Approximating the finite-time t probability distributions in an extreme renewal process

^{*a** †}Percy H. Brill and ^{*b*†}Mei Ling Huang ^{*a*}University of Windsor, Canada, ^{*b*}Brock University, Canada

August 31, 2017

Abstract

In an extreme renewal process with Pareto(II) interarrival times with shape parameter $\alpha \in (0, 1]$, we approximate the time-t pdfs for *large* t by the related *limiting* pdfs of a renewal process with *right-truncated* Pareto(II) interarrival times, which have very simple formulas. The distance between the approximating pdfs and time-t pdfs is measured by an L1 metric with values in (0, 1).

Key words: extreme renewal process; no-mean interarrival time; time-*t* excess; age and total life; regenerative process; level crossing method; integral equations; distance between pdfs.

1. Introduction

Recent work in statistics and stochastic modelling, has generated interest in the finite-time t pdfs of renewal processes with *no-mean*, heavy-tailed Pareto interarrivals (e.g., Huang et al., 2013; Harris et al., 2000). Here, we approximate the three finite-time t pdfs of excess, age and total life for *large* t, in a renewal process with Pareto(II) interarrivals and shape parameter $\alpha \in (0, 1]$, which we call an 'extreme renewal process'.

All three time-t pdfs are expressed in terms of the solution of a key integral equation, which may be tedious to compute. To approximate the time-t pdfs in the extreme renewal process, we use the corresponding *limiting* pdfs of a related renewal process where interarrivals have a right-truncated Pareto(II) distribution with the same shape parameter α , which *does have a finite mean*. When the truncation point is $K \ge t$, we call the latter a Pareto(II)-trun(K) (briefly trun(K)) renewal process , whose limiting pdfs of excess, age and total life *exist*, having very simple formulas. This simplicity motivates us to approximate the *finite-time t* pdfs in the extreme renewal process, by using the *limiting* pdfs in the corresponding Pareto(II)-trun(K) renewal process. We give formulas for the time-t pdfs *in terms of the key limiting pdf of a basic regenerative process*. This key pdf is the solution an integral equation derived via a level crossing technique (Brill[3]. (In *real-world* extreme value problems, Huang et al. (2013) uses a truncated Pareto(II) distribution to approximate the Pareto(II) distribution.)

^{*}Corresponding author, e-mail brill@uwindsor.ca

[†]This research is supported by the Natural Sciences and Engineering Research Council of Canada.

2. Preliminaries

2.1. Notation for extreme and trun(K) renewal processes

Denote the extreme renewal process by $\{Z_n\}_{n=1,2,..}$, where $Z_n := no$ -mean Pareto(II) (x, α) , $0 < x < \infty$. In $\{Z_n\}_{n=1,2,...}$ the finite time-t pdfs of excess, age, and total life exist.

Denote the Pareto(II)-trun(K) renewal process by $\{Z_{K,n}\}_{n=1,2,\dots}$ where $Z_{K,n} := Z_K := \frac{1}{dis}$ right-truncated Pareto(II)(x, α), $x \in (0, K)$, $K \ge t$. In $\{Z_{K,n}\}_{n=1,2,\dots}$ the limiting pdfs of excess, age, and total life, as time $\rightarrow \infty$, exist because $E(Z_K) < \infty$.

To approximate the time-t pdfs in $\{Z_n\}_{n=1,2,...}$ for a large time t, we use a right truncation point $K \ge t$ for the interarrival times in $\{Z_{K,n}\}_{n=1,2,...}$. The selected truncation point K for the interarrival times may be different in the analysis of excess, age or total life.

The approximations of the *pdfs of the* ζ_t s, viz., the $f_{\zeta_t(\cdot)}$ s, are measured by an integral of an L1 measure of distance between the approximating limiting pdfs and the time-*t* pdfs, $\zeta = \gamma$, δ , β .

