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Abstract

The Henderson filters (1916) jointly with the Musgrave filters (1964) have been used for trend-cycle

estimation in officially published data by statistical agencies around the world. The Henderson

filters are symmetric and the Musgrave ones are asymmetric and we shall refer to both as symmetric

and asymmetric Henderson filters. These filters have the good property of fast detection of true

turning points, but the limitations of large revisions when data are added, and a large amount of

unwanted ripples (9 and 10 month cycles) for short filter lengths.

The purpose of this paper is to present a brief description of three estimators developed to

reduce the Henderson filter limitations. We do so from a theoretical viewpoint by looking at the

respective gain and phase shift functions and empirically by application to a sample of economic

indicators. We calculate the mean square revision error as new observations are added to the series

and the time delay to estimate a turning point that for illustrative purposes we have chosen to be

December 2007.
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1. Introduction

The linear filter developed by Henderson (HF) (Henderson, 1916) is the most widely ap-

plied to estimate the trend-cycle component in seasonal adjustment software such as the US

Bureau of Census II - X11 method (Shiskin et al., 1967) and all its ARIMA variants. Major

studies have been done on trend-cycle estimation during the last twenty years by making

changes to the Henderson filters. The emphasis has been on determining the direction of

the short-term trend for an early detection of a true turning point and on reducing the size

of the revisons when new observations are added to the series.

In 1996, Dagum developed a nonlinear trend-cycle estimator to improve on the classical

13-term Henderson filter. The NonLinear Dagum filter (NLDF) results from applying the

13-term symmetric Henderson filter (H13) to seasonally adjusted series where outliers and

extreme observations have been replaced and which have been extended with extrapolations

from an ARIMA model (Dagum, 1996).

Later on, in 2009, Dagum and Luati developed a Cascade Linear filter (CLF) which

is an approximation to the NLDF to facilitate a larger application, since the new linear

approximation does not need an ARIMA model identification. From another perspective,

in 2008 and 2015, Dagum and Bianconcini developed a Reproducing Kernel filter (RKF)

that was shown to produce better results for real time trend-cycle estimation. It should be

noticed that following the tradition of statistical agencies, we shall call asymmetric Hen-

derson filters the ones that correspond to the asymmetric weights developed by Musgrave

(1964).

The main purpose of this study is to present a brief description of each Henderson mod-

ification, and to perform a theoretical comparison of CLF, RKF and the Henderson filter

via their gain and phase shift functions. Furthermore, we perform an empirical compari-

son with leading, coincident and lagging socio-economic indicators calculating the mean
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square revision as new data is entered to the series as well as the time delay to pick up a

true turning point.

This paper is presented as follows. Section 2 briefly introduce the main features of

the three Henderson modifications, and compare the three linear filters, H13, CLF and

RKF looking at their gain functions and phase shifts. Section 3 calculate the mean square

revisions and the time delay (in months) to detect a true turning point. Since the CLF was

developed only for 13 term length span we want also to see what happens when applied

to series that require different length spans. We have chosen December 2007 to assess the

capability of the CLF and RKF relative to the Henderson filter to calculate the time delay

to detect the turning point.

2. Main assumptions of the nonlinear Dagum filter, the cascade linear filter and the

reproducing kernel trend-cycle filter

2.1 The nonlinear Dagum filter

The modified Henderson filter developed by Dagum (1996) is nonlinear and a brief descrip-

tion is given here. We refer the reader to the Dagum reference for more details. It basically

consists of: (a) extending the seasonally adjusted series with ARIMA extrapolated values,

and (b) applying the 13-term Henderson filter to the extended series where extreme values

have been modified using very strict sigma limits.

