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Abstract
Penalized regression methods depending on one or more tuning parameters require fine-tuning

to achieve optimal prediction performance. For ridge regression, which introduces an L2 penalty
on the regression coefficients, a range of tuning procedures have been developed, but in practice
K-fold cross-validation has become the standard procedure. This paper explores a focused tuning
approach for ridge regression where the tuning parameter is made dependent on the covariates of
the specific observation to be predicted. The observation-specific tuning parameter is defined as the
minimand of the empirical mean square prediction error, obtained by plugging in pilot estimates
of the regression coefficients and error variance in the theoretical mean squared error expressions.
Several pilot estimates are proposed, and we present risk expressions for the case of an OLS pilot.
The focused ridge estimator is compared to standard ridge regression fine-tuned by cross-validation
in simulations and a real data set.

Key Words: Tuning parameters, ridge regression, focused information criterion, focused
model selection, personalized prediction.

1. Introduction

The technological development produces with increasing speed vast amounts of large data
in fields from finance to genetics. The emerging Big Data era demands tailored statistical
methods and at the same time broadens the possibilities for more detailed predictions. For
high-dimensional data, where the data dimension p greatly exceeding the observations n,
standard linear regression requires some form of penalization of the regression coefficients.
Ridge regression penalizes the sum of squared regression coefficients,

β̂(λ) = argmin
β

{
‖Y −Xβ‖22 + λ

p∑
i=1

β2i

}
,

equivalent to imposing an L2 penalty on the vector of coefficients. Hoerl and Kennard
(1970) originally introduces the penalty to ordinary least squares (OLS) regression to deal
with data matrices close to not being of full rank, such that XTX is not invertible. If XTX
becomes singular, the OLS solution is no longer unique. The L2 penalty avoids this issue
by ensuring the data matrix to always be of full rank (adding a constant λ > 0 to the zero
eigenvalues of XTX), a form of penalization also referred to as Tikhonov regularization.

Ridge regression has several appealing theoretical characteristics contributing to the
good predictive performance. The L2 penalty enforces a proportional shrinkage of all re-
gression coefficients towards zero, introducing a bias, but lowering the variance of the
predictor. Further, ridge regression shrinks positively correlated variables towards each
other, a form of information pooling (Hastie et al., 2009), and penalizes the least infor-
mative directions,which together effectively improves predictions. Among regularized re-
gression methods, ridge regression has been shown to asymptotically give better predictive
performance (Frank and Friedman, 1993). In the field of genomics, which deals routinely
with high-dimensional data, ridge regression has become a standard prediction tool. For
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instance, Bøvelstad et al. (2007) showed that ridge regression has the overall best perfor-
mance for predicting cancer survival based on microarray gene expression, giving lower
prediction error compared to a range of other methods.

The tuning parameter, λ, controls the ridge penalty and tries to balance between over-
fitting to the training data and shrinking coefficients too much towards zero. To select a
proper value for λ, an overwhelming range of procedures have been proposed, but cross-
validation (CV) has emerged as the current canonical choice, in particular 5-fold or 10-fold
cross-validation Hastie et al. (2009, p. 243). The procedure divides the data in K folds
and predicts each fold by fitting a model on the remaining data. The resulting unbiased
estimate of the prediction error can be calculated for a range of tuning parameters, with
the value corresponding to the lowest error being chosen. Variations of the CV proce-
dure include generalized and approximate cross-validation (Golub et al., 1979; Meijer and
Goeman, 2013). Other examples of tuning methods include marginal maximum likelihood
(Tran, 2009), bootstrapping (Delaney and Chatterjee, 1986), Bayesian methods (Zuliana
and Perperoglou, 2016) and different versions of AIC (Boonstra et al., 2015).

Common for all the current selection procedures is that only one tuning parameter
value is chosen for all further use and future predictions. However, the following thought
experiment is possible: is if feasible to fine-tune the penalty parameter to target a specific
set of covariates x0? This introduces the idea of a focused tuning parameter λx0 , optimal
for predicting a specific covariate x0. Selecting tuning parameter(s) shares parallels with
model selection, where the focused information criterion (FIC) has introduced the concept
of addressing the quality of the aim of a statistical analysis (Claeskens and Hjort, 2008).
Defining a final outcome of a fitted model, such as a specific prediction

µ = xT0 β,

stands in opposition to caring about general overall performance, like goodness of fit. This
requires a clearly defined population quantity-of-interest µ, termed the focus parameter,
for which it is possible to estimate the mean squared error (MSE) MSEµ̂ (or other risk
measures). For ridge regression, the natural focus parameter is the new prediction, xT0 β.