3. Brief outline of the analysis

- Fix a large time t > 0. Compute the key limiting pdf of a basic regenerative process, which is unique for each fixed t in {Z_n}_{n=1,2,...}, denoted by {π₀^(t), f^(t)(x)}_{x∈(0,t)} (see details in Brill 2014.) We utilize the key pdf in the form of the numerical solution of a single integral equation.
- 2. Obtain formulas for the pdfs of the ζ_t s, $\zeta = \gamma$, δ , β in $\{Z_n\}_{n=1,2,...}$, in terms of the key pdf $\{\pi_0^{(t)}, f^{(t)}(x)\}_{0 < x < t}$. The formulas for the pdfs of γ_t and β_t use the key pdf in the form $\frac{f^{(t)}(x)}{\pi_0^{(t)}}$ in the integrands of integrals. The formula for the pdf of δ_t uses the key pdf directly in the form $\frac{f^{(t)}(x)}{\pi_0^{(t)}}$ in a linear term.
- 3. Approximate the *finite-time* t pdfs in $\{Z_n\}_{n=1,2,...}$ by using the corresponding *limit-ing* pdfs in $\{Z_{K,n}\}_{n=1,2,...}$. The truncation point point K of Z_K is: t when approximating δ_t ; it is much greater than t when approximating the pdf of γ_t or β_t (Section 8.3 below).
- 4. Give a measure of distance between pdfs of ζ_t and the pdfs of ζ_K , by using an integral of an L1 metric. The distance measure has a value in (0, 1) (Section 8.3).

4. Extreme renewal process $\{Z_n\}_{n=1,2,...}$

Denote the cdf, ccdf (:= 1- cdf), and pdf of each interarrival in $\{Z_n\}_{n=1,2,...}$ by $B(\cdot)$, $\overline{B}(\cdot)$:= $1 - B(\cdot)$, and $b(\cdot)$, respectively. Thus

$$B(x) = 1 - (1 + x)^{-\alpha}, x \in (0, \infty),$$

$$\bar{B}(x) = 1 - B(x) = (1 + x)^{-\alpha}, x \in [0, \infty),$$

$$b(x) = \frac{d}{dx}B(x) = \alpha (1 + x)^{-\alpha - 1}, x \in (0, \infty),$$
(1)

where $B(x) = P(Z \le x)$. If $\alpha \in (0, 1]$ then Z is heavy-tailed (Sigman, 1999) and has no mean, implying that the limiting pdfs of γ_t , δ_t , β_t $(t \to \infty)$ do not exist.

5. Basic regenerative process $\{X(s)\}_{s>0}$ and its key limiting pdf

Denote the basic regenerative process by $\{X(s)\}_{s\geq 0}$ (see Brill, 2014). It has a key limiting pdf denoted by $\{\pi_0^{(t)}, f^{(t)}(x)\}_{0 < x < t}$. Equations (2) and (3) below give an integral equation and initial condition for the key pdf $\{\pi_0^{(t)}, f^{(t)}(x)\}_{0 < x < t}$, where $\pi_0^{(t)} = \lim_{s \to \infty} P(X(s) = 0)$. All three formulas for the pdfs of the time-t r.v.s are uniquely expressed in terms of $\frac{f^{(t)}(x)}{\pi_0^{(t)}}$.

5.1. Integral equation for key pdf $\left\{\pi_0^{(t)}, f^{(t)}(x)\right\}_{0 < x < t}$

Applying the method in Sections 3.2.1-3.2.2, p. 198, in Brill (2014), leads to the integral equation and normalizing condition for $f^{(t)}(x), x \in (0, t)$

$$f^{(t)}(x) = \pi_0^{(t)} \alpha (1+x)^{-\alpha-1} + \alpha \int_{y=0}^x (1+x-y)^{-\alpha-1} f^{(t)}(y) dy, \ 0 < x < t.$$
(2)

$$\pi_0^{(t)} + \int_{x=0}^{\infty} f^{(t)}(x) dx = 1.$$
(3)