To facilitate the identification and fitting of simple ARIMA models, Dagum (1996) rec-

ommends, at step (a), to modify the input series for the presence of extreme values using

very strict σ limits, such as ±0.7σ and ±1.0σ. In this way, a simple and very parsimo-

nious ARIMA model, the ARIMA(0,1,1), is often found to fit a large number of seasonally

adjusted series. The main purpose of the ARIMA extrapolations is to reduce the size of

the revisions of the most recent estimates, whereas that of extreme values replacement is

to reduce the number of unwanted ripples produced by H13. An unwanted ripple is a

10-month cycle (identified by the presence of high power at ω = 0.10 in the frequency do-

main) which, due to its periodicity, often leads to the wrong identification of a true turning

point. In fact, it falls in the neighborhood between the fundamental seasonal frequency and

its first harmonic. On the other hand, a high frequency cycle is generally assumed to be

part of the noise pertaining to the frequency band 0.10 ≤ ω < 0.50. The problem of the

unwanted ripples is observed when H13 is applied to seasonally adjusted series, and also

present when shorter Henderson filters are used.

The NLDF can be formally described in matrix notation as follows. Let y ∈ R
n be the

n-dimensional seasonally adjusted time series to be smoothed, which consists of a trend-

cycle TC plus an erratic component e, that is

y = TC+ e (1)

It is assumed that the trend-cycle is smooth and can be well estimated by means of the

13-term Henderson filter applied to y. Hence,

T̂C = Hy (2)

where H is the n × n matrix (canonically) associated to the 13-term Henderson filter.

Replacing T̂C in eq. (1) by eq. (2), we have

y = Hy + e (3)

or,

(In −H)y = e (4)
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where In is the n × n identity operator on R
n. Assign now a weight to the residuals in

such a way that if the observation yt, t = 1, . . . , n, is recognized to be an extreme value

(with respect to ±2.5σ limits, where σ is a 5-year moving standard deviation) then, the

corresponding residual et is zero weighted (i.e. the extreme value is replaced by ˆTCt

which is a preliminary estimate of the trend). If yt is not an extreme value then the weight

for et is one (i.e. the value yt is not modified). In symbols,

W0e = W0(In −H)y, (5)

where W0 is a zero-one diagonal matrix, being the diagonal element wtt equal to zero

when the corresponding element yt of the vector y is identified as an outlier. For instance,

if in the series y the only extreme value is y2, then the weight matrix for the residuals will

be

W0 =




1 0 0 · · · 0

0 0 0 · · · 0

0 0 1 · · · 0

· · · · · · · · · · · · · · ·

0 0 0 · · · 1


 . (6)

Denoting by

e0 = W0e (7)

the vector of the modified residuals, then the series modified by extreme values with zero

weights becomes

y0 = TC+ e0 (8)

which can be written as

y0 = Hy +W0(In −H)y = [H+W0(In −H)]y. (9)

Using (9), one year of ARIMA extrapolations are obtained in order to extend the series

modified by extreme values. Denoting with yE
0 the extended series, that is the n + 12

vector whose first n elements are given by y0 while the last 12 are the extrapolated ones,

in block-matrix notation we have

yE
0 =

[
[H+W0(In −H)]y

y12

]
(10)

where y12 is the 12× 1 block of extrapolated values. Setting

[H+W0(In −H)]12 =

[
[H+W0(In −H)] On×12

O12×n I12

]
(11)

and

y+,12 =

[
y

y12

]
, (12)

yE
0 becomes

yE
0 = [H+W0(In −H)]12 y+,12. (13)

This concludes the operations involved in step (a) of the NLDF.

Step (b) follows. The procedure for obtaining y0 on the series yE
0 is repeated, but with

stricter sigma limits (such as ±0.7σ and ±1.0σ) and with different weights assigned to the

residuals for the replacement of the extreme values. The estimates yE computed over the

series yE
0 are

yE = [H+W(In −H)]E yE
0 . (14)
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The (n+12)× (n+12) matrix [H+W(In −H)]E is analogue to [H+W0(In −H)]12

except for the matrix W that is also diagonal, but with generic diagonal element wtt, such

that wtt = 0 if the corresponding value yt falls out of the upper bound selected limits, say,

