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Abstract

In an extreme renewal process with Pareto(ll) interarrival times with shape pa-
rameter « € (0, 1], we approximate the time-¢ pdfs for large ¢ by the related limiting
pdfs of a renewal process with right-truncated Pareto(l1) interarrival times, which have
very simple formulas. The distance between the approximating pdfs and time-¢ pdfs
is measured by an L1 metric with values in (0, 1).
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1. Introduction

Recent work in statistics and stochastic modelling, has generated interest in the finite-time
t pdfs of renewal processes with no-mean, heavy-tailed Pareto interarrivals (e.g., Huang et
al., 2013; Harris et al., 2000). Here, we approximate the three finite-time ¢ pdfs of excess,
age and total life for large ¢, in a renewal process with Pareto(ll) interarrivals and shape
parameter o € (0, 1], which we call an extreme renewal process’.

All three time-t pdfs are expressed in terms of the solution of a key integral equation,
which may be tedious to compute. To approximate the time-¢ pdfs in the extreme renewal
process, we use the corresponding limiting pdfs of a related renewal process where in-
terarrivals have a right-truncated Pareto(ll) distribution with the same shape parameter «,
which does have a finite mean. When the truncation point is K > ¢, we call the latter a
Pareto(I1)-trun(K') (briefly trun(K’)) renewal process , whose limiting pdfs of excess, age
and total life exist, having very simple formulas. This simplicity motivates us to approxi-
mate the finite-time ¢ pdfs in the extreme renewal process, by using the limiting pdfs in the
corresponding Pareto(l1)-trun(K) renewal process. We give formulas for the time-¢ pdfs in
terms of the key limiting pdf of a basic regenerative process. This key pdf is the solution
an integral equation derived via a level crossing technique (Brill[3]. (In real-world extreme
value problems, Huang et al. (2013) uses a truncated Pareto(l1) distribution to approximate
the Pareto(ll) distribution.)
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2. Preliminaries

2.1. Notation for extreme and trun(K) renewal processes

Denote the extreme renewal processby {Z,}, _, , ,where Z, = no-mean Pareto(Il)(z, a),
o 18

0 <z <oo. In{Z,},=12,. the finite time-¢ pdfs of excess, age, and total life exist.

Denote the Pareto(I1)-trun(K') renewal process by { Zr . },_, . Where Zg ,, .= ZK:di
right-truncated Pareto(I1)(z,a), x € (0, K), K > t. In{Zx},_, , . the limiting pdfs
of excess, age, and total life, as time — oo, exist because E(Zk) < oc.

To approximate the time-¢ pdfsin {Z,}, _, , foralarge time ¢, we use aright truncation
point K > ¢ for the interarrival times in {Zx },_, , . The selected truncation point K
for the interarrival times may be different in the analysis of excess, age or total life.

The approximations of the pdfs of the (s, viz,, the f¢, (s, are measured by an integral

of an L1 measure of distance between the approximating limiting pdfs and the time-¢ pdfs,

¢=70,0.

3. Brief outline of the analysis

1. Fix alarge time ¢ > 0. Compute the key limiting pdf of a basic regenerative process,
which is unique for each fixed ¢ in {Z,,},—1.2..., denoted by {w((f), £ (x)} o
xe(0,

(see details in Brill 2014.) We utilize the key pdf in the form of the numerical solution
of a single integral equation.

2. Obtain formulas for the pdfs of the (;s, ¢ =, 6, 8 in {Z,},=1,2,..., in terms of the
key pdf {w((f), f®(x) }o . The formulas for the pdfs of -, and 3, use the key pdf
<zt

in the form £ (t()t(f) in the integrands of integrals. The formula for the pdf of é; uses

o s

the key pdf directly in the form ! ;:gt(f) in a linear term.

0 >
3. Approximate the finite-time ¢ pdfs in {Z,, },,=1,2,... by using the corresponding limit-

mating d;; it is much greater than ¢ when approximating the pdf of -, or /3, (Section
8.3 below).

4. Give a measure of distance between pdfs of ¢, and the pdfs of ( s, by using an integral
of an L1 metric. The distance measure has a value in (0, 1) (Section 8.3).

4. Extreme renewal process {Z, }n—12...

Denote the cdf, ccdf (:= 1- cdf), and pdf of each interarrival in {Z,},—12 by B(-), B(")
:=1— B(-),and b(-), respectively. Thus

B(z) =1—-(142) %, z€(0,00),
B(x) =1-B(z)=(1+x2)"%, x €[0,00), (1)
b(z) = LB(x)=a(l+z)" %", z€(0,00),
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where B(x) = P(Z < z). If a € (0,1] then Z is heavy-tailed (Sigman, 1999) and has no
mean, implying that the limiting pdfs of ~,, d¢, 5, (t — oo) do not exist.

5. Basic regenerative process { X (s)},., and its key limiting pdf

Denote the basic regenerative process by { X (s)},~ (see Brill, 2014). It has a key limiting
pdf denoted by {wg)7 £ (x)}o . Equations (2) and (3) below give an integral equation
<z<t
and initial condition for the key pdf {wét), f® (:c)}
O<z<

0). All three formulas for the pdfs of the time-¢ r.v.s are uniquely expressed in terms of
FARIE)

RO

,where i) = lim,_,.. P(X(s) =
t

5.1. Integral equation for key pdf {w((f), f® (a:)}

O<x<t

Applying the method in Sections 3.2.1-3.2.2, p. 198, in Brill (2014), leads to the integral
equation and normalizing condition for ) (), z € (0,1)

fO(z) = ﬂét)a(l +2)7* a/x (14+z—y)* fO@)dy, 0<z<t. (2
Y

=0
Wét) —|—/ o (z)dx = 1. 3)
=0

Formulas (3.13) and (3.14) in Brill (2014) yield the solution of (2) and (3) as

Ww__ L s M)
e o A A vt @

where M (x) is the renewal function (e.g., p. 169 in Karlin and Taylor, 1975). M (t) is
equal to a series of self-convolutions of the interarrival cdf B(x), which may be tedious to
compute. Therefore we use a simple numerical procedure (Section 5.1.1 below) to compute

the solution of (3) for the pdf f®(z), 2 € (0,¢) in terms of =) Then we apply (3) to
compute the probability (. It can be shown that ) (z), = € (0, ) is bounded.

5.1.1. Computation of the key mixed pdf {w[(f), f(t)(:n)} ,x € (0,1t)

The computation used for solving equations (2) and 3 for {wg), £ (x)} 08’ is based
xe(0,

on the definition of an integral on a finite interval using a Riemann-Stieltjes sum (e.g., p.

141 in Apostol, 1974). The resulting numerical solution is a step function on a preassigned

partition of (0,¢) with a norm h. To get a useful solution for {Trg), f® (x)} , We

2€(0,t)
choose a ’small’ h > 0 such that ¢ = Nh where N is a large positive integer.
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geos

terms of the key pdf {w((f), f (t)(x)}

O<z<t

Denote the pdfs of ,, §; and 3, by: f,,(z), z € (0,00); {75, f5,(%) }ocper Where 75, =
Py =1t); fs,(x), z € (0,00). Formula (4.4a) in Brill (2014) gives

Iy (x):b(t+a:)+/t b(t+x—y)ft(y)dy,0<a:<oo; (5)
¢ y=0 W(()t)
Formula (4.11) (ibid) gives
O — _
F.(@) = B(x)%, O<z<t w5 =B 6)
o
Formulas (4.13) and (4.14) (ibid) give
v (@)t —
f@) = b [ Iy 0 <<t o
y=
t @ —
fa.(x) = b(x) (1 +/ ) %@) L t< 1< o0 (8)
y=
where B(-) and b(-) are given in (1).
Remark 1. dy t s, (14t
f3,(x) r=t

fo, () = f5,(t7) = b(t) = a1 + 1)
We get the time-¢ pdfs in (5)-(8) by substituting the computed {w((f), ?(t\)(x)} for
o<z<t

{Trét), (t)(x)}o tin formulas (5)-(8), respectively.
<zx<

7. The Pareto(Il)-trun(K) renewal process {Zg . },_; ,

The renewal process { Zk ,, } has right-truncated Pareto(Il) interarrivals = Z with
18

n=1,2,...
support (0, K), t < K < oo, and the same shape parameter « as in the extreme renewal
process (see formula (1)). Substituting from formula (1), the cdf, ccdf and pdf of Zx, are
respectively

Bl 1-(1+x)"
Br(w) = BK) 1-(+K)® °F (0. 5.

_ L l-(+a

BK(x) :1_BK($)_ 1—(1—|—K)7a7$€(0’K)7 )
—a—1
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7.1. Expected value of Zx
For all o > 0, Zx has a finite mean which, using B (z) in (9), is

K g K C1-(0+a2)" x\
E(Zg) = [,_yBk(x)de = [ _, (1 —1—(1—|—K)a) d

B I E T Rt A
_f$:O< 1_(1_’_K)fa )d

—a+1 (10)
K_(—a—l—l)K—(l—i—K) . +17 0 <a<t
(—a+1)(1-(1+K) )

E(Zg) = (1—{—%)111(1—{—[() -1, ifa=1.

goos

time — oo(see Section 7.2 below).

7.2. Limiting pdfs of excess, age and total life in trun(K’) renewal process { Zx n},_; 5

Denote the limiting excess, age and total life in {Zx,}, ;5 by vx, 6 and Sy re-
spectively; with corresponding pdfs f,, (z), z € (0, K); f(;’l(’(:x), r € (0,K); fg, (),
x € (0,K). Using well known formulas for the limiting pdfs of an ordinary renewal
process where the interarrivals have a finite mean (e.g., formulas (6.2), (6.5) and (6.6), pp.
193-194, in Karlin and Taylor, 1975), and substituting from (9), we obtain for the trun(K)
renewal process:

B 1 5 () — 1 1= (1+z)° -
S SRR | R SRR N
3 1 1 a(l+z) !
fﬂK(x) - E(ZKB)beB(x) - E(ZKB)x (1 - (1 +Kﬂ)a> 733 € (07 KB)! (13)

where E(Z, ) is given in (10) upon replacing K by K (¢ =, d, or j3).

Remark 2.
(0700) fCK(x) 0xe€ (KC>OO) C. v d B

8. Using limiting pdfs of { Zf ,, },—12... toapproximate time-¢ pdfsof {Z,},—1 2

........

We use pdfs f¢, () (¢ =, d, B) given by (11)-(13) to approximate the time-¢ pdfs fe, (x),
x>0(=n,0,0),in{Z,}n=12,.. The pdfs 'fCt (x), are relatively tedious to compute,

requiring a numerical solution of an integral equation for the key pdf {w((f), @ (a:)} 00
xe(0,

in (2)—(3), which is then used as part of the integrand in other formulas (Section 6 above).
This suggests using f¢, (z), > 0, to approximate fct (), (=7,0p.
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8.1. The truncation points K for fgt (z),(=7,0,0

We select right truncation points of the pdf b(x), denoted by K.,, K, Kg. The resulting
interarrival times, ZK.,, ZKs» ZKB’ have pdfs given in (9), with K replaced by K, K5,
and Kg, respectively, i.e., br,., v € (0,K¢), ¢ =, 0, B. Thus {Zg_n}tn=12,. Will be a
trun(K ) renewal process with pdfs of interarrival times = b (x), x € ((), <K<)’ (=7,9,

8.

8.2. Choice of truncation points K, K;,, Kz depending on ¢

The truncation points depend on the fixed time ¢ in {Z, },,=1 2..... We assume, for example,
that ¢ is "large™ if £ > u such that F(u) < 0.05. Then K, and K are selected as arbitrary
large numbers much greater than ¢, because the support of s (z), § = v, is (0, 00).
However, we select K5 = ¢, since the support of f,(z) is (0,¢), with an atom at ¢ having
probability 7, .

8.3. Distance between time-¢ pdfs and limiting pdfs

By Remark 2 we assume, without loss of generality, that pdfs f,(x) and f¢, (z), (¢ =

7, d, B) have the same support, i.e., (0, cc). Note that the Stieltjes integral fOK< dFCK(m) =
1, and the Riemann integral [ fe, (z)dz = 0, ¢ = 7,6, 5. Also, [ fe,(z) = 1, (=7,

3, and fOK“ dFs,(z) = 1 (K5 = t). Inorder to quantify the notion " f¢, () approximates
fe, ()" for { =, 4, B, we use an L1 measure based on the metric ]fct () = feu (xﬂ, x €
(0, 00). This leads to an integral measure for the distance between the pdfs f¢,(x), { =7,
Band {ms, fc, (x)}xe(&t)’ and the corresponding approximating pdfs f. (z), = € (0, 00),
¢=1,46, 3. Itcan be shown that f, (z) and f¢,(z), = € (0,00), (( =1, d, B) are bounded.
It follows that a measure of distance between f¢, (z) and f, (z) is

1

et =5 | NFel@) = fepl@l]do.C = 7.5.5, (14)

and
0 <p(fe,, fep) <1 (15)

8.4. Range of distance measure p(f¢,, f¢,.)

Note that p(f¢,, fc,) > 0 because f¢,(x) > 0, z € [t,00) due to: (i) the tail probabilities
of f¢,(x),x € (K¢,00) (¢ = v, B), (ii) the atom s, in the mixed pdf {7s,, f5, ()}, (04
(recalling that K5 = t), and (iii) f¢, (z) = 0,2 € (K¢, 00). Moreover p(fc,, f¢,.) < 1,
since both f¢,(z) > 0and fex(x) > 0,z € (0,K¢),( = v, [,0. The closer the distance
p(fe,» fe,c) is 10 0, the better is the approximation; the closer the distance p( f¢,, fc, ) is to
1, the worse is the approximation. For other measures of discrepancy between pdfs, see p.
35 and Section 3.7 in Silverman (1986).

8.5. Example: Using p(fs,, fs, ) When approximating the pdf of total life

As an example, we look at the approximation of fs, (x). First assume ¢= 400 and Kz =
800. The pdfs f3,(-) and fs, (-) are plotted in Fig. 1. The function |fs,(z) — fs, (2)|,
z € (0,Kp) is plotted in Fig. 2. Note that | f3,(z) — fa, ()| # 0, z € (0,800). The
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distance measure turns out to be p(f¢,, f¢,,) = 0.393383 + 0.484346 = 0.877729 where
"0.484346" is the tail probability [> fs, (x)dx = [Zgq, f5,(x)d. This indicates that the
approximation is poor.

Second, assume ¢ = 400 and K g = 1600. The pdfs of f3,(-) and 5, (-) are plotted in Fig.
3. The function | f3,(-) — f5,(-)| is plotted in Fig. 4. In this case | f3,(z) — [, (z)| =0,
x € (0,1600), at the two points where f3, (z) = f3,. (). The distance measure p( f3,, f3,.)
is 0.177457 + 0.342485 = 0.519942 where "0.342485" is the tali probability [ ..o f3, (z)dz.
This approximation is somewhat better. These two cases indicate that the distance measure
decreases in value as Kp increases. If we choose ¢ larger, and choose Kz >> ¢, both
| f5,(x) — f3, ()| and the tail probability f;iKB f3,(z)dzwill decrease and p(fs,, f3,.)
will be much closer to 0, thus giving a very good approximation. Similar results occur
for approximating the pdf of excess f,, (z),z € (0,00). In the case of the pdf of age
{Trf;t) fs, (x)} C(0.Ks) the distance measure will decrease as the fixed time ¢ (= Kj) in-

z EEA)

creases.
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Figure 1: pdfs fs, () (Red) and fx, () (Green), t = 400, Kz = 800
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Figure 2: | f,,(z) — fx~ ()|, = € (0,1600) t = 400, Kg = 800.  Distance measure =
0.393383 4 0.484346 = 0.877729 (high)
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Figure 3: pdfs £, (z) (Red) and fx(z) (Green), t = 400, Kz = 1600
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Figure 4: | f,,(z) — fx~(2)|,= € (0,1600) ¢t = 400, K3 = 1600. Distance = 0.177457 +
0.342485 = 0.519942 (better but still high)
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