Formulas (3.13) and (3.14) in Brill (2014) yield the solution of (2) and (3) as

$$\pi^{(t)} = \frac{1}{1 + M(t)}, \quad f^{(t)}(x) = \frac{M'(x)}{1 + M(t)}, \quad 0 < x < t,$$
(4)

where M(x) is the renewal function (e.g., p. 169 in Karlin and Taylor, 1975). M(t) is equal to a series of self-convolutions of the interarrival cdf B(x), which may be tedious to compute. Therefore we use a simple numerical procedure (Section 5.1.1 below) to compute the solution of (3) for the pdf $f^{(t)}(x)$, $x \in (0, t)$ in terms of $\pi_0^{(t)}$ Then we apply (3) to compute the probability $\pi_0^{(t)}$. It can be shown that $f^{(t)}(x)$, $x \in (0, t)$ is bounded.

5.1.1. Computation of the key mixed pdf $\left\{\pi_0^{(t)}, f^{(t)}(x)\right\}, x \in (0, t)$

The computation used for solving equations (2) and 3 for $\left\{\pi_0^{(t)}, f^{(t)}(x)\right\}_{x\in(0,t)}$, is based on the definition of an integral on a finite interval using a Riemann-Stieltjes sum (e.g., p. 141 in Apostol, 1974). The resulting numerical solution is a step function on a preassigned partition of (0, t) with a norm h. To get a useful solution for $\left\{\pi_0^{(t)}, f^{(t)}(x)\right\}_{x\in(0,t)}$, we choose a 'small' h > 0 such that t = Nh where N is a large positive integer. 6. Formulas for the finite-time t pdfs of the extreme renewal process $\{Z_n\}_{n=1,2,...}$ in terms of the key pdf $\{\pi_0^{(t)}, f^{(t)}(x)\}_{0 \le x \le t}$

Denote the pdfs of γ_t , δ_t and β_t by: $f_{\gamma_t}(x)$, $x \in (0, \infty)$; $\{\pi_{\delta_t}, f_{\delta_t}(x)\}_{0 < x < t}$ where $\pi_{\delta_t} = P(\delta_t = t)$; $f_{\beta_t}(x)$, $x \in (0, \infty)$. Formula (4.4a) in Brill (2014) gives

$$f_{\gamma_t}(x) = b(t+x) + \int_{y=0}^t b(t+x-y) \frac{f^t(y)}{\pi_0^{(t)}} dy, \ 0 < x < \infty;$$
(5)

Formula (4.11) (ibid) gives

$$f_{\delta_t}(x) = \bar{B}(x) \frac{f^{(t)}(t-x)}{\pi_0^{(t)}}, \ 0 < x < t; \qquad \pi_{\delta_t} = \bar{B}(t).$$
(6)

Formulas (4.13) and (4.14) (ibid) give

$$f_{\beta_t}(x) = b(x) \int_{y=0}^x \frac{f^{(t)}(t-y)}{\pi^{(t)}} dy, \ 0 < x < t,$$
(7)

$$f_{\beta_t}(x) = b(x) \left(1 + \int_{y=0}^t \frac{f^{(t)}(t-y)}{\pi^{(t)}} dy \right), \ t \le x < \infty.$$
(8)

where $\overline{B}(\cdot)$ and $b(\cdot)$ are given in (1).