±1.0σ, and wtt = 1 if the corresponding yt falls within the lower bound selected limits,

say, ±0.7σ and wtt decreases linearly (angular coefficient equal to -1) from 1 to 0 in the

range from ±0.7σ to ±1.0σ. Under the assumption of normality, these sigma limits imply

that 48% of the values will be modified (replaced by the preliminary smoothed trend), 32%

will be zero weighted while the remaining 16% will get increasing weights from zero to

one. Notice that yE can also be written as

yE = [H+W(In −H)]E [H+W0(In −H)]12 y+,12. (15)

Finally, the NLDF estimates are given by applying a 13-term Henderson filter to eq.(15),

that is

HyE = H [H+W(In −H)]E [H+W0(In −H)]12 y+,12 (16)

=

[
T̂C

T̂C
12

]

where T̂C is the n-dimensional vector of smooth estimates of y.

It is apparent that the NLDF method reduces drastically the effects of extreme values by

repeatedly smoothing the input data via down weighting points with large residuals. Fur-

thermore, the ARIMA extension enables the use of the symmetric weights of the 13-term

Henderson filter for the last six observations and, thus, reduces the size of the revisions of

the last estimates.

2.2 The cascade linear trend-cycle filter

A brief description of the Cascade linear symmetric and asymmetric filters follow. We refer

the readers to Dagum and Luati (2009) for a full description.

The cascade filter is a linear approximation of the nonlinear Dagum filter for 13 term

spans. The cascading is done via the convolution of several filters chosen for noise sup-

pression, trend estimation and extrapolation. A linear filter offers many advantages over

a nonlinear one. first, its application is direct and hence, does not require knowledge of

ARIMA model identification. Furthermore, linear filtering preserves the crucial additive

constraint by which the trend of an aggregated variable should be equal to the algebraic ad-

dition of its component trends, thus avoiding the selection problem of direct versus indirect

seasonal adjustments. Also, the theoretical properties of a linear filter concerning signal

passing and noise suppression can always be compared to those of other linear filters by

means of spectral analysis.

The symmetric filter is the one applied to all central observations. In this case, the

purpose is to offer a linear solution to the unwanted ripples problem. To avoid the latter,

the NLDF largely suppresses the noise in the frequency band between the fundamental

seasonal and first harmonic. In this regard, a cascade linear filter is derived by double

smoothing the residuals obtained from a sequential application of H to the input data. The

residuals smoothing is done by the convolution of two short smoothers, a weighted 5-term

and a simple 7-term linear filters. The linear approximation for the symmetric part of the

NLDF is truncated with weights normalized to add to one.

The smoothing matrix of the symmetric cascade linear filter is

H
[
H+M7(0.14) (In −H)

] [
H+M5(0.25) (In −H)

]
, (17)
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where H stands for the 13-term Henderson filter, M5(0.25) is the matrix representative

of a 5-term moving average with weights (0.250, 0.250, 0.000, 0.250, 0.250), and M7(0.14)

is the matrix representative of a 7-term filter with all weights equal to 0.143.

On the other hand, the asymmetric filter is applied to the last six data points which

are crucial for real time analysis. It is obtained by means of the convolution between the

symmetric filter and the linear extrapolation filters for the last six data points. These asym-

metric filters for the last six data points results from the convolution of: (1) the asymmetric

weights of an ARIMA extrapolation model, (2) the weights of M7(0.14) and M5(0.25)) filters

repeatedly used for noise suppression, and (3) weights of the final linear symmetric filter.

The extrapolation filters are linearized by fixing both the ARIMA model and its pa-

rameter values. The latter are chosen such as to minimize the size of revisions and phase

shifts. The ARIMA model was selected among some parsimonious processes found to

fit and extrapolate well a large number of seasonally adjusted series. Such model is the

ARIMA(0,1,1) with θ = 0.40. A simple linear transformation allows to apply the asym-

metric filter to the first six observations. Hence, the smoothing matrix associated to the

asymmetric linear filter for the last six data points is obtained in two steps:

(1) a linear extrapolation filter for six data points is applied to the input series. This filter

is represented by a (n+ 6)× n matrix A∗

A∗ =

[
In

O6×n−12 Π∗
6×12

]

where Π∗
6×12 is the submatrix containing the weights for the n− 5, n− 4, ..., n data

points. Π∗
6×12 results from the convolution

H
[
H+M7(0.14) (In+12−H)

]E
A

[
H+M5(0.25) (In−H)

]
, (18)

where
[
H+M5(0.25) (In−H)

]
is the n× n matrix representative of trend filter plus

a first suppression of extreme values,
[
H+M7(0.14) (In+12−H)

]E
is the n×n+12

matrix for the second suppression of the irregulars applied to the input series plus 12

extrapolated values, generated by

A =

[
In

Π12×n

]
.