The outline of the paper is as follows: Section 2 introduces the general framework of
the procedure; minimizing the mean squared error of the focus parameter as a function
of λ. Section 3 explores the theoretical characteristics of the proposed estimators in the
case of p = 1 and an orthogonal design matrix. Section 4 compares the prediction per-
formance of the focused ridge estimator to standard ridge regression with cross-validation
using simulations, and section 5 illustrates the method in a real data example.

2. Focused tuning in ridge regression

Suppose we have data {yi, xi}, comprising of n observations of a continuous outcome yi
and p-dimensional covariate vector xi. We use the following notation; the outcome vector,
Y , and the n × p data matrix X with rows xTi . Consider the standard linear regression
model:

yi = xTi β + εi, i = 1, . . . , n

where β is an unknown p-dimensional vector of regression coefficients and ε iid noise with
zero mean, E εi = 0, and variance, Var εi = σ2. The ordinary least squares (OLS) estimate
of β, minimizing the least squares criterion, is given when p < n and XTX is of full rank
as

β̃ = (XTX)−1XTY.
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Ridge estimator minimizes instead a penalized least squares criterion (Hoerl and Kennard,
1970)

β̂(λ) = argmin
β

{
‖Y −Xβ‖22 + λ

p∑
i=1

β2i

}
, (1)

with the explicit solution

β̂(λ) = (XTX + λIp)
−1XTY = (XTX + λIp)

−1XTXβ̃,

where the penalization parameter λ requires some form of fine-tuning.

Remark 1. The ridge estimate gives, in contrast to OLS, a unique solution even if X is not
of full rank as in the high dimensional case (p > n).
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Figure 1: MSE curves for different x0 showing minima at different values of λ.

Suppose one aims to predict the expected outcome for a specific set of covariates x0,
i.e. the focus parameter µ0 = E y0 = xT0 β, such that the estimated ridge prediction is given

µ̂0 = xT0 β̂(λ) = xT0 (X
TX + λIp)

−1XTY.

If one now considers the expected MSE of the prediction, with the expectation taken with
respect to the distribution of Y , the MSE will be a function of the tuning parameter λ,
together with x0 and the parameters β and σ2:

MSEµ̂(λ;x0, β, σ
2) = EY

(
(xT0 β̂(λ)− xT0 β)2

)
= Bias2(µ̂) + Var µ̂,

=
{
xT0 ((X

TX + λIp)
−1XTX − Ip)β

}2
+ σ2xT0 (X

TX + λIp)
−1XTX(XTX + λIp)

−1x0. (2)

Note that we consider the error of xT0 β and not y0, which simplify notation by omitting the
intrinsic prediction error σ2.

For each specific set of covariates x0, the MSE as a function of λ will have a different
minimum, as seen in Figure 1. The focused oracle tuning parameter is then defined as the
minimand of the MSE curve.
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Definition 1 (Oracle tuning). The oracle tuning parameter is the minimand of the mean
squared prediction error

λx0 = argmin
λ

MSEµ̂(λ;x0, β, σ
2), λ ≥ 0,

where the parameters β and σ2 are known.

To characterize the curve of the oracle MSE as function of λ, Equation (2) is rewritten
in terms of the singular value decomposition, X = UDV T , as a summation over the p
singular vectors V = [v1, · · · , vp] and values D = diag(d1, . . . , dp) of X:

MSEµ̂(λ;x0, β, σ
2) =

{
λ

p∑
i=1

xT0 viv
T
i β

d2i + λ

}2

+ σ2
p∑
i=1

d2i (x
T
0 vi)

2

(d2i + λ)2
.

Remark 2. The first derivative of the MSE in Equation (2) as a function of λ is given

∂MSEµ̂(λ)

∂λ
= 2λ

[
p∑
i=1

xT0 viv
T
i β

d2i + λ

][
p∑
i=1

d2ix
T
0 viv

T
i β

(d2i + λ)2

]
− 2σ2

p∑
i=1

d2i (x
T
0 vi)

2

(d2i + λ)3
. (3)

The limit of the first derivative as λ→ 0

∂

∂λ
MSEµ̂(λ;x0, β, σ

2)

∣∣∣∣
λ=0

= −2σ2
p∑
i=1

(xT0 vi)
2

d4i
,

is negative, thus there exists a value of the tuning parameter larger than zero, λ > 0, for
which MSE(λ) is smaller than MSE(0).