7. The Pareto(II)-trun(K) renewal process $\{Z_{K,n}\}_{n=1,2,...,n}$

The renewal process $\{Z_{K,n}\}_{n=1,2,\dots}$ has right-truncated Pareto(II) interarrivals $= Z_K$ with support (0, K), $t \leq K < \infty$, and the same shape parameter α as in the extreme renewal process (see formula (1)). Substituting from formula (1), the cdf, ccdf and pdf of Z_K , are respectively

$$B_{K}(x) = \frac{B(x)}{B(K)} = \frac{1 - (1 + x)^{-\alpha}}{1 - (1 + K)^{-\alpha}}, \ x \in (0, K),$$

$$\bar{B}_{K}(x) = 1 - B_{K}(x) = 1 - \frac{1 - (1 + x)^{-\alpha}}{1 - (1 + K)^{-\alpha}}, \ x \in (0, K),$$

$$b_{K}(x) = \frac{d}{dx}B_{K}(x) = \frac{\alpha (1 + x)^{-\alpha - 1}}{1 - (1 + K)^{-\alpha}}, \ x \in (0, K).$$
(9)

7.1. Expected value of Z_K

For all $\alpha > 0$, Z_K has a finite mean which, using $\bar{B}_K(x)$ in (9), is

$$E(Z_K) = \int_{x=0}^{K} \bar{B}_K(x) dx = \int_{x=0}^{K} \left(1 - \frac{1 - (1 + x)^{-\alpha}}{1 - (1 + K)^{-\alpha}}\right) dx$$

$$= \int_{x=0}^{K} \left(\frac{(1 + x)^{-\alpha} - (1 + K)^{-\alpha}}{1 - (1 + K)^{-\alpha}}\right) dx$$

$$= K - \frac{(-\alpha + 1)K - (1 + K)^{-\alpha + 1} + 1}{(-\alpha + 1)(1 - (1 + K)^{-\alpha})}, \text{ if } 0 < \alpha < 1;$$

$$E(Z_K) = (1 + \frac{1}{K})\ln(1 + K) - 1, \text{ if } \alpha = 1.$$
(10)

Since $E(Z_K) < \infty$, the limiting pdfs of excess, age and total life in $\{Z_{K,n}\}_{n=1,2,...}$ exist as *time* $\rightarrow \infty$ (see Section 7.2 below).

7.2. Limiting pdfs of excess, age and total life in trun(K) renewal process $\{Z_{K,n}\}_{n=1,2,...}$

Denote the *limiting* excess, age and total life in $\{Z_{K,n}\}_{n=1,2,...}$ by γ_K , δ_K and β_K respectively; with corresponding pdfs $f_{\gamma_K}(x)$, $x \in (0, K)$; $f_{\delta_K}(x)$, $x \in (0, K)$; $f_{\beta_K}(x)$, $f_{\beta_K}(x)$, $x \in (0, K)$; $f_{\beta_K}(x)$; $f_{\beta_K}(x)$, $x \in (0, K)$; $f_{\beta_K}(x)$;

$$f_{\gamma_K}(x) = \frac{1}{E(Z_{K\gamma})} \bar{B}_{K\gamma}(x) = \frac{1}{E(Z_{K\gamma})} \left(1 - \frac{1 - (1 + x)^{-\alpha}}{1 - (1 + K\gamma)^{-\alpha}} \right), x \in (0, K\gamma) (11)$$

$$f_{\delta_K}(x) = \frac{1}{E(Z_{K_{\delta}})} \bar{B}_{K_{\delta}}(x) = \frac{1}{E(Z_{K_{\delta}})} \left(1 - \frac{1 - (1 + x)^{-\alpha}}{1 - (1 + K_{\delta})^{-\alpha}} \right), x \in (0, K_{\delta}), (12)$$

$$f_{\beta_{K}}(x) = \frac{1}{E(Z_{K_{\beta}})} x b_{K_{\beta}}(x) = \frac{1}{E(Z_{K_{\beta}})} x \left(\frac{\alpha (1+x)^{-\alpha-1}}{1-(1+K_{\beta})^{-\alpha}} \right), x \in (0, K_{\beta}), (13)$$

where $E(Z_{K_{\zeta}})$ is given in (10) upon replacing K by K_{ζ} ($\zeta = \gamma, \delta$, or β).

