9.56  4 8 16  1 1   1 
5 2.29 4 7.42  1 1   1  1 1   1 
6 1.86 3 5.28  1 1   1  1 1   1 
7 1.43 2 3.14  1 1   1  1 1   1 
8 1 1 1  1 1   1  1 1   1 
K=4            
1 4 8 16  4 8 16  4 8 16 
2 3 5.7 11  4 8 16  1 1   1 
3 2 3.3   6  1 1   1  1 1   1 
4 1 1   1  1 1   1  1 1   1 

Note. For example, “Progressive” means that the population variances increased in a 
progressive way among groups. “Progressive Inversely” refers to the same variance 
patterns as in “Progressive” but in the reverse group order.  
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Table 4 
Proportions of Conditions That Met the Bradley’s Liberal Criterion by Test, Cell Size, and 
Variance Pattern under Variance Heterogeneity 

Test 
Cell Size 5 Cell Size 10 
Variance Patterns Variance Patterns 
2 3 4 5 6 7 2 3 4 5 6 7 

BF_LV 69
8 

84
3 862 

19
6 

60
1 622 

54
6 

89
6 963 

24
9 

85
7 880 

BAR_L
V 

66
5 

68
8 743 

25
1 

37
8 383 

87
2 

89
1 907 

54
4 

72
3 677 

ML_LV 64
3 

71
3 767 

21
7 

31
7 309 

86
6 

90
2 908 

50
5 

68
4 625 

BF_OB 68
4 

81
3 867 

14
2 

43
9 460 

55
1 

89
5 947 

24
7 

82
8 857 

BAR_O
B 

63
8 

67
3 753 

17
0 

28
5 305 

86
0 

88
1 888 

52
9 

70
8 658 

ML_OB 61
4 

69
1 770 

15
0 

23
9 249 

85
7 

88
9 899 

48
9 

66
7 607 

OLS 56
3 

50
0 632 

05
6 

09
0 236 

54
9 

45
8 597 

06
3 

11
1 250 

BF 71
5 

95
1 

100
0 

29
9 

88
2 875 

47
2 

87
5 

100
0 

36
1 

97
9 

100
0 

BAR 77
1 

77
8 792 

70
8 

68
8 674 

92
4 

91
7 903 

84
0 

84
0 826 

ML 77
1 

79
9 785 

70
8 

66
0 653 

88
9 

90
3 882 

81
3 

80
6 799 

Test 
Cell Size 20  
Variance Patterns  
2 3 4 5 6 7       

BF_LV 48
1 

77
1 990 

31
1 

79
9 953       

BAR_L
V 

92
6 

94
1 951 

79
7 

82
4 795       

ML_LV 91
6 

93
2 949 

78
2 

81
6 778       

BF_OB 48
2 

77
6 985 

31
5 

79
2 946       

BAR_O
B 

92
6 

94
1 948 

79
9 

82
2 793       

ML_OB 91
7 

93
4 948 

78
0 

81
4 775       

OLS 58
3 

52
1 590 

06
9 

12
5 250       

BF 45
8 

66
0 

100
0 

36
8 

84
7 

100
0       

BAR 93
8 

91
7 910 

88
9 

84
0 826       

ML 91
0 

91
0 910 

87
5 

84
0 819       
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Note. OLS = the ANOVA F test with ordinary least squares; BF = the Brown-Forsythe 
test; BAR = structured means modeling (SMM) with Bartlett’s correction to the maximum 
likelihood (ML) test statistic; ML = SMM with ML estimation; BF_LV, BAR_LV, and 
ML_LV refer to BF, BAR, and ML each paired with Levene test of homogeneity of 
variance, respectively; BF_OB, BAR_OB, and ML_OB refer to BF, BAR, and ML each 
paired with O’Brien test of homogeneity of variance, respectively; variance patterns 2 = 
one extreme, 3 = split, 4 = progressive, 5 = one extreme inversely, 6 = split inversely, and 
7 = progressive inversely. The value of proportion for each cell should be divided by 1000. 
 
