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Summary. We propose a design for a phase I/II cancer clinical trial in the context of drug
combinations. The goal is to determine therapeutically efficacious dose combinations that
are safe. In stage I, dose allocation is carried out according to univariate continual re-
assessment method. During this stage, only toxicity outcomes are used to guide dose
escalation. In the second stage, toxicity and efficacy outcomes are used to update se-
quentially the joint model for the probability of toxicity and efficacy. At each step of the
algorithm, an admissible set of safe doses is estimated using the posterior distribution
of the model parameters. The next cohort of patients is allocated to dose combinations
selected by an adaptive randomization in the admissible set. Since more than one dose
combinations can be recommended at the end of the trial, we propose a new estimator to
assess the reliability of the recommended doses. We study the performance of the method
by deriving the operating characteristics with two versions of the joint toxicity and efficacy
model using scenarios under model misspecification.

Keywords: Drug Combination; Dose limiting toxicity; Drug efficacy; Contingency
table; CRM; Adaptive randomization.

1. Introduction

In phase I cancer clinical trials, the primary objective is to determine the maximum
tolