
A Simple Mantel-Haenszel Type Test for Non-Inferiority  
 
 

Kallappa M. Koti 
12815 Twinbrook Pkwy, MD 20851 

 

 

 
Abstract 
Randomized trials designed to establish non-inferiority of an experimental therapy as 
compared to a standard one as measured by binomial proportions have been widely used. 
Randomization is often stratified by prognostic factors. We propose a Mantel-Haenszel 
type test to demonstrate non-inferiority when the non-inferiority margin is not necessarily 
uniform in all strata. Derivation of the new test originates from Wittes and Wallenstein 
(1987). We provide an easy to calculate formula for sample size. The new test may be an 
alternative to Yanagawa et al. (1994). A SAS code that calculates the p-value is provided. 
 
 
Key Words: Hyper-geometric distribution, good outcome, model-free approach, 
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1. Introduction 
 
Non-inferiority and equivalence trials aim to show that the experimental therapy is not 
clinically worse than (non-inferiority) or clinically similar to (equivalence) an active 
control therapy. We focus on non-inferiority in terms of binomial proportions in the 
comparative binomial (CB) design setting. Statistical exercise is to test the null 
hypothesis of non-zero differences in population proportions.  One may refer to Tunes da 
Silva et al. (2008) who have presented a good introduction to non-inferiority testing from 
clinical trials perspective in un-stratified data analysis. 
 
In most confirmatory clinical trials, stratified randomization is adopted. That is, subjects 
are grouped according to covariate values prior to randomization and subjects are then 
randomized within strata. The Mantel-Haenszel (MH) is most commonly used for testing 
the classical null hypothesis that the odds ratios with each stratum are equal to 1. In this 
article, we state the null hypothesis in terms of the strata proportions. The null and 
alternative hypotheses and the corresponding MH test are described in Section 2 below.  
 
Many practitioners use logistic regression model based Wald’s )%21( α−  confidence 
intervals to demonstrate non-inferiority of an experimental therapy compared to an active 
control. Miettinen and Nurminen (1985), and Farrington and Manning (1990) stress the 
need for the restricted maximum likelihood estimates (RMLE) based testing hypothesis 
of non-zero differences in proportions. Yanagawa et al. (1994) proposed MH-type test for 
non-inferiority analysis of binomial data from stratified randomized trials. Yanagawa et 
al. obtained the test statistic using the Neyman’s )(αC test criterion (see Neyman, 1979). 
Further details on their test are provided in the Appendix A at the end of this article. 
Wittes and Wallenstein (1987) derived the unconditional power of the MH test. We 
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propose a new simple Mantel-Haenszel type test that originates from Wittes and 
Wallenstein (1987). We call the new test as W-square test.  
 
 

2. The Mantel-Haenszel Test 
 

The Mantel-Haenszel (MH) test is widely used to analyze categorical data from 
comparative binomial clinical trials. We borrow the terminology and notation from 
Wittes and Wallenstein (1987) and briefly describe the MH test. The data consist of 

)2(≥T  sets of 22× contingency tables.  Let ijkn denote the ( kji ,, ) th cell size, where i
represents the table ( Ti ,,2,1 ⋅⋅= ), j represents the treatment [ 1=j (experimental); 2=j  
(control)], and k represents the outcome [ 1=k (success); 2=k (failure)]. Each 
contingency table constitutes a stratum.  

 
Table 1: The ith 2×2 contingency table  

 
 

Treatment 
Outcome:  

Total       Success Failure 
1 

11in  21in  ⋅1in  
2 

12in  22in  ⋅2in  
Total 

1⋅in  2⋅in  ⋅⋅in  
 
 

In Table 1 above, under a comparative binomial design setting ⋅⋅in is the preselected 

number of individuals in the i th stratum. The row totals ⋅1in and ⋅2in represent the numbers 
of subjects randomized to the experimental treatment arm and the control arm, 

respectively. Often in a controlled randomized trial ⋅⋅ = 21 ii nn . Let ∑ ⋅⋅=
T

inN
1

be the trial 

size. Let ⋅⋅⋅= iii nn /1ρ be the proportion of subjects receiving the experimental treatment in 

the i th table, and Nnii /⋅⋅=λ be the proportion of subjects in the i th table. Let jiπ (
Tij ,,2,1;2,1 ⋅⋅== ) denote the probability of success of the j th treatment in the i th 

table. The jiπ s are the population parameters of interest. Consider testing the null 
hypothesis of no treatment difference 
 