Remark 2. (0, ∞) $f_{\zeta_K}(x) \quad 0 \ x \in (K_{\zeta}, \infty) \ \zeta \quad \gamma \ \delta \ \beta$

8. Using limiting pdfs of $\{Z_{K,n}\}_{n=1,2,\dots}$ to approximate time-*t* pdfs of $\{Z_n\}_{n=1,2,\dots}$

We use pdfs $f_{\zeta_K}(x)$ ($\zeta = \gamma, \delta, \beta$) given by (11)-(13) to approximate the time-*t* pdfs $f_{\zeta_t}(x)$, x > 0 ($\zeta = \gamma, \delta, \beta$), in $\{Z_n\}_{n=1,2,...}$. The pdfs $f_{\zeta_t}(x)$, are relatively tedious to compute, requiring a numerical solution of an integral equation for the key pdf $\{\pi_0^{(t)}, f^{(t)}(x)\}_{x \in (0,t)}$ in (2)–(3), which is then used as part of the integrand in other formulas (Section 6 above). This suggests using $f_{\zeta_K}(x)$, x > 0, to approximate $f_{\zeta_t}(x)$, $\zeta = \gamma$, $\delta \beta$.

8.1. The truncation points K_{ζ} for $f_{\zeta_{+}}(x), \zeta = \gamma, \delta, \beta$

We select right truncation points of the pdf b(x), denoted by K_{γ} , K_{δ} , K_{β} . The resulting interarrival times, $Z_{K_{\gamma}}$, $Z_{K_{\delta}}$, $Z_{K_{\beta}}$, have pdfs given in (9), with K replaced by K_{γ} , K_{δ} , and K_{β} , respectively, i.e., $b_{K_{\zeta}}$, $x \in (0, K_{\zeta})$, $\zeta = \gamma$, δ , β . Thus $\{Z_{K_{\zeta},n}\}_{n=1,2,...}$ will be a trun(K_{ζ}) renewal process with pdfs of *interarrival times* $= b_{K_{\zeta}}(x)$, $x \in (0, \zeta_{K_{\zeta}})$, $\zeta = \gamma$, δ , β .

8.2. Choice of truncation points K_{γ} , K_{δ} , K_{β} depending on t

The truncation points depend on the fixed time t in $\{Z_n\}_{n=1,2,...}$. We assume, for example, that t is "large" if $t \ge u$ such that $\overline{B}(u) \le 0.05$. Then K_{γ} and K_{β} are selected as arbitrary large numbers much greater than t, because the support of $f_{\varsigma_t}(x)$, $\xi = \gamma, \beta$ is $(0, \infty)$. However, we select $K_{\delta} = t$, since the support of $f_{\varsigma_t}(x)$ is (0, t), with an atom at t having probability π_{δ_t} .

8.3. Distance between time-t pdfs and limiting pdfs

By Remark 2 we assume, without loss of generality, that pdfs $f_{\zeta_t}(x)$ and $f_{\zeta_K}(x)$, $(\zeta = \gamma, \delta, \beta)$ have the same support, i.e., $(0, \infty)$. Note that the Stieltjes integral $\int_0^{K_\zeta} dF_{\zeta_K(x)} = 1$, and the Riemann integral $\int_{K_\zeta}^{\infty} f_{\zeta_K}(x) dx = 0$, $\zeta = \gamma, \delta, \beta$. Also, $\int_0^{\infty} f_{\zeta_t}(x) = 1$, $\zeta = \gamma$, β , and $\int_0^{K_\delta} dF_{\delta_t}(x) = 1$ ($K_\delta = t$). In order to quantify the notion " $f_{\zeta_K}(\cdot)$ approximates $f_{\zeta_t}(\cdot)$ " for $\zeta = \gamma, \delta, \beta$, we use an L1 measure based on the metric $|f_{\zeta_t}(x) - f_{\zeta_K}(x)|$, $x \in (0,\infty)$. This leads to an integral measure for the distance between the pdfs $f_{\zeta_t}(x), \zeta = \gamma$, β and $\{\pi_\delta, f_{\zeta_t}(x)\}_{x \in (0,t)}$, and the corresponding approximating pdfs $f_{\zeta_K}(x), x \in (0,\infty)$, $\zeta = \gamma, \delta, \beta$. It can be shown that $f_{\zeta_K}(x)$ and $f_{\zeta_t}(x), x \in (0,\infty)$, $(\zeta = \gamma, \delta, \beta)$ are bounded. It follows that a measure of distance between $f_{\zeta_t}(x)$ and $f_{\zeta_K}(x)$ is