Table 5 
Proportions of Conditions That Met the Bradley’s Liberal Criterion by Test, Cell Size 
Pattern and Variance Pattern under Variance Heterogeneity  

Test 
  Progressive Cell Sizes Equal Cell Sizes 
Variance Patterns Variance Patterns 
2 3 4 5 6 7 2 3 4 5 6 7 

BF_LV 60
2 

88
7 968 

16
3 

73
9 

76
3 

38
9 

87
1 

100
0 

41
7 

86
4 994 

BAR_LV 88
9 

92
7 918 

39
1 

62
9 

57
9 

78
2 

83
5 860 

79
1 

82
7 871 

ML_LV 85
3 

92
7 934 

36
9 

58
6 

52
9 

74
6 

81
0 833 

74
8 

79
5 840 

BF_OB 61
7 

88
9 949 

14
6 

63
9 

66
2 

37
5 

84
7 

100
0 

39
9 

83
8 996 

BAR_O
B 

89
3 

93
2 907 

36
3 

55
6 

50
8 

73
1 

82
1 864 

73
8 

80
6 884 

ML_OB 86
4 

93
2 920 

34
5 

52
4 

47
4 

70
0 

79
4 838 

70
1 

77
4 853 

OLS 97
2 

75
0 593 

00
0 

00
0 

00
0 

24
1 

44
4 981 

25
0 

43
5 981 

BF 56
5 

84
3 

100
0 

25
0 

90
7 

93
5 

42
6 

89
8 

100
0 

45
4 

89
8 991 

BAR 87
0 

86
1 907 

83
3 

77
8 

77
8 

90
7 

83
3 833 

88
9 

85
2 824 

ML 84
3 

85
2 907 

80
6 

75
0 

76
9 

88
9 

84
3 824 

88
9 

83
3 843 

Test 
Split Cell Sizes One Extreme Cell Sizes 
Variance Patterns Variance Patterns 
2 3 4 5 6 7 2 3 4 5 6 7 

BF_LV 65
6 

71
8 855 

14
1 

60
3 

64
4 

65
4 

87
0 929 

28
8 

80
3 871 

BAR_LV 83
3 

69
7 822 

37
3 

46
1 

44
0 

78
0 

90
1 867 

56
7 

65
0 582 

ML_LV 81
7 

75
2 854 

34
8 

43
0 

39
7 

81
8 

90
8 878 

54
0 

61
3 518 

BF_OB 66
2 

69
3 868 

12
5 

54
2 

56
8 

63
5 

88
4 915 

26
9 

72
7 791 

BAR_O
B 

83
6 

66
4 812 

36
8 

45
3 

42
0 

77
3 

91
1 869 

52
9 

60
6 529 

ML_OB 82
1 

70
4 852 

34
4 

42
6 

38
2 

80
0 

92
3 880 

50
1 

56
9 465 
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OLS 95
4 

01
9 241 

00
0 

00
0 

00
0 

09
3 

75
9 611 

00
0 

00
0 000 

BF 58
3 

79
6 

100
0 

25
0 

85
2 

90
7 

62
0 

77
8 

100
0 

41
7 

95
4 

100
0 

BAR 82
4 

91
7 889 

75
0 

75
0 

75
0 

90
7 

87
0 843 

77
8 

77
8 750 

ML 75
9 

92
6 880 

73
1 

71
3 

70
4 

93
5 

86
1 824 

76
9 

77
8 713 

Note. OLS = the ANOVA F test with ordinary least squares; BF = the Brown-Forsythe 
test; BAR = structured means modeling (SMM) with Bartlett’s correction to the maximum 
likelihood (ML) test statistic; ML = SMM with ML estimation; BF_LV, BAR_LV, and 
ML_LV refer to BF, BAR, and ML each paired with Levene test of homogeneity of 
variance, respectively; BF_OB, BAR_OB, and ML_OB refer to BF, BAR, and ML each 
paired with O’Brien test of homogeneity of variance, respectively; variance patterns 2 = 
one extreme, 3 = split, 4 = progressive, 5 = one extreme inversely, 6 = split inversely, and 
7 = progressive inversely. The value of proportion for each cell should be divided by 1000. 
 