                                    0: 210 =− iiH ππ , for all Ti ,,2,1 ⋅⋅=                                      (2.1) 
 
against the alternative hypothesis  
 
                        0: 21 ≥− iiAH ππ , for all i , and 021 >− ii ππ , for some i          (2.2) 

 
MH test is conditioned on all of the margins. Under 0H , the number of successes 11in from 
the experimental treatment arm follows the hypergeometric distribution with mean 
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⋅⋅⋅⋅ iii nnn /11 and variance )}1(/{ 2
2211 −= ⋅⋅⋅⋅⋅⋅⋅⋅ iiiiiii nnnnnnV . The uncorrected Mantel-

Haenszel test statistic UM is given by  
 
                                             21

11
)(/ ∑∑= T

i

T

iU VgM ,                                               (2.3) 

 
where ⋅⋅⋅⋅−= iiiii nnnng /1111 and iV is given above. Note that ig can be written as 
 

)()1( 21 iiiiii ppNg −−= ρρλ , 
 
where for each i , ⋅= jijiji nnp /1 . Also note that iV can be written as 
 

,)1/()1(21 −−= ⋅⋅⋅⋅ iiiiii nppnnV  
 
where ⋅⋅⋅= iii nnp /1 is the observed proportion of successes in both treatment arms 

combined in the i  th table. For large N , the Mantel-Haenszel test statistic UM  given by 
(2.3) approaches the standard normal distribution under 0H . For the one-sided alternative 
hypothesis AH , the null hypothesis 0H is rejected at level α if α−> 1zMU , where γz  is the 
γ-percentile of the standard normal distribution. Cochran (1954) proposed a test statistic 
similar to (2.3). He treated the rows in each 22× table as two independent binomials  
rather than a hypergeometric. The statistic UM is popularly called the Cochran-Mantel-
Haenszel (CMH) statistic (see Agresti, 2002).  Stokes et al. (1995) provide SAS codes for 
the CMH test.  
 

 
3. The Wittes-Wallenstein Power  

 
Birch (1964), Levin (1982) and Muñoz and Rosner (1984) have discussed the calculation 
of conditional power of UM . Wittes and Wallenstein (1987) advise against using the 
conditional power in planning a study. Berger, Wittes, and Gold (1979) used Neyman’s 

)(αC   method to derive the unconditional power of the MH statistic- as a function of the 
odds ratios. Wittes and Wallenstein (1987) derived the unconditional power of the MH 
test for 0H when under AH , iii δππ =− 21 , for Ti ,,2,1 ⋅⋅= . They derived the power of 

MH test in two settings. In the first setting, T is fixed, ∞→⋅⋅in in such a way that iNδ
approaches a nonzero constant iγ , and ijπ approaches the common value iπ under 0H for

2,1=j . By Lindeberg’s condition for the central limit theorem, Ng
T

i /
1∑ has an 

asymptotic normal distribution with mean  
 

                                              iii

T

iN δρρλµ )1(
1

−= ∑  
and variance  

                                             )1()1(
1

2
iiii

T

i ππρρλσ −−=∑ .       
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As the iπ s are unknown, the variance 2σ is replaced by 
 
                                             )1()1(ˆ

1

2
iiii

T

i ππρρλσ −−=∑ ,                                      (3.1) 

where 
                                              21 )1( iiiii πρπρπ −+= .                                                  (3.2) 
 
Wittes and Wallenstein calculate the power of an upper-tailed test: 
 

                           ][ )( 111 ˆ/)1()( αα σδρρλ −− −−Φ=≥ ∑ zNzMP ii

T

iiU ,                   (3.3) 

 
where Φ is the standard normal distribution function.  
 
In the second setting, ⋅⋅in is bounded, Bni << ⋅⋅2 , and ∞→T , so that consequently 

∞→N . In addition, it is assumed that iNδ approaches a nonzero constant iγ . Next, 
they have argued that a more precise approximation would reasonably be based upon the 
finite sample moments )( igE , )(var ig , and )( iVE , rather than upon their asymptotic 
values. Wittes and Wallenstein (1987) derive the following finite sample moments for the 
comparative binomial setting. 
  