There are no explicit solutions for the minima of (2), unless all singular values are
restricted to be equal (see Remark 6). The limit values of the curve are given

lim
λ→0

MSEµ̂(λ;x0, β, σ
2) = σ2xT0 (X

TX)−1x0, lim
λ→∞

MSEµ̂(λ;x0, β, σ
2) = (xT0 β)

2,

such that if (xT0 β)
2 ≥ σ2xT0 (X

TX)−1x0, there must exist a global minimum for λ < ∞.
If the reverse is true, the global minimum can be given in the limit λ→∞. From Equation
3, the critical points of the MSE curves are given as the solutions of a polynomial of degree
3(p− 1) + 1 giving at most 3(p− 1) + 1 critical points.

These characteristics of the MSE curve can be seen for different x0 with fixed data
matrix X and β vector. For p = 10 and n = 100 there are typically zero to three critical
points, and when combined with the asymptote (xT0 β)

2 in the limit λ→∞ being below or
above the value at λ = 0, we have the following possibilities:

• no critical points. The global minimum is in the limit λ→∞

• one critical point; a minimum. The global minimum is at the local minimum.

• two critical points; a minimum and a maximum. The asymptote at λ → ∞ can be
above or below the local minimum.

• three critical points; two minima and a maximum. The second minimum can be
above or below the first local minimum, while the asymptote must be above the
second local minimum.

Four different cases of MSE curves are shown in Figure 2.
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Figure 2: MSE curves as function of λ for p = 10. a) No critical points gives a minimum in
the limit λ→∞. b) The classical case with one minimum and a curve increasing towards
an asymptote. c) First a minimum and then a maximum, but with an asymptote xT0 β below
the minimum value. d) Two local minima and a local maximum.

2.1 Estimating the tuning parameter in low dimension

The oracle value of the observation-specific tuning parameter, λx0 , will give the smallest
expected prediction error, but cannot be used in practice as it requires the true value of β
and σ2. A direct way to estimate λx0 from data is to first estimate β and σ2 by some method
and plug-in the resulting estimates in Eq. (2). In low dimension (p < n), a natural choice
of plug-in is the ordinary least squares (OLS) estimator

β̃ = (XTX)−1XTY,

and the corresponding variance estimator

σ̃2 =
1

n− p

n∑
i=1

(yi − xTi β̃)2,

assuming that XTX is of full rank.
When using the squared estimated bias directly, (B̂ias)2, to obtain the population

squared bias, Bias2, it is necessary to subtract the variance of the bias as

E B̂ias
2
= Bias2+Var B̂ias,
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see Claeskens and Hjort (2008, p. 150). These two aspects together gives the definition of
our first focused tuning parameter estimator.

Definition 2 (Fridge-OLS). The fridge-OLS tuning parameter estimate is the minimand of
the estimated mean squared error curve

λ̂x0,OLS = argmin
λ

M̂SEµ̂(λ;x0, β̃, σ̃
2),

= argmin
λ

{(
(B̂ias(λ))2 −Var B̂ias(λ)

)
+
+ V̂ar(λ)

}
,

= argmin
λ

{(
(λxT0 (X

TX + λIp)
−1β̃)2

− σ̃2λ2xT0 (XTX + λIp)
−1(XTX)−1(XTX + λIp)

−1x0

)
+

+ σ̃2xT0 (X
TX + λIp)

−1XTX(XTX + λIp)
−1x0

}
. (4)

where β̃ and σ̃2 are the OLS estimates, and (·)+ = max{·, 0}.

Remark 3. A simplified version of fridge can be defined by omitting the bias correction,
which insures a continuous first derivative giving faster convergence for numerical opti-
mizers locating the minima:

λ̂∗x0,OLS = argmin
λ

{
(B̂ias(λ))2 + V̂ar(λ)

}
, (5)

= argmin
λ

{
(xT0 ((X

TX + λIp)
−1XTX − Ip)β̃)2

+σ̃2xT0 (X
TX + λIp)

−1XTX(XTX + λIp)
−1x0

}
.

