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Abstract

In an extreme renewal process with Pareto(II) interarrival times with shape pa-
rameter  ∈ (0 1], we approximate the time- pdfs for large  by the related limiting
pdfs of a renewal process with right-truncated Pareto(II) interarrival times, which have
very simple formulas. The distance between the approximating pdfs and time- pdfs
is measured by an L1 metric with values in (0 1).
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1. Introduction

Recent work in statistics and stochastic modelling, has generated interest in the finite-time
 pdfs of renewal processes with no-mean, heavy-tailed Pareto interarrivals (e.g., Huang et
al., 2013; Harris et al., 2000). Here, we approximate the three finite-time  pdfs of excess,
age and total life for large  in a renewal process with Pareto(II) interarrivals and shape
parameter  ∈ (0 1], which we call an ’extreme renewal process’.

All three time- pdfs are expressed in terms of the solution of a key integral equation,
which may be tedious to compute. To approximate the time- pdfs in the extreme renewal
process, we use the corresponding limiting pdfs of a related renewal process where in-
terarrivals have a right-truncated Pareto(II) distribution with the same shape parameter ,
which does have a finite mean. When the truncation point is  ≥ , we call the latter a
Pareto(II)-trun() (briefly trun()) renewal process , whose limiting pdfs of excess, age
and total life exist, having very simple formulas. This simplicity motivates us to approxi-
mate the finite-time  pdfs in the extreme renewal process, by using the limiting pdfs in the
corresponding Pareto(II)-trun() renewal process. We give formulas for the time- pdfs in
terms of the key limiting pdf of a basic regenerative process. This key pdf is the solution
an integral equation derived via a level crossing technique (Brill[3]. (In real-world extreme
value problems, Huang et al. (2013) uses a truncated Pareto(II) distribution to approximate
the Pareto(II) distribution.)
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2. Preliminaries

2.1. Notation for extreme and trun(K) renewal processes

Denote the extreme renewal process by {}=12 , where :≡


no-mean Pareto(II)( ),

0   ∞. In {}=12the finite time- pdfs of excess, age, and total life exist.
Denote the Pareto(II)-trun() renewal process by {}=12 where  :=  :≡



right-truncated ()( ),  ∈ (0),  ≥ . In {}=12 the limiting pdfs
of excess, age, and total life, as time→∞, exist because () ∞.

To approximate the time- pdfs in {}=12for a large time , we use a right truncation
point  ≥  for the interarrival times in {}=12 . The selected truncation point 
for the interarrival times may be different in the analysis of excess, age or total life.

The approximations of the pdfs of the s, viz., the (·)s, are measured by an integral
of an L1 measure of distance between the approximating limiting pdfs and the time- pdfs,
 = , , .

3. Brief outline of the analysis

1. Fix a large time   0. Compute the key limiting pdf of a basic regenerative process,

which is unique for each fixed  in {}=12, denoted by
n

()
0   ()()

o
∈(0)

(see details in Brill 2014.) We utilize the key pdf in the form of the numerical solution
of a single integral equation.

2. Obtain formulas for the pdfs of the s,  = , ,  in {}=12, in terms of the

key pdf
n

()
0   ()()

o
0

. The formulas for the pdfs of  and  use the key pdf

in the form ()()


()
0 

in the integrands of integrals. The formula for the pdf of  uses

the key pdf directly in the form ()()


()
0 

in a linear term.

3. Approximate the finite-time  pdfs in {}=12 by using the corresponding limit-
ing pdfs in {}=12 . The truncation point point  of  is:  when approxi-
mating ; it is much greater than  when approximating the pdf of  or  (Section
8.3 below).

4. Give a measure of distance between pdfs of  and the pdfs of  , by using an integral
of an L1 metric. The distance measure has a value in (0 1) (Section 8.3).

4. Extreme renewal process {}=12
Denote the cdf, ccdf (:= 1- cdf), and pdf of each interarrival in {}=12 by (·), ̄(·)
:= 1−(·), and (·), respectively. Thus

() = 1− (1 + )−   ∈ (0∞) 
̄() = 1−() = (1 + )−   ∈ [0∞)
() = 


() =  (1 + )−−1   ∈ (0∞),

⎫⎪⎪⎬⎪⎪⎭ (1)
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where () =  ( ≤ ). If  ∈ (0 1] then  is heavy-tailed (Sigman, 1999) and has no
mean, implying that the limiting pdfs of , ,  (→∞) do not exist.

5. Basic regenerative process {()}≥0 and its key limiting pdf

Denote the basic regenerative process by {()}≥0 (see Brill, 2014). It has a key limiting

pdf denoted by
n

()
0   ()()

o
0

. Equations (2) and (3) below give an integral equation

and initial condition for the key pdf
n

()
0   ()()

o
0

, where ()0 = lim→∞ (() =

0). All three formulas for the pdfs of the time- r.v.s are uniquely expressed in terms of
()()


()
0

.