                                         iiiii NgE δρρλ )1()( −= ,                                              (3.4) 
              ])1()1()1([)1()(var 2211 iiiiiiiiii Ng ππρππρρρλ −+−−−=                     (3.5) 
                ])1/()1()1([)1()( 2 −−+−−= iiiiiiiiii NNVE λρρδππλρλ                     (3.6) 
  

By Lindeberg’s condition for the central limit theorem, Ng
T

i /
1∑ has an asymptotic 

normal distribution with mean 
 

                                              
,)1(

/)(lim

1

1

iii

T

i

i

T

T

N

NgE

δρρλ

µ

−=

=

∑
∑∞→                                            (3.7) 

and variance 

                          
])1()1()1([)1(

/varlim

22111

1

2 )(

iiiiiiii

T

i

T

iTCB Ng

ππρππρρρλ

σ

−+−−−=

=

∑
∑∞→                 (3.8)  

 
The subscript CB in 2

CBσ of (3.8) is used to distinguish it from the 2σ in (3.1). Next, 
Wittes and Wallenstein point out that when ⋅⋅in s are bounded, as ∞→T and therefore,

∞→N  , the events  “ α−> 1ZMU ” and “ WZNgi α−>∑ 1/ ” are equivalent, where 
 

                             
∑

∑
−−+−−=

= ∞→

T

iiiiiiiii

i

T

T

N

NVEW

1

2

1

],)1/()1()1([)1(

/)(lim

λρρδππρρλ
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and iπ is given by (3.2). The term )1/()1(2 −− iiii Nλρρδ  in W above is of ⋅⋅ii nO /)( 2δ and 
is dropped in the following. That is,  
 

                                           ∑ −−=
T

iiiiiW
1

)1()1( ππρρλ                                          (3.9) 
 
The Wittes-Wallenstein’s improved one-tailed power of MH test is  
 
                                     ][ /)()( 11 CBU WzzMP σµ αα ×−Φ=> −−

,                            (3.10) 
 
where µ , 2

CBσ , and W  are given by (3.7), (3.8) and (3.9), respectively. The derivation of 
the power in (3.10) is based on more accurate approximation of the expected value and 
variance of the numerator and denominator of the MH test statistic. Wittes and 
Wallenstein claim that the new approximations for power are closer to the exact values 
than previously obtained formulas. We are now ready to derive the new test for 
establishing non-inferiority. 
 
 

4. The Main Result: New Test for Non-Inferiority Demonstration 
 

In the following we assume that higher probabilities }{ jiπ of success are preferred. 

Tunes da Silva et al. (2008) describe such 1iπ and 2iπ  as the probabilities of good 
outcome. For example, complete response (CR) in an oncology trial is a good outcome.  
See Section 8 for an example of a bad outcome. We want to test the null hypothesis that 
the probability of success in the experimental treatment arm is at least an amount iδ
worse than the control arm to demonstrate that the experimental therapy is non-inferior. 
We assume that iδ to be known constants and that 10 <≤ iδ  for Ti ,,2,1 ⋅⋅= . Our 
objective is to test a null hypothesis of non-zero differences in success probabilities  
 
                                iiiK δππ −≤− 210 : , for all Ti ,,2,1 ⋅⋅=                                     (4.1) 
 
against the alternative hypothesis 
 
                           iiiAK δππ −≥− 21: , for all i , and iii δππ −>− 21 , for some i           (4.2) 
 
As we are considering an upper-tailed test of sizeα , the objective is to find a constant

αc such that  
 
                                                 αα =>∞→ )( 0|lim KcMP UT .  
 
Needless to say, αc defines the rejection region of the proposed test of 0K . From Section 

3, it follows that, under the null hypothesis :0K iii δππ −=− 21 , Ngi /∑ has an 

asymptotic normal distribution with mean µ and variance 2
CBσ , where  
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                                             ,)1(
1 iii

T

iN δρρλµ −−= ∑                                        (4.3) 
 
and 2

CBσ is given by (3.8). Following Wittes and Wallenstein, we claim that the events “

αcMU > ” and “ WcNgi α>∑ / ”, where W is given in (3.9), are equivalent. 