$$\rho(f_{\zeta_t}, f_{\zeta_K}) = \frac{1}{2} \int_{x=0}^{\infty} \left| f_{\zeta_t}(x) - f_{\zeta_K}(x) \right| dx, \zeta = \gamma, \beta, \delta, \tag{14}$$

and

$$0 < \rho(f_{\zeta_t}, f_{\zeta_K}) < 1.$$
(15)

8.4. Range of distance measure $\rho(f_{\zeta_t}, f_{\zeta_K})$

Note that $\rho(f_{\zeta_t}, f_{\zeta_K}) > 0$ because $f_{\zeta_t}(x) > 0, x \in [t, \infty)$ due to: (i) the tail probabilities of $f_{\zeta_t}(x), x \in (K_{\zeta}, \infty)$ ($\zeta = \gamma, \beta$), (ii) the atom π_{δ_t} in the mixed pdf $\{\pi_{\delta_t}, f_{\delta_t}(x)\}_{x \in (0,t)}$ (recalling that $K_{\delta} = t$), and (iii) $f_{\zeta_K}(x) = 0, x \in (K_{\zeta}, \infty)$. Moreover $\rho(f_{\zeta_t}, f_{\zeta_K}) < 1$, since both $f_{\zeta_t}(x) > 0$ and $f_{\zeta K}(x) > 0, x \in (0, K_{\zeta}), \zeta = \gamma, \beta, \delta$. The closer the distance $\rho(f_{\zeta_t}, f_{\zeta_K})$ is to 0, the better is the approximation; the closer the distance $\rho(f_{\zeta_t}, f_{\zeta_K})$ is to 1, the worse is the approximation. For other measures of discrepancy between pdfs, see p. 35 and Section 3.7 in Silverman (1986).

8.5. Example: Using $\rho(f_{\beta_t}, f_{\beta_K})$ when approximating the pdf of total life

As an example, we look at the approximation of $f_{\beta_t}(x)$. First assume t = 400 and $K_{\beta} = 800$. The pdfs $f_{\beta_t}(\cdot)$ and $f_{\beta_K}(\cdot)$ are plotted in Fig. 1. The function $|f_{\beta_t}(x) - f_{\beta_K}(x)|$, $x \in (0, K_{\beta})$ is plotted in Fig. 2. Note that $|f_{\beta_t}(x) - f_{\beta_K}(x)| \neq 0, x \in (0, 800)$. The

distance measure turns out to be $\rho(f_{\zeta_t}, f_{\zeta_K}) = 0.393383 + 0.484346 = 0.877729$ where "0.484346" is the *tail probability* $\int_{K_{\beta}}^{\infty} f_{\beta_t}(x) dx = \int_{x=800}^{\infty} f_{\beta_t}(x) dx$. This indicates that the approximation is poor.