This (n+ 12)× n matrix A is associated to an ARIMA(0,1,1) linear extrapolations

filter with parameter value θ = 0.40.

(2) The symmetric filter is applied to the series extrapolated by A∗, that is

ŷ = SA∗y

where S is the n× (n+ 6) matrix given by

H
[
H+M7(0.14) (In −H)

] [
H+M5(0.25) (In−H)

]

The convolution SA∗ produces 12-term asymmetric filters for the last six observa-

tions, that are truncated and uniformly normalized in order to obtain the final asym-

metric linear filters for the last observations.

The new filter is called the Cascade Linear filter (CLF), and there is a distinction be-

tween the Symmetric (SCLF) and the Asymmetric Linear Filters (ACLF). The CFL matrix

for the 13-term filter is given in Table 1.
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2.3 The reproducing kernel trend-cycle filter

Dagum and Bianconcini (2008, 2015) presented a reproducing kernel approach to modify

the Henderson filters. The new set of filters are based on the reproducing kernel Hilbert

space methodology. A Hilbert space is characterized by a kernel that reproduces, via an

inner product, every function of the space.

Dagum and Bianconcini used the Berlinet (1993) theorem according to which a kernel

estimator of order p can always be decomposed into the product of a reproducing kernel

Rp−1, belonging to the space of polynomials of degree at most p − 1, times a probability

density function f0 with finite moments up to order 2p.

In this context, the equivalent kernel representation of the Henderson filter is given by

K4(t) =

3∑

i=0

Pi(t)Pi(0)f0(t), t ∈ [−1, 1], (19)

where f0 is the density function, defined on [−1, 1], obtained through normalization of

Wj and the Pi are the corresponding orthonormal polynomials. The Wj ∝ {(m + 1)2 −
j2}{(m+2)2− j2}{(m+3)2− j2} are chosen to minimize the sum of squares of the third

differences of the wj weights to be applied to the input data.

Dagum and Bianconcini (2008) found that the biweight function f0B(t) =
(
15
16

)
(1 −

t2)2, t ∈ [−1, 1], provides a good approximation for Henderson filters of short length, say,

between 5 to 23 terms which are those used by statistical agencies (see also Bianconcini

and Quenneville, 2010).

When applied to real data, the symmetric filter weights are derived as follows

wj =
K4(j/b)∑m

j=−mK4(j/b)
, j = −m, . . . ,m, (20)

where b is a time-invariant global bandwidth parameter (same for all t = m+1, . . . , N−m)

selected to ensure a symmetric filter of length 2m + 1. The bandwidth parameter relates

the discrete domain of the filter , that is {−m, . . . ,m}, with the continuous domain of the

kernel function, that is, [−1, 1].
The derivation of the symmetric Henderson filter assumes the availability of 2m + 1

input values centered at t. However, at the end of the sample period, that is, t = N − (m+
1), . . . , N , only 2m, . . . ,m + 1 observations are available, and asymmetric filters have to

be considered. Hence, at the boundary, the effective domain of the kernel function K4 is

[−1, q∗], with q∗ << 1, instead of [−1, 1] as for any interior point. This implies that the

symmetry of the kernel is lost, and it does not integrate to unity on the asymmetric support

(
∫ q∗

−1 K4(t)dt = 1). Furthermore, the moment conditions are no longer satisfied, that is∫ q∗