Therefore, the constant αc should be such that 
 

.|)/(lim )( 01
αα =>∑∞→ KWcNgP

T

iT  
 

That is, αc satisfies: 

α
σ

µ
σ

µ
α =

−−
Φ >∑ ][ /

CBCB

i WcNg
 

Therefore, we set 

α
α

σ
µ

−=
−

1zWc

CB

 

 
It readily follows that 
                                                Wzc CB /)( 1 µσαα += − ,                                          (4.4) 
 
where µ , CBσ  and W are given by (4.3), (3.8) and (3.9), respectively. We reject 0K in 

favor of AK  at α level of significance if WzM CBU /)( 1 µσα +> − . There is one 
problem. The constant αc depends on 2

CBσ and W  , which in turn depend on the 
unknown success probabilities 1iπ and 2iπ . However, as under 0K , iii δππ −= 21 , and 

iδ are pre-specified, we need to know only the success probabilities 2iπ from the 
control arm in order to perform the test.  There are three simple solutions to the problem: 
First, as 2iπ s belong to the reference group whose efficacy has been well established, it 
is reasonable to assume that 2iπ  are reliably known from previous studies. Second, a 
simpler option is to use the sample proportions ⋅= 2222 / iii nnp  from the current non-

inferiority trial in place of 2iπ . Third, one can express αc  in terms of the restricted 
maximum likelihood estimates (RMLE) 2

~
iπ that are derived in Miettinen and Nurminen 

(1985) and referenced later in Farrington and Manning (1990) and Yanagawa et al. 
(1994). We discuss the RMLEs in Appendix A for the benefit of the reader.  
 
 

5. Power and p-Value 
 

We discuss the power and p-value of the new test of 0K  against AK . By definition, the 
power is the probability of rejecting a false null hypothesis.  We calculate the power of 
the test given by (4.4) when all iδ ),,2,1( Ti ⋅⋅= are set equal to 0 . The power of the test 
is 
 

)allfor0|( icMP iU =>= δψ α     
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As seen from Section 2, the test statistic UM has standard normal distribution when all iδ s 
are equal to 0 .  Therefore, the power of the test is given by   
 
                                                      )(1 αψ cΦ−= ,                                                       (5.1) 
where αc is given by (4.4).  
 
We next derive the p-value. By definition, the p-value is  
 

       
∑ >=

>=

∞→

T

uiT

uU

WmNgP

KmMP

1

0

)/(lim

)|(p
 

 
where um denotes an observed value of UM .  It follows that 
  
                                             ]/)([1p CBu Wm σµ−Φ−= ,                                        (5.2) 
 
where µ , W and CBσ are given by (4.3), (3.9) and (3.8), respectively.  
 

 
6. Sample Size Calculation  

 
We discuss sample size determination for testing 0K  against AK . The type 2 error rate β
is the probability of not rejecting the null hypothesis 0K  when it is false. From (5.1), it 
follows that )( αβ cΦ= . We find the sample size by setting βα zc = , where αc is given by 
(4.4). That is, we set 
 
                                              Wzz CB βα µσ =+−1 ,            
                              
where µ , 2

CBσ and W are given by (3.7), (3.8) and (3.9), respectively. This gives 
 

                               2

1

2
1 ][)( )1(/ ii

T

iiCBzWzN δρρλσαβ −−= ∑− ,                        (6.1) 
 
where all iδ s are pre-specified and it is assumed that the success probabilities 2iπ of the 
reference therapy are made available from previous studies. We provide some sample 
sizes for test with 05.0=α and 2.0=β in Table 2 below. 
 

Table 2: Sample sizes from (6.1) 
 
Trial Parameters       Tii ,,2,1, ⋅⋅=δ  N  

3=T , 67.0=iρ , 3.0,3.0,4.0=iλ  
            7.0,6.0,5.02 =iπ  

        1.0,1.0,1.0  673  
        15.0,15.0,15.0  299  

 3=T , 67.0=iρ , 3.0,3.0,4.0=iλ  
           8.0,75.0,7.02 =iπ  

       1.0,1.0,1.0  581 
        15.0,15.0,15.0  266  
        2.0,2.0,2.0  153  
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Suppose that both treatment arms are to be allocated with equal number of subjects in 
each stratum and all strata are to be of equal sizes. That is, 2/1=iρ  and Ti /1=λ for all

Ti ,,2,1 ⋅⋅= . We have 
 

)8/(])1()1([
1 2211

2 T
T

iiiiCB ∑ −+−= ππππσ , 
and 

                          ∑ −=
T

ii TW
1

)4/()1( ππ . 
 