5.1. Integral equation for key pdf
n

()
0   ()()

o
0

Applying the method in Sections 3.2.1-3.2.2, p. 198, in Brill (2014), leads to the integral
equation and normalizing condition for  ()()  ∈ (0 )

 ()() = 
()
0 (1 + )−−1 + 

Z 

=0

(1 + − )−−1 ()() 0    . (2)


()
0 +

Z ∞

=0

 ()() = 1 (3)

Formulas (3.13) and (3.14) in Brill (2014) yield the solution of (2) and (3) as

() =
1

1 +()
  ()() =

 0()
1 +()

 0    , (4)

where () is the renewal function (e.g., p. 169 in Karlin and Taylor, 1975). () is
equal to a series of self-convolutions of the interarrival cdf (), which may be tedious to
compute. Therefore we use a simple numerical procedure (Section 5.1.1 below) to compute
the solution of (3) for the pdf  ()(),  ∈ (0 ) in terms of ()0 Then we apply (3) to

compute the probability 
()
0 . It can be shown that  ()(),  ∈ (0 ) is bounded.

5.1.1. Computation of the key mixed pdf
n

()
0   ()()

o
  ∈ (0 )

The computation used for solving equations (2) and 3 for
n

()
0   ()()

o
∈(0)

, is based

on the definition of an integral on a finite interval using a Riemann-Stieltjes sum (e.g., p.
141 in Apostol, 1974). The resulting numerical solution is a step function on a preassigned

partition of (0 ) with a norm . To get a useful solution for
n

()
0   ()()

o
∈(0)

, we

choose a ’small’   0 such that  =  where  is a large positive integer.
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6. Formulas for the finite-time  pdfs of the extreme renewal process {}=12in
terms of the key pdf

n

()
0   ()()

o
0

Denote the pdfs of ,  and  by: ()  ∈ (0∞); {  ()}0 where  =
 ( = ); (),  ∈ (0∞). Formula (4.4a) in Brill (2014) gives

() = (+ ) +

Z 

=0

(+ − )
 ()


()
0

 0   ∞; (5)

Formula (4.11) (ibid) gives

() = ̄()
 ()(− )


()
0

 0    ;  = ̄(). (6)

Formulas (4.13) and (4.14) (ibid) give

() = ()

Z 

=0

 ()(− )

()
 0    , (7)

() = ()

Ã
1 +

Z 

=0

 ()(− )

()


!
  ≤  ∞. (8)

where ̄(·) and (·) are given in (1).

Remark 1.    (1 + )−

()  = 

(
+)− (

−) = () = (1 + )−−1

We get the time- pdfs in (5)-(8) by substituting the computed

½d

()
0 d ()()¾

0

forn

()
0   ()()

o
0

in formulas (5)-(8), respectively.

7. The Pareto(II)-trun() renewal process {}=12
The renewal process {}=12has right-truncated Pareto(II) interarrivals =


 with

support (0),  ≤   ∞, and the same shape parameter  as in the extreme renewal
process (see formula (1)). Substituting from formula (1), the cdf, ccdf and pdf of  , are
respectively

() =
()

()
=
1− (1 + )−

1− (1 +)−
  ∈ (0)

̄() = 1−() = 1− 1− (1 + )−

1− (1 +)−
  ∈ (0)

() =


() =

 (1 + )−−1

1− (1 +)−
  ∈ (0).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(9)
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7.1. Expected value of 

For all   0,  has a finite mean which, using ̄() in (9), is

() =
R
=0

̄() =
R
=0

µ
1− 1− (1 + )−

1− (1 +)−

¶


=
R
=0

µ
(1 + )− − (1 +)−

1− (1 +)−

¶


=  − (−+ 1) − (1 +)−+1 + 1
(−+ 1) ¡1− (1 +)−

¢  if 0    1;

() = (1 +
1


) ln(1 +)− 1 if  = 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

Since () ∞, the limiting pdfs of excess, age and total life in {}=12exist as
time→∞(see Section 7.2 below).

7.2. Limiting pdfs of excess, age and total life in trun() renewal process {}=12
Denote the limiting excess, age and total life in {}=12 by  ,  and  re-
spectively; with corresponding pdfs  (),  ∈ (0);  (),  ∈ (0);  (),
 ∈ (0). Using well known formulas for the limiting pdfs of an ordinary renewal
process where the interarrivals have a finite mean (e.g., formulas (6.2), (6.5) and (6.6), pp.
193-194, in Karlin and Taylor, 1975), and substituting from (9), we obtain for the trun()
renewal process:

 () =
1

()
̄ () =

1

( )

Ã
1− 1− (1 + )−

1− (1 +)
−

!
  ∈ (0) ,(11)

 () =
1

(
)
̄

() =
1

(
)

µ
1− 1− (1 + )−

1− (1 +)
−

¶
  ∈ (0) , (12)

 () =
1

(
)


() =
1

(
)


Ã
 (1 + )−−1

1− (1 +)
−

!
  ∈ (0) , (13)

where (
) is given in (10) upon replacing  by  ( = , , or ).