−1 t
iK4(t)dt = 0, for i = 1, 2, 3. To overcome these limitations, several boundary kernels

have been proposed in the literature. In the context of real time trend-cycle estimation, the

condition that the kernel function integrates to unity is essential, whereas the unbiasedness

property can only be satisfied with a great increase of the estimates variance. This is a

consequence of the well-known trade-off between bias and variance. This latter becomes

very large because most of the contribution to the real time trend-cycle estimates comes

from the current observation which gets the largest weight. Based on these considerations,

Dagum and Bianconcini (2008, 2013) have followed the so-called ‘cut and normalize”

method (Kyung-Joon and Schucany, 1998), according to which the boundary kernels K∗
4

are obtained by cutting the symmetric kernel K4 to omit that part of the function lying

between q∗ and 1, and by normalizing it on [−1, q∗]. That is,

Kq∗

4 (t) =
K4(t)∫ q∗

−1 K4(t)dt
=

det(H0
4[1, t])f0B(t)

det(H0
4[1,µ

q∗])
, t ∈ [−1, q∗], (21)
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Applied to real data, the “cut and normalize” method yields the following formula for the

asymmetric weights:

wq,j =
Kq∗

4 (j/bq)∑q
j=−mKq∗

4 (j/bq)
=

det(H0
4[1, j/bq])(1/bq)f0B(j/bq)

det(Ha)
, (22)

for j = −m, . . . , q, and q = 0, . . . ,m − 1, where bq, q = 0, . . . ,m − 1, is the local

bandwidth, one for each asymmetric filter. Dagum and Bianconcini (2015) show that given

the length of the filter and the density function, the properties of the asymmetric filter

depend on the bandwidth parameter bq.

A filter is defined as optimal if it minimizes revisions and time lag to detect a true

turning point and the optimal bq is the one that minimizes the distance between the gains

function of the symmetric and asymmetric filters. Since the m asymmetric filters corre-

sponding to a 2m+1 symmetric filter are time-varying, the local bandwidth parameters are

also time varying. The weights of the RKF matrix for the 13-term filter are given in Table

2.

2.4 Theoretical comparison of HF, CLF and RKF

Next, we show superimposed the gain functions of the three linear symmetric filters for 13

terms. It can be seen that, whereas the HF and RKF are practically the same, this is not the

case for the CLF.

Figure 1: Gain functions of the 13-term symmetric filters
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Figure 2 shows the gains of the three linear last point filters superimposed, whereas

Figure 3 shows their phase shifts functions.

Figure 2: Gain functions of the last point filters associated with the 13-term symmetric

CLF, HF, and RKF.
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Table 1: Weight system of the 13-tern CLF

0.22994356 0.21807687 0.18236778 0.13420192 0.11420000 0.07648294 0.04472693 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

0.18174310 0.22861344 0.20512398 0.16697939 0.10825490 0.07510604 0.03269660 0.00148256 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

0.12963359 0.18398191 0.22628900 0.19648469 0.14898637 0.08264389 0.04642842 0.00507274 -0.01952060 0.00000000 0.00000000 0.00000000 0.00000000

0.06377485 0.13145712 0.18512908 0.22237015 0.18728138 0.13687215 0.06917620 0.03378736 -0.00447445 -0.02537383 0.00000000 0.00000000 0.00000000

0.03072539 0.06456224 0.13239634 0.18278836 0.21750020 0.18159631 0.13070808 0.06364420 0.02951682 -0.00709931 -0.02633862 0.00000000 0.00000000

-0.00635989 0.03043143 0.06509409 0.13248429 0.18313975 0.21861339 0.18294929 0.13215216 0.06466463 0.03009318 -0.00688184 -0.02638048 0.00000000

-0.02700000 -0.00700000 0.03100000 0.06700000 0.13600000 0.18800000 0.22400000 0.18800000 0.13600000 0.06700000 0.03100000 -0.00700000 -0.02700000

Table 2: Weight system of the 13-tern RKF

0.22362 0.21564 0.19266 0.157478 0.11444 0.06902 0.02714 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.21065 0.22352 0.21065 0.174523 0.12230 0.06460 0.01357 -0.01982 0.00000 0.00000 0.00000 0.00000 0.00000