The estimated MSE curves with the pilot estimates β̃ and σ̃2 largely exhibit the same
behavior as the oracle curves: the limit of the first derivative as λ→ 0

∂

∂λ
M̂SE(λ;x0, β̃, σ̃

2)

∣∣∣∣
λ=0

= −2σ̃2
p∑
i=1

(xT0 vi)
2

d4i
< 0,

is also negative, such that there exists a tuning parameter, λ > 0, for which M̂SE(λ) <

M̂SE(0). Also the limit of the estimated MSE as λ→ 0 remains the same:

lim
λ→0

M̂SE(λ;x0, β̃, σ̃
2) = σ̃2xT0 (X

TX)−1x0,

but the asymtotic limit as λ→∞ changes to

lim
λ→∞

M̂SE(λ; β̃, x0, σ̃
2) = max

{
0, (xT0 β̃)

2 − σ̃2xT0 (XTX)−1x0

}
.

As a consequence, the global minimum is more often found in the limit λ→∞.

2.2 Estimating the tuning parameter: high dimension

In the high-dimensional situation with p� n, one needs an alternative to the OLS estimate.
One possibility is to substitute the non-invertible XTX with the Moore-Penrose pseudo-
inverse:

β̃+ = (XTX)+XTY,

and use the estimate directly to estimate the noise variance

σ̃2+ =
1

n− df(β̃+)

n∑
i=1

(
yi − xTi β̃+

)2
, df(β̃+) = tr(X(XTX)+XT ).
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Definition 3 (Fridge-OLS+). The fridge-OLS+ estimator is the minimand of the estimated
mean squared error curve using the Moore-Penrose pseudo-inverse in the OLS estimate:

λ̂x0,OLS+ = argmin
λ

{(
(λxT0 (X

TX + λIp)
−1β̃+)2

− σ̃2+λ2xT0 (XTX + λIp)
−1(XTX)+(XTX + λIp)

−1x0

)
+

+ σ̃2+x
T
0 (X

TX + λIp)
−1XTX(XTX + λIp)

−1x0

}
.

Remark 4. The estimate λ̂x0,OLS+ is equivalent to the standard OLS based estimate λ̂x0 ,
when p < n and XTX is of full rank.

A second alternative is to use ridge regression with cross-validation as a pilot estimate,
which would give a less variable estimate of β than OLS for higher p:

Definition 4 (Fridge-ridge). The fridge-ridge tuning parameter estimate is the minimand
of the estimated mean squared error curve

λ̂x0,ridge = argmin
λ

M̂SEµ̂(λ;x0, β̂(λ̂CV), σ̂
2),

= argmin
λ

{(
(B̂ias(λ))2 −Var B̂ias(λ)

)
+
+ V̂ar(λ)

}
,

= argmin
λ

{(
(λxT0 (X

TX + λIp)
−1β̂(λ̂CV))

2

−σ̃2λ2xT0 (XTX + λIp)
−1(XTX + λ̂CVIp)

−1XTX(XTX + λ̂CVIp)
−1(XTX + λIp)

−1x0

)
+

+ σ̃2xT0 (X
TX + λIp)

−1XTX(XTX + λIp)
−1x0

}
,

where λ̂CV is found by cross-validation, giving the standard ridge estimates

β̂(λ̂CV) = (XTX + λIp)
−1XTY, σ̂2 =

1

n− df(λ̂CV )

n∑
i=1

(
yi − xTi β̂(λ̂CV )

)2
with df(λ̂CV ) = tr(X(XTX + λ̂CV )

−1XT ).

Depending on p, n and in particular the structure of β, other pilot estimates of β can pre-
form better than ridge regression. Additional options include lasso (L1 penalty) or principal
component regression (PCR) using cross-validation to decide additional tuning parameters.
As the variance of the bias based on these pilot estimates can not be expressed explicitly,
we defined the simplified versions only.

Definition 5 (Simplified Fridge-PCR and Fridge-lasso). The simplified fridge-PCR and
fridge-lasso estimates are the minimizers of the estimated MSE curves:

λ̂∗x0,PCR = argmin
λ

{(
(λxT0 (X

TX + λIp)
−1β̂PCR)

2

+ σ̃2xT0 (X
TX + λIp)

−1XTX(XTX + λIp)
−1x0

}
,

λ̂∗x0,lasso = argmin
λ

{(
(λxT0 (X

TX + λIp)
−1β̂lasso)

2

+ σ̃2xT0 (X
TX + λIp)

−1XTX(XTX + λIp)
−1x0

}
,
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where β̂PCR is the principal component regression estimate and β̂lasso is the lasso esti-
mates both with cross-validation tuning parameters, and σ̃2 is a suitable variance estimate.