Remark 2.
(0∞)  () 0  ∈ ( ∞)    

8. Using limiting pdfs of {}=12 to approximate time- pdfs of {}=12
We use pdfs  () ( = , , ) given by (11)-(13) to approximate the time- pdfs 


(),

  0 ( = ,  ), in {}=12. The pdfs 

(), are relatively tedious to compute,

requiring a numerical solution of an integral equation for the key pdf
n

()
0   ()()

o
∈(0)

in (2)–(3), which is then used as part of the integrand in other formulas (Section 6 above).
This suggests using  (),   0, to approximate 


(), = ,  .
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8.1. The truncation points  for 

(), = , , 

We select right truncation points of the pdf (), denoted by  , ,,  The resulting
interarrival times,  , , , 

, have pdfs given in (9), with  replaced by  , ,,
and  , respectively, i.e., 

,  ∈ (0),  = , , . Thus { }=12 will be a
trun() renewal process with pdfs of interarrival times =


 (),  ∈

¡
0 

¢
, = , ,

.

8.2. Choice of truncation points  , ,,  depending on 

The truncation points depend on the fixed time  in {}=12. We assume, for example,
that  is "large" if  ≥  such that () ≤ 005. Then  and  are selected as arbitrary
large numbers much greater than , because the support of 

(),  =   is (0∞).
However, we select  = , since the support of () is (0 )  with an atom at  having
probability  .

8.3. Distance between time- pdfs and limiting pdfs

By Remark 2 we assume, without loss of generality, that pdfs () and  ( /), ( =

  ) have the same support, i.e., (0∞). Note that the Stieltjes integral
R

0
() =

1, and the Riemann integral
R∞


 () = 0,  =   . Also,
R∞
0

() = 1,  = ,

, and
R

0
() = 1 ( = ). In order to quantify the notion " (·) approximates

(·)" for  = , , , we use an L1 measure based on the metric
¯̄
()−  ( /)

¯̄
,  ∈

(0∞). This leads to an integral measure for the distance between the pdfs (),  = ,
 and

©
 ()

ª
∈(0), and the corresponding approximating pdfs  ( /),  ∈ (0∞),

 = , , . It can be shown that  () and (),  ∈ (0∞), ( = , , ) are bounded.
It follows that a measure of distance between () and  ( /) is

(   ) =
1

2

Z ∞

=0

¯̄
()−  ( /)

¯̄
  =    (14)

and

0  (   )  1. (15)

8.4. Range of distance measure (   )

Note that ( ,  )  0 because ()  0,  ∈ [∞) due to: (i) the tail probabilities
of ()  ∈ ( ∞) ( =  ), (ii) the atom  in the mixed pdf {  ()}∈(0)
(recalling that  = ), and (iii)  () = 0  ∈ ( ∞). Moreover (   )  1,
since both ()  0 and ()  0,  ∈ (0)  =   . The closer the distance
(   ) is to 0, the better is the approximation; the closer the distance (   ) is to
1, the worse is the approximation. For other measures of discrepancy between pdfs, see p.
35 and Section 3.7 in Silverman (1986).

8.5. Example: Using (   ) when approximating the pdf of total life

As an example, we look at the approximation of (). First assume = 400 and  =
800. The pdfs (·) and  (·) are plotted in Fig. 1. The function

¯̄
()−  ()

¯̄
,

 ∈ (0) is plotted in Fig. 2. Note that
¯̄
()−  ()

¯̄
6= 0,  ∈ (0 800). The
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distance measure turns out to be (   ) = 0.393383 + 0.484346 = 0.877729 where
"0.484346" is the tail probability

R∞


() =
R∞
=800

(). This indicates that the
approximation is poor.

Second, assume  = 400 and = 1600. The pdfs of (·) and  (·) are plotted in Fig.
3. The function

¯̄
(·)−  (·)

¯̄
is plotted in Fig. 4. In this case

¯̄
()−  ()

¯̄
= 0,

 ∈ (0 1600), at the two points where () =  (). The distance measure (   )
is 0.177457 + 0.342485 = 0.519942 where "0.342485" is the tali probability

R∞
=1600

().
This approximation is somewhat better. These two cases indicate that the distance measure
decreases in value as  increases. If we choose  larger, and choose   , both¯̄
()−  ()

¯̄
and the tail probability

R∞
=

()will decrease and (   )

will be much closer to 0, thus giving a very good approximation. Similar results occur
for approximating the pdf of excess ()  ∈ (0∞). In the case of the pdf of agen

()

 ()
o
∈(0)

, the distance measure will decrease as the fixed time  (= ) in-

creases.
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Figure 1: pdfs () (Red) and 
() (Green),  = 400,  = 800

Figure 2:
¯̄
()− ()

¯̄
  ∈ (0 1600)  = 400,  = 800. Distance measure =

0.393383 /+ 0.484346 = 0.877729 (high)

1400



Figure 3: pdfs () (Red) and () (Green)  = 400,  = 1600

Figure 4:
¯̄
()− ()

¯̄
  ∈ (0 1600)  = 400,  = 1600. Distance = 0.177457 +

0.342485 = 0.519942 (better but still high)
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