Substituting these in (6.1), the required sample size is 
 
 

    2][
1 221111

1

2
})1()1({)1(2

)(
2 ∑∑∑

−+−−−= −

T

iiii

T

iiT

i

zzTN ππππππ
δ

αβ ,     (6.2) 

 
where iii δππ −= 21 and 2/)2( 2 iii δππ −= with 1<iπ .  
 
 

7. Simulation 
 
In this section, we provide some simulation results that compare the performance of the 
new test with Yanagawa et al. (1994). 
 
First, we consider a case with 2=T . Let 15.01 =δ , and 13.02 =δ . We intend to test the 
null hypothesis 

15.0: 12110 −≤−ππK , and 13.02212 −≤−ππ  
 

against the alternative hypothesis AK that 0K is false. We arbitrarily assume that
6.021 =π , 5.022 =π . We set 15,151 =⋅jn , and 15,152 =⋅jn for 2,1=j . This means that 

the table totals 3021 == ⋅⋅⋅⋅ nn , and the trial total  60=N . This also means that

5.021 == λλ , and 5.021 == ρρ . We label this scenario as Case 1 in Table 3 below. We 
choose 1iπ such that simulated data may not possibly reject the null hypothesis 0K in 

favor of AK . We conjecture that, for example, the data simulated with 1.021 −−= iii δππ , 
should induce higher p-value and should not reject the null hypothesis 0K . We call the 
SAS subroutine streaminit )132435( , and use: 
 
                                        ),,"binomial("rand ⋅= jijikji nn π   
 
to generate the data for the i th )2,1( =i  contingency table. One may refer to Wicklin 
(2013) for further details on simulation using SAS. We calculate the p-value given by 
(5.2). We repeat the whole thing 10,000 times. That is, we generate 10,000 p-values. We 
calculate the average p-value ( p ). We also calculate the average p-value for the 
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Yanagawa’s test, which is described in Appendix A below. In generating Yanagawa’s p-
values, we noticed that RMLE 2

~
iπ of 2iπ did not exist in a small number of simulations.  

The results are shown in Table 3 below.  
 
 

Table 3: Simulated average p-values  
 

  
 
Trial Parameters 

     Average p-value p : 
W-square 

test  
Yanagawa’s 

test 
Case 1: 

,2=T ,6.021 =π  ,5.022 =π 15,15 2111 == ⋅⋅ nn , 60=N

15.01 =δ 13.02 =δ , 1.021 −−= iii δππ  

 
7153.0  

 
3101.0  

Case 2: 
,2=T ,6.021 =π  ,5.022 =π 15,15 2111 == ⋅⋅ nn , 60=N

15.01 =δ 13.02 =δ , 05.021 −−= iii δππ  

 
6098.0  

 
1726.0  

Case 3: 
,3=T ,7.021 =π ,6.022 =π ,5.023 =π   

,15,15,15,15 22122111 ==== ⋅⋅⋅⋅ nnnn
;15,15 2313 == ⋅⋅ nn 90=N  

10.0,11.0,12.0 321 === δδδ ; 1.021 −−= iii δππ  

 
 

7501.0  

 
 

2323.0  

Case 4: 
,3=T ,7.021 =π ,6.022 =π ,5.023 =π   

,15,15,15,15 22122111 ==== ⋅⋅⋅⋅ nnnn
;15,15 2313 == ⋅⋅ nn 90=N  

10.0,11.0,12.0 321 === δδδ ; 05.021 −−= iii δππ  

 
 
    6318.0  

 
 
   104.0  

 
 

8. Concluding Remarks 
 
For example, Graft-versus-host disease (GVHD) burden in a study to compare peripheral 
blood cells (PBSC) versus bone narrow (BM) as a cell source is a bad outcome (Tunes da 
Silva et al., 2008). If 1iπ  and 2iπ  are the success probabilities of bad outcome, then 

smaller }{ jiπ are preferred. We want to consider the null hypothesis iiiK δππ ≥−′ 210 :  for 

all i  against the alternative hypothesis: iiiAK δππ ≤−′ 21: , for all i , and iii δππ <− 21 , for 

some i , where   10 <≤ iδ . We reject 0K ′ in favor of AK ′  at α level of significance if

WzM CBU /)( µσα +< . We leave further details to the reader. 
 