Reid et al. (2013) and Dicker (2014) have proposed several estimators for σ2 in the case
of lasso regression.

3. The benefits of fridging

The benefit of fridge is governed by several aspects: the focus x0, the structure of β, the
structure of the data matrix X , and the outcomes Y . The first part of this section will
establish xT0 β as the key quantity to answer which x0 benefits from focusing and the role
of the data matrix as determining the important directions in the data spaces.

3.1 The role of the focus

The key question from a practical point of view: is it possible to identify a priori which
covariates x0 will benefit from the focused approach? In the oracle setting where β is
known this can be answered straightforward.

Remark 5 (One dimensional case). Let p = 1, then the ridge prediction is

x0β̂(λ) = x0

n∑
i=1

xiyi

(
n∑
i=1

x2i + λ

)−1
=

M

M + λ
x0β̃, M =

n∑
i=1

x2i ,

giving the oracle mean squared error as

MSEµ̂(λ;x0, β, σ
2) = x20

(
− λ

M + λ
β

)2

+ x20
σ2M

(M + λ)2
.

As x20 is a common factor, the oracle tuning minimizing the MSE will be independent of
x0:

λx0 =
σ2

β2
,

and the estimator has lost its focus! This is, however, not the case in higher dimension,
p ≥ 2.

To demonstrate that the key role of the focus is through the relation between xT0 and
β, we consider an artificial data matrix that allow for an explicit expression of the tuning
parameter.It is worth noticing that crucial aspect are the equal entries of the diagonal.

Remark 6 (Orthogonal case). Suppose the covariates are transformed to give a diagonal
covariance matrix with equal entries,

XTX = diag(M, . . . ,M) =MI, M =
n∑
i=1

x2i,j ,

such that the columns of X are orthogonal. Then the oracle MSE is given

MSEµ̂(λ;x0, β, σ
2) =

{
xT0 (M(MIp + λIp)

−1 − Ip)β
}2

+ σ2MxT0 (MIp + λIp)
−2x0,

= (xT0 β)
2 λ2

(M + λ)2
+ σ2xT0 x0

M

(M + λ)2
,

with a minimand with the explicit expression

λx0 =
σ2xT0 x0

(xT0 β)
2
. (6)
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Result 1. In the orthogonal case, the oracle tuning parameter is controlled by xT0 β, the
inner product between the focus covariate and regression coefficients, and the tuning pa-
rameter in (6) can be expressed by the geometry of x0 and β:

λx0 =
σ2

‖β‖2 cos2 αx0
,

where ‖β‖ is the length of β, and αx0 the angle between the vectors x0 and β in the variable
space.

Remark 7. Importantly, the length of x0, ‖x0‖ does not influence the value of the oracle
tuning in the orthogonal case.

The oracle tuning is therefore given by the relation between x0 and β, in particular
the angle α, measuring how close the prediction is to the mean response, and the length
of β, a measure of the signal strength. When the prediction is close to zero (for centered
variables), such that cosαx0 approaches zero and x0 and β becomes orthogonal, oracle
tuning parameter blows up, λ → ∞ and shrinks the prediction towards zero. A zero
prediction xT0 β = 0 implies that the vectors x0 and β does not contain mutual information.
Regarding the length of β as a measure of signal strength, the larger β values can handle a
harder penalization in the oracle case, while small β requires less penalization.

The resulting prediction error with the fridge tuning parameter

MSEµ̂(λ0;x0, β, σ
2) =

σ2xT0 x0(x
T
0 β)

2

σ2xT0 x0 + (xT0 β)
2
< MSEµ̂(0;x0, β, σ

2) = σ2xT0 x0,

will be uniformly smaller than the OLS prediction error, corresponding to λ = 0. This
expresses the fact that with negative first derivative at λ = 0, there always exits a λ > 0 for
which the prediction error is smaller the error of OLS. The decrease in prediction error of
fridge compared to OLS depends on how close (xT0 β)

2 is to zero.