Second, assume t = 400 and $K_{\beta} = 1600$. The pdfs of $f_{\beta_t}(\cdot)$ and $f_{\beta_K}(\cdot)$ are plotted in Fig. 3. The function $|f_{\beta_t}(\cdot) - f_{\beta_K}(\cdot)|$ is plotted in Fig. 4. In this case $|f_{\beta_t}(x) - f_{\beta_K}(x)| = 0$, $x \in (0, 1600)$, at the two points where $f_{\beta_t}(x) = f_{\beta_K}(x)$. The distance measure $\rho(f_{\beta_t}, f_{\beta_K})$ is 0.177457 + 0.342485 = 0.519942 where "0.342485" is the *tali probability* $\int_{x=1600}^{\infty} f_{\beta_t}(x) dx$. This approximation is somewhat better. These two cases indicate that the distance measure decreases in value as K_{β} increases. If we choose t larger, and choose $K_{\beta} >> t$, both $|f_{\beta_t}(x) - f_{\beta_K}(x)|$ and the tail probability $\int_{x=K_{\beta}}^{\infty} f_{\beta_t}(x) dx$ will decrease and $\rho(f_{\beta_t}, f_{\beta_K})$ will be much closer to 0, thus giving a very good approximation. Similar results occur for approximating the pdf of excess $f_{\gamma_t}(x), x \in (0, \infty)$. In the case of the pdf of age $\left\{\pi_{\delta}^{(t)}f_{\delta_t}(x)\right\}_{x\in(0,K_{\delta})}$, the distance measure will decrease as the fixed time $t (= K_{\delta})$ increases.

References

- [1] Apostol, T.M. (1974). *Mathematical Analysis, Second Edition*, Addison Wesley Publishing Company, Reading, Massachusetts.
- [2] Arnold, B.C. (2015).*Pareto Distributions, Second Edition*, CRC Press, Taylor & Francis Group, Boca Raton.
- [3] Brill, P.H. (2014). Alternative Analysis of Finite-time Probability Distributions of Renewal Theory, *Probability in the Engineering and Informational Sciences*, 28(2), 183-201.
- [4] Brill, P.H. (2017). Level Crossing Methods in Stochastic Models, Second Edition, Springer, New York.
- [5] Cox, D.R. (1962). Renewal Theory (reprinted 1970), Methuen, London..
- [6] Harris, C.M., Brill, P.H., Fischer, M.J. (2000). Internet-Type Queues with Power-Tailed Interarrival Times and Computational Methods for Their analysis, INFORMS J. on Computing, 12(4), 261-271.
- [7] Huang, M.L., Coia, V., Brill, P.H. (2013). A Cluster Truncated Pareto Distribution and Its Applications, ISRN Probability and Statistics, Volume 2013, Article ID 265373, 10 pages, http://dx.doi.org/10.1155/2013/265373.
- [8] Karlin, S., Taylor, H.M. (1975). *A First Course in Stochastic Processes*, 2nd ed., Academic Press, New York.
- [9] Kleiber, C., Kotz, S. (2003), Statistical Size Distribution in Economics and Actuarial Sciences, John Wiley, New York.
- [10] Ross, S.M. (1970). Applied Probability with Optimization Applications, Holden Day, San Francisco.
- [11] Sigman, K. (1999). A Primer on Heavy-tailed Distributions, *Queueing Systems*, 33, 261-275.

[12] Sigman, K., Wolff, R.W. (1993). A Review of Regenerative Processes, SIAM Review, 35(2), 269-286.

Figure 1: pdfs $f_{\beta_t}(x)$ (Red) and $f_{K_\beta}(x)$ (Green), $t = 400, K_\beta = 800$

Figure 2: $|f_{\gamma_t}(x) - f_{K\gamma}(x)|$, $x \in (0, 1600)$ t = 400, $K_\beta = 800$. Distance measure = 0.393383 \neq 0.484346 = **0.877729** (high)

Figure 3: pdfs $f_{\gamma_t}(x)$ (Red) and $f_{K\gamma}(x)$ (Green), $t = 400, K_{\beta} = 1600$

Figure 4: $|f_{\gamma_t}(x) - f_{K\gamma}(x)|$, $x \in (0, 1600)$ t = 400, $K_\beta = 1600$. Distance = 0.177457 + 0.342485 = **0.519942** (better but still high)