If the number of strataT is small and the strata totals ⋅⋅in s are large, a test based on the 
Wittes-Wallenstein power given in (3.3) above is easily derived. Note that the power 
approximation in (3.3) is a simplif ication of the approximation in (3.10). The critical 
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region for testing 0K against AK   is obtained by replacing CBσ in (4.4) by σ̂  of (3.1). We 
leave further details to the reader. 
 
The proposed W-square test is very easy to implement. It can be performed with a desk 
calculator. However, we provide a SAS code in Appendix B, which refreshes all the steps 
involved in the test. The SAS code analyzes the Neriproct suppository data from Table 2 
of Section 4 in Yanagawa et al. (1994). In this code, 3=T . Input variables are self-
explanatory. The p-value of the MH test was 19.0 .  Yanagawa et al. have used the non-
inferiority margins- 05.0321 === δδδ . We calculated the restricted maximum likelihood 
estimates: 5394.0~

12 =π , 5588.0~
22 =π and 4869.0~

32 =π . The Yanagawa’s test has a p-
value of 021.0 . They infer that Neriproct suppository is at least as effective as 
Tribenoside. We have used the sample proportions from the control arm to calculate CBσ  
and W .  The SAS code calculates the MH statistic Um , the critical region αc , the p-value, 
and the power of the W-square test. We noted that 8726.0=αc and 3102.1=Um . We get 
a p-value of 0186.0 for the W-square test.  
 
The W-square test is an unconditional test. It is conservative compared to the Yanagawa 
et al. test in that the W-square test, in general, yields higher p-values. The W-square test 
does not need each stratum total ⋅⋅in  to be large. 
 
 

Appendix A 
 
Here we provide formulas for the restricted maximum likelihood estimator 2

~π  of 2π that 
are provided in Farrington and Manning (1990). It is assumed that 11in and 12in follow 

binomial distributions. Likelihood of 11in and 12in from the ith table is expressed as a 

function of
2iπ , where iii δππ −= 21 . We state them without the subscript i . Note that 2

~π is  
the unique solution in )1,(δ of the maximum likelihood equation:  
 
                                             023 =+++ dcxxbxa  
with 
                                     ⋅⋅+= 21 /1 nna ,  

                )]2/()/()/(1[ 21121221 +++++−= ⋅⋅⋅⋅⋅⋅ nnpnnpnnb δ , 

                                      1212212
2 )/()1/2( pnnpnnpc ⋅⋅⋅⋅ +++++= δδ , 

                                     )1(2 δδ +−= pd , 
 
where 1p and 2p are the sample proportions. The solution is 
 

abwu 3/)cos(2~
2 −=π , δππ −= 21

~~  
where 

1445



.]3/)3/([()(
,2/6/)3/(

,3/)]/(cos[

2/122

233

31

acabvsignu
adabcabv

uvw

−=

+−=

+= −π
 

 
 Yanagawa et al. (1994) state that )1,(~

2 δπ ∈ is n -consistent.  
 
The test statistic in Yanagawa et al. is given by 
 

  ∑∑ −

⋅⋅

⋅⋅
⋅ +−−+−

+−−
×−−=

T

iiiiiiii

iiiiiiT

iiiidiff nn
nnnnZ

1

2/1

222221

2
2

2
221

1 2111 }{
)~1()~()~1(~

)~1()~(])~([
δπδπππ

δπδπ
δπ  

Asymptotically, it has a standard normal distribution under 0K .  
 