3.2 The role of the data matrix

The effect of the data matrix X is best understood as a modification of x0 and β, relative to
orthogonal case. Consider the general case where the singular value decomposition of the
data matrix is X = UDV T , giving the mean square error

MSEµ̂(λ;x0, β, σ
2) =

{
λxT0 V (D2 + λIp)

−1V Tβ
}2

+ σ2xT0 V D(D2 + λIp)
−1DV Tx0,

where the matrix of singular vectors V rotate the original x0 and β. The data matrix de-
termines the value of λ by projecting the x0 and β along the singular vectors and up-
weighting the vectors associated with large singular values. The data matrix therefore gives
the premise for which directions in the covariate space are considered more important. In
consequence, how x0 and β are spanned by the first singular vectors of X determines the
optimal value of the tuning parameter. If all singular values are equal, such that all di-
rections carry the same weights, the data matrix X = U(MIp)V

T works as a rotation
matrix through the singular vectors, V Tx0 and V Tβ could be viewed as new covariates
and regression coefficients, oriented along the singular vectors:

MSEµ̂(λ;x0, β, σ
2) = (xT0 V V

Tβ)2
λ2

(M + λ)2
+ σ2xT0 V V

Tx0
M

(M + λ)2
,

with an explicit expression λx0 =
σ2xT0 V V

T x0
(xT0 V V

T β)2
.
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3.3 The effect of estimation

It is also a question how much of the oracle optimality is lost by estimating the tuning pa-
rameter through the plug-in approach. Consider first the case where effect of the data ma-
trix is negligible, such that there are no dominating singular values, for instance in the case
when uncorrelated variables. Then the key quantity, xT0 β, will determine the observation-
specific tuning parameter, as seen for the orthogonal design matrix.

Remark 8 (One dimensional case). For p = 1, the estimated bias of the OLS pilot is given

B̂ias = − λ

M + λ
x0β̃, Var B̂ias =

σ2λ2x20
M(M + λ)2

,

such that the estimated mean square error becomes

M̂SE(λ; β̃, x0) = x20

{(
β̃2 − σ2

M

)
+

(
λ

M + λ

)2

+
σ2

M

(
1− λ

M + λ

)2
}
.

The tuning parameter estimate, still independent of x0 and without a focus, is given

λ̂x0,OLS =
Mσ2(

Mβ̃2 − σ2
)
+

.

WhenMβ̃2 approaches or becomes smaller than σ2, the tuning parameter explodes, λ̂x0 →
∞, making the fridge prediction exactly zero

x0β̂(λ̂x0,OLS) =
(Mβ̃2 − σ2)+

σ2 + (Mβ̃2 − σ2)+
x0β̃ =


0 if Mβ̃2 ≤ σ2,
Mβ̃2 − σ2

Mβ̃2
x0β̃ if Mβ̃2 > σ2.

(7)

Thus the risk function of the fridge-OLS, scaled by the OLS risk, is

risk
(
x0β̂(λ̂x0,OLS)

)
=


M(x0β)

2

σ2
if V 2 ≤ σ2,

1

σ2
E
(
V 2 − σ2

V 2
V −

√
Mx0β

)2

if V 2 > σ2.

with the notation V =
√
Mβ̃ ∼ N(

√
Mx0β, 1). But as there is no focusing effect in one

dimension, we first extend to the p-dimensional case before evaluating the risk functions.

Result 2 (Orthogonal case). In the orthogonal case, the fridge-OLS gives the bias

B̂ias = − λ

M + λ
xT0 β̃, Var B̂ias =

σ2λ2xT0 x0
M(M + λ)2

,

with estimated MSE as

M̂SE(β, x0, a) =

(
xT0 β −

σ2xT0 x0
M

)
+

(
λ

M + λ

)2

+
σ2xT0 x0
M

(
1− λ

M + λ

)2

,

The fridge-OLS tuning estimate is then given

λ̂x0,OLS =
σ2MxT0 x0(

M(xT0 β̃)
2 − σ2xT0 x0

)
+

,
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with the prediction

xT0 β̂(λ̂x0,OLS) =

(
M(xT0 β̃)

2 − σ2xT0 x0
)
+

σ2MxT0 x0 +
(
M(xT0 β̃)

2 − σ2xT0 x0
)
+

xT0 β̃, (8)

=


0 if |xT0 β̃| ≤ σ

√
xT0 x0/M,

(xT0 β̃)
2 − σ2xT0 x0/M
(xT0 β̃)

2
xT0 β̃ if |xT0 β̃| > σ

√
xT0 x0/M.