0.15391 0.21013 0.23100 0.21013 0.15391 0.08000 0.01250 -0.02600 -0.025570 0.00000 0.00000 0.00000 0.00000

0.06338 0.14212 0.20452 0.22808 0.20452 0.14212 0.06338 -0.00217 -0.02978 -0.01617 0.00000 0.00000 0.00000

-0.00258 0.06319 0.14245 0.20533 0.22909 0.20533 0.14245 0.06319 -0.00258 -0.02996 -0.01593 0.00000 0.00000

-0.02983 0.00060 0.06762 0.14651 0.20848 0.23179 0.20848 0.14651 0.06762 0.00060 -0.02983 -0.01855 0.00000

-0.01986 -0.02982 0.00217 0.07010 0.14921 0.21106 0.23429 0.21106 0.149208 0.07010 0.00217 -0.02982 -0.01986

0.00000 -0.01855 -0.02983 0.00066 0.06762 0.14651 0.20848 0.23179 0.20848 0.14651 0.06762 0.00060 -0.02983

0.00000 0.00000 -0.01593 -0.02996 -0.00258 0.06319 0.14245 0.20533 0.22909 0.20533 0.14245 0.06319 -0.00258

0.00000 0.00000 0.00000 -0.01617 -0.02978 -0.00217 0.06338 0.14212 0.20452 0.22808 0.20452 0.14212 0.06338

0.00000 0.00000 0.00000 0.00000 -0.02557 -0.02600 0.01250 0.08000 0.15391 0.21013 0.23100 0.21013 0.15391

0.00000 0.00000 0.00000 0.00000 0.00000 -0.01982 0.01357 0.06460 0.12230 0.17452 0.21065 0.22352 0.21065

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.02714 0.06902 0.11444 0.15748 0.19267 0.21564 0.22362
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Figure 3: Phaseshift functions of the last point filters associated with the 13-term symmet-

ric CLF, HF, and RKF.
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3. Empirical Evaluation

We evaluated empirically the performance of the CLF and RKF with a sample of socio-

economic series calculating the Mean Square Percentage revision Error (MSPE), and the

time delay (in months) to detect a true turning point.

3.1 Reduction of revision size in real time short-term trend estimates

The reduction of revisions in real time trend-cycle estimates is very important because

the most recent estimates are preliminary but often used to assess the current stage of the

economy. Statistical agencies and major users of these indicators are reluctant to large

revisions because these can lead to wrong decision taking and policy making concerning

the current economic situation.

The series considered are all seasonally adjusted, where also trading day variations and

extreme values have been removed if present. The series are of different length, but the

periods selected sufficiently cover the various lengths published for these series. For each

series, the length of the filters is selected according to the I/C (noise to signal) ratio, as

classically done in the X11/X12ARIMA procedure (Ladiray and Quenneville, 2001). In

the sample, the ratio ranges from 0.20 to 1.98, hence filters of 9 and 13 terms are applied.

The comparisons are based on the relative filter revisions between the final symmetric filter

S and the last point asymmetric filter A, that is,

Rt =
St −At

At

, t = 1, . . . , N.

For each series and for each estimator, we calculate the ratio between the Mean Square

Percentage Error (MSPE) of the revisions corresponding to the filters derived following the

CLF and RKF methodologies and those corresponding to the last point of the HF. For all

the estimators, the results illustrated in Table 3 show that the ratio is always smaller than

one, indicating that either the cascade linear or the kernel last point predictors introduce

smaller revisions than the HF. But, it is also apparent from Table 3 that the CLF reduces

more than the RKF the revisions of almost 10%. However, this is only true when the correct

filter length selected using the noise to signal ratio is 13-term. Indeed, as shown in Table 4,

when the filter length is 9-term, being the cascade linear filter only developed for 13-term,

it produces largest revisions than the 9-term RKF.