 
Appendix B 

 
data Yanagawa  ; 
input  Table  ni11  ni1dot  ni21  ni2dot  nidotdot  deltai ; 
lines ; 
     1   13   23   15   29   52    0.05    
     2   30   50   27   45   95    0.05    
     3   19   38   8     31   69    0.05    
 ; 
data Tango ; set Yanagawa ; 
N = 216 ;   * N is the total of input variable nidotdot- in column 6   ;                         
pi2 = ni21/ni2dot  ; 
pi1 = pi2-deltai ; 
lambdai = nidotdot/N  ; 
rhoi = ni1dot/nidotdot ;     
pibar = rhoi*pi1+(1-rhoi)*pi2 ; 
egi = - sqrt(N)*lambdai*rhoi*(1-rhoi)*deltai ;                                                                  
evi = lambdai*rhoi*(1-rhoi)*(pibar*(1-pibar) + 
         deltai*deltai*rhoi*(1-rhoi)/(nidotdot-1)) ;  
sigma2 = lambdai*rhoi*(1-rhoi)*((1-rhoi)*pi1*(1-pi1)+rhoi*pi2*(1-pi2)) ; 
nidot1 = ni11+ ni21 ; 
nidot2 = (ni1dot-ni11)+(ni2dot-ni21) ; 
gi = ni11-(ni1dot*nidot1/nidotdot) ; 
Vi = ni1dot*nidot1*ni2dot*nidot2/(nidotdot*nidotdot*(nidotdot-1))  ; 
run ; 
  
PROC IML ; 
use Tango ; 
read all var{egi} into c11 ;  read all var{vargi} into c12 ;  
read all var{evi} into c13 ;  read all var{sigma2} into c14 ;  
read all var{gi} into c21 ;    read all var{Vi} into c22 ;  
Mu = sum(c11) ; 
sigd2 = sum (c12) ; 
W = sum(c13); 
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sig2CB = sum(c14) ; 
calpha = (Mu+1.645*sqrt(sig2CB))/sqrt(W) ; 
power = 1-PROBNORM(calpha) ;       
sumgi = sum(c21) ; sumVi = sum(c22) ; 
MHmu = sumgi/sqrt(sumVi) ; 
pvalue = 1-PROBNORM((MHmu*sqrt(W)-Mu)/sqrt(sig2CB)) ; 
print  MHmu  calpha  pvalue  power ;     
run ; 
 

Acknowledgements 
 

This article reflects the views of the author and should not be construed to represent 
FDA’s views or policies. 
 
 

References 
 
Agresti, A. 2002. Categorical data analysis. John Wiley & Sons, Inc., Hoboken, NJ. 
 
Berger, A., Wittes, J. T., and Gold, R. Z. (1979). On the power of the Cochran-Mantel- 
     Haenszel test and other approximately optimal tests for partial association. Technical  
     Report B-03. Columbia University school of Public Health, Division of Biostatistics. 
 
Birch, M. W. 1964. The detection of partial association, I: The 2×2 Case. Journal of the 
     Royal Statistical Society, Ser. B, 26, 313-324.  
 
Cochran, W. G. 1954. Some methods of strengthening the common 2χ tests.  Biometrics 
     10: 417-451. 
 
Farrington, P. C. and Manning, G. 1990. Test statistics and sample size formulae for 

comparative binomial trials with null hypothesis of non-zero risk difference or non-
unity relative risk. Statistics in Medicine, 9: 1447-1454. 

 
Levin, B. 1982. On the accuracy of the normal approximation to the power of the   
      Mantel-Haenszel procedure. Journal of Statistics and Computer Simulations, 14,  
      201-218. 
 
Muñoz, A. and Rosner, B. 1984. Power and sample size for a collection of 2×2 Tables.  
    Biometrics, 40, 995-1004. 
 
Miettinen, O. and Nurminen, M. 1985. Comparative analysis of two rates. Statistics in 

Medicine, 4: 213-226. 
 
Neyman, J. 1979. )(αC tests and their use. Sankhya: The Indian Journal of Statistics, 

Volume 41, Series A, pp. 1-21. 
 

Stokes, M. E., Davis, C. S. and Koch G. G. 1995. Categorical data analysis using SAS 
System. SAS Institute Inc. 

 

1447



Tunes da Silva, G. T., Logan, B. R., and Klein, J. P. 2008. Methods for equivalence and 
non- inferiority testing. Biol Blood Marrow Transplant 15(1): 120-127. 

 
Wicklin, R. 2013. Simulating data with SAS®, SAS Institute Inc.  
 
Wittes, J. and Wallenstein, S. 1987. The power of the Mantel-Haenszel test. Journal of 

the American Statistical Association, 82: 1104-1109. 
 
Yanagawa, T., Tango, T., Hiejima, Y. 1994. Mantel-Haenszel-type testing equivalence or 

more than equivalence in comparative clinical trials. Biometrics 50: 859-864. 

1448