(9)

Alternatively, the simplified fridge-OLS prediction is given

xT0 β̂(λ̂
∗
x0,OLS) =

M(xT0 β̃)
2

M(xT0 β̃)
2 + σ2xT0 x0

xT0 β̃.
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Figure 3: Panel a) The risk surface for the original FIC estimator in two dimensions for
varying β and fixed x0 = (−5, 2). Panel b) The risk surface in two dimensions for varying
x0 and fixed β = (−5, 2)

To visualize how the risk varies with x0, it is necessary with more than one dimension
and for p = 2 the risk can be shown as a function of β and x0 separately. Figure 3a)
shows the risk as function of β for fixed x0, with risk surface is scaled by the risk of the
OLS estimator, risk(x0β̃) =

σ2xT0 x0
M . It is seen that the fridge-OLS has a lower risk than

OLS in a trench following the line xT0 β = 0. Figure 3b) shows the risk as function of
x0 when the true β is fixed, also scaled by the risk of the OLS estimator. The important
observation is that fridge-OLS has lower risk than OLS within cone centered on the line
xT0 β = 0. Within this section of the covariate space, the focused shrinking towards zero is
particularly beneficial in prediction.

4. Comparison with cross-validation

The most widely used fine-tuning procedure for tuning parameters is undoubtedly K-fold
cross-validation, probably due its conceptual simplicity: the data is divided inK folds with
each part held out and predicted by fitting a model on the remaining folds. A range of tuning
parameters can then be tested and one will choose the value with the lowest error, averaged
over all folds. The procedure was introduced by Stone (1974) and Allen (1974), proposing
the prediction residual error sum of squares (PRESS) criterion, equivalent to n-fold or

1563



leave-one-out cross-validation. Currently 10- and 5-fold cross-validation have become the
default approach in modern statistics and machine learning Hastie et al. (2009).

In leave-one-out cross-validation, each outcome is predicted using all other observa-
tions: If X[i] and Y[i] are the X and Y with the ith row deleted, such that the regression
model for each observation is

β̂[i](λ) = (XT
[i]X[i] + λIp)

−1XT
[i]Y[i],

the LOOCV criterion is given

CV(λ) =
n∑
i=1

e2[i] =
n∑
i=1

(
yi − xTi β̂[i]

)2
.

For ridge regression in particular, the leave-one-out prediction error has an explicit expres-
sion (see Golub et al. (1979)) avoiding the standard iterative procedure. Due to a spe-
cial relation for matrix inverses, the leave-one-out prediction error can be expressed as a
weighted version prediction error from a model using all the data, and the cross-validation
tuning parameter is thus given

λ̂CV = argmin
λ

n∑
i=1

(
yi − xTi β̂(λ)

1− xTi (XTX + λI)−1xi

)2

. (10)
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Figure 4: a) Data concentrated in two distinct clusters centered at (1, 1) and (−1, 1) b)
Density plot of λ/(λ+ 1) for fridge (red) and cross-validation (black.)

To illustrate the difference between the focused tuning and cross-validation, consider
an example where the data matrix consists of different clusters. Figure 4a) shows a data
example (p = 2) with two distinct clusters centered at (1, 1) and (−1, 1), respectively. If
the regression coefficients are given β = [−1, 1], the outcome for the right cluster will be
close to zero, yi ' 0, while the outcome for the left cluster will be close to two, yi ' 2,
given a small noise variance. The line implied by xTβ = 0 is marked in black. The clusters
will then require a very different level of penalization to produce an optimal prediction; the
right cluster requires a stronger penalization and the left cluster requires a weaker penalty.
Figure 4b) shows the distribution of the observation-specific tuning, λx0/(1 + λx0) in red,
for each of the observations seen in Figure 4a). The corresponding distribution of the tuning
parameter estimated by leave-one-out cross-validation, λ̂CV /(1 + λ̂CV ) over multiple sets
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of simulated yi is shown in black. Figure 4b) displays clearly that the difference in optimal
tuning parameter for the two clusters are captured by the fridge procedure, with the right
cluster corresponding to a high tuning parameter and the left cluster to a smaller tuning
value. Cross-validation on the other hand estimates an overall tuning parameter, averaging
over all covariates, and thus selects a tuning parameter value inappropriate for both two
clusters.
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Figure 5: Top; tuning parameter estimates for cross-validation (blue) and fridge-OLS (red)
for each out-of-sample prediction. Bottom; prediction error of log-PSA values for cross-
validation (blue) and the fridge (red) with the difference colored according to the method
with the lowest error.