3.2 Turning point detection

It is important that the reduction of revisions in real time trend-cycle estimates is not

achieved at the expense of increasing the time lag to detect the upcoming of a true turning
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Table 3: Revisions when filters of 13 terms are appropriate

Macro-area Series RKF

H13

CLF

H13

Leading Average weekly overtime hours: manufacturing 0.492 0.455

New orders for durable goods 0.493 0.451

New orders for nondefense capital goods 0.493 0.452

New private housing units authorized by building permits 0.475 0.430

University of Michigan: consumer sentiment 0.480 0.411

Lagging Average (mean) duration of unemployment 0.509 0.484

Inventory to sales ratio 0.483 0.438

Index of total labor cost per unit of output 0.515 0.474

Table 4: Revisions when filters of 9 terms are appropriate

Macro-area Series RKF

H13

CLF

H13

Leading Composite index of ten leading indicators 0.466 0.813

S&P 500 stock price index 0.454 0.700

M2 money stock 0.508 0.997

10-year treasury constant maturity rate 0.446 0.565

Coincident Composite index of four coincident indicators 0.472 0.822

All employees: total nonfarm 0.517 1.054

Industrial production index 0.477 0.908

Manufacturing and trade sales 0.471 0.842

Lagging Composite index of seven lagging indicators 0.480 0.929

Commercial and industrial loans at all commercial banks 0.473 0.951

point. A turning point is generally defined to occur at time t if (downturn):

yt−k ≤ . . . ≤ yt−1 > yt ≥ yt+1 ≥ . . . ≥ yt+m

or (upturn)

yt−k ≥ . . . ≥ yt−1 < yt ≤ yt+1 ≤ . . . ≤ yt+m.

Following Zellner et al. (1991), it is selected k = 3 and m = 1 given the smoothness

of the trend cycle data. To determine the time lag needed by an indicator to detect a true

turning point it is calculated the number of months it takes for the real time trend-cycle

estimate to signal a turning point in the same position as in the final trend-cycle series.

The time delays for each estimator are shown in Tables 5 and 6, when filters of 13 and 9

terms are respectively appropriate. It shows that the filters based on the reproducing kernel

methodology take one month (on average), whereas those based on the cascade linear filter

take two months if the 13-term filter is used correctly, but three months when a 9-term filter

should have been used.

The fastest the upcoming of a turning point is detected the fastest new policies can

be applied to counteract the impact of the business-cycle stage. Failure to recognize the

downturn in the cycle or taking a long time delay to detect it may lead to the adoption of

policies to curb expansion when in fact, a recession is already underway.

Table 5: Time lag when filters of 13 terms are appropriate

Macro-area Series RKF CLF

Leading Average weekly overtime hours: manufacturing 1 2

New orders for durable goods 1 2

New orders for nondefense capital goods 1 1

New private housing units authorized by building permits 1 1

University of Michigan: consumer sentiment 1 5

Lagging Average (mean) duration of unemployment 1 3

Inventory to sales ratio 1 1

Index of total labor cost per unit of output 1 1

Average time lag in months 1 2
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Table 6: Time lag when filters of 9 terms are appropriate

Macro-area Series RKF CLF

Leading Composite index of ten leading indicators 1 1

S&P 500 stock price index 2 3

10-year treasury constant maturity rate 1 5

Coincident Composite index of four coincident indicators 1 5

All employees: total nonfarm 1 5

Industrial production index 1 5

Manufacturing and trade sales 1 1

Lagging Composite index of seven lagging indicators 1 1

Commercial and industrial loans at all commercial banks 1 1

Average time lag in months 1.1 3

4. Conclusions and further research

For spans of 13 terms, relative to the Henderson filters the CLF and RKF reduce the size of

the revisions as new data are entered into the series. Moreover, the CLF decreases the size

of the revisions relative to the RKF by nearly 10 %. Similarly, the phase shifts functions

take a reduced number of months to detect a true turning point relative to the Henderson,

but here the RKF is to be preferred because it reduces the time delay to close to one month

whereas the CLF is of two months. When the CLF, that was developed for 13 terms, is

applied to series where different spans are more appropriate, it systematically produces

poorest values than the RKF.

It would be interesting to extend the research on the CLF using reproducing kernel

methodology such that it can cover series for which different spans are suitable. One of our

projects in the near future will be on this direction.
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