Table 6 
Statistical Power for Conditional ANOVA Tests under Homogeneous and Heterogeneous 
Variances Conditions at Different Alpha Levels 
Test α=0

1 
α=0
5 

α=1
0 

α=1
5 

α=2
0 

α=2
5 

α=3
0 

α=3
5 

α=4
0 

α=4
5 

α=5
0 

Homogeneous Variances 
BF_LV 302 299 297 296 294 294 293 293 292 292 292 
BAR_L
V 

304 304 304 304 303 303 302 301 300 299 297 

ML_LV 305 305 306 306 306 306 306 306 305 305 304 
BF_OB 304 301 299 298 296 295 294 293 292 292 291 
BAR_O
B 

305 305 304 304 304 303 303 302 301 300 300 

ML_O
B 

305 305 305 306 306 306 306 306 306 305 304 

OLS 306 
BF 292 
BAR 279 
ML 289 
Heterogeneous Variances 
BF_LV 299 303 305 307 308 309 310 311 312 313 314 
BAR_L
V 

298 302 305 306 308 309 310 310 311 312 313 

ML_LV 305 310 312 313 315 316 316 317 318 318 318 
BF_OB 305 309 311 313 314 315 316 317 318 318 319 
BAR_O
B 

308 314 317 319 321 322 324 325 326 326 327 

ML_OB 307 312 315 318 320 321 323 324 325 326 327 
BF 317 
BAR 319 
ML 328 

Note. OLS = the ANOVA F test with ordinary least squares; BF = the Brown-Forsythe 
test; BAR = structured means modeling (SMM) with Bartlett’s correction to the maximum 
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likelihood (ML) test statistic; ML = SMM with ML estimation. BF_LV, BAR_LV, and 
ML_LV refer to BF, BAR, and ML each paired with Levene test of homogeneity of 
variance, respectively; BF_OB, BAR_OB, and ML_OB refer to BF, BAR, and ML each 
paired with O’Brien test of homogeneity of variance, respectively. The value of statistical 
power for each cell should be divided by 1000, and the value for each alpha level should 
be divided by 100.  
 

 
Figure 1：  Distribution of Type I error rates for unconditional tests and conditional 
Brown-Forsythe robust ANOVA test with combinations of HOV tests denoted by C_01 to 
C_50. OLS = the ANOVA F test with ordinary least squares; BF = the Brown-Forsythe 
test; BAR = structured means modeling (SMM) with Bartlett’s correction to the maximum 
likelihood (ML) test statistic; ML = SMM with ML estimation. 
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Figure 2 ： Distribution of Type I error rates under variance heterogeneity for 
unconditional tests and conditional Brown-Forsythe robust ANOVA test with the Brown-
Forsythe test for homogeneity of variance (HOV). OLS = the ANOVA F test with ordinary 
least squares; BF = the Brown-Forsythe test; Bartlett = structured means modeling (SMM) 
with Bartlett’s correction to the maximum likelihood (ML) test statistic; ML = SMM with 
ML estimation. C_01 to C_50 denote the alpha level of the HOV test was .01 to .50.  
 

 
Figure 3： Proportion of conditions meeting Bradley’s criterion with cell size 10 under 
variance heterogeneity. Note that a00 represents the ANOVA F test and a100 represents 
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the unconditional test of the corresponding conditional test. BF_LV, BAR_LV, and 
ML_LV refer to the Brown-Forsythe test, structured means modeling (SMM) with 
Bartlett’s correction to the maximum likelihood (ML) test statistic, and SMM with ML 
estimation each paired with Levene test of homogeneity of variance, respectively; BF_OB, 
BAR_OB, and ML_OB refer to BF, BAR, and ML each paired with O’Brien test of 
homogeneity of variance, respectively. 
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