5. Data examples

In the following section, we illustrate the fridge procedure using real data. Stamey et al.
(1989) examined the relation between prostate specific antigen (PSA) and 7 clinical mea-
surement, such as cancer volume and prostate weight, in 97 prostate cancer patients. The
goal was to predict the log PSA values based on the different clinical measurements. Even
though the data are low-dimensional (p < n), the sample size is not very large compared
to the number of variables and we used fridge with a ridge pilot to estimate the focused
tuning parameter. To imitate the case of new unknown sets of covariates x0, each ob-
servation is predicted out-of-sample based on all other data points, and we recorded the
mean squared prediction error relative to the corresponding outcome for comparison with
cross-validation:

1

n

n∑
i=1

(xTi β̂−i(λx0)− yi)2.

The top panel of Figure 5 shows the estimated tuning parameters for each observation
(out-of-sample) in the prostate cancer data set. The estimated cross-validation tuning pa-
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Figure 6: The out-of-sample predictions of log PSA plotted against the true value, with
ridge with cross-validation in blue and fridge-ridge in red. The difference is colored ac-
cording to the method with the least squared error.

rameter (in blue) is quite stable for each observation due to the large sample size, while
the fridge-ridge estimate (in red) varies considerably across the different xi. The bottom
panel shows the squared prediction error of each log PSA observation for cross-validation
(in blue) and the fridge (in red) with the difference colored according to the method with
the lowest error. There are small difference between the methods and both can do better
or worse than the other for specific x0s. However, fridge-ridge gives a smaller error then
cross-validation in 56.3 % of the cases and on average the squared prediction error is 1.1 %
lower for fridge-ridge than for ridge regression with CV.

Figure 6 shows the true yi plotted against the out-of-sample prediction ŷi = xTi β̂(λ̂xi).
It is seen that fridge penalizes more the observations with yi close to zero than CV, forcing
the prediction towards zero.

6. Discussion

The increasing availability of data allows for individualized prediction procedures, for in-
stance by focusing the tuning parameter towards specific covariate sets. With our definition
of the optimal tuning parameter as the minimand of the mean squared error prediction,
one can also consider other loss functions or risk measures. The current formulation re-
quires not distributional assumption for the noise, apart from the linear model. We present
one way of estimating this tuning parameter; by plug-in estimates in the risk expressions.
Different plug-in or pilot estimates are considered.

In the high-dimensional case, the so-called projection bias, as explored by Shao and
Deng (2012), poses an additional problem. Any linear estimator is in fact only consistent
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for a projection of the true β unto the row space of the observed data matrix. If the row
space ofX does not properly spanned the true coefficient vector, the bias can be substantial,
and the projection bias cannot be quantified from the observations. One approach to avoid
the bias is to use a non-linear estimator such as the lasso, requiring the assumption that β
is sparse (Meier, 2016).

The focused tuning parameter is also connected to random effect models, when viewed
in the Bayesian context. As ridge regression corresponds to a Gaussian prior on the regres-
sion coefficients, β, (Lindley and Smith, 1972)

yi = N(Xβ, σ2), β ∼ N(0, τ2),

the variance, τ2 will be inversely proportional to the tuning parameter. In such a framework,
the observation-specific λxi can be formulated as Gaussian prior with a observation-specific
variance. This can further be view as an individual scaling of the β:

yi = xTi λ
−1/2
xi β + εi = xTi βi + εi, βi = λ−1/2xi β, i = 1, . . . , n,

giving observation-specific regression coefficients, similar to a random effects model. Such
random effects in a mixed model framework are typically assumed to follow a multivariate
normal distribution and estimated using empirical Bayes methods, an approach which could
also be suitable for fridge.

References

Allen, D. M. (1974). The relationship between variable selection and data agumentation
and a method for prediction. Technometrics, 16(1):125–127.

Boonstra, P. S., Mukherjee, B., and Taylor, J. M. (2015). A small-sample choice of the
tuning parameter in ridge regression. Statistica Sinica, 25(3):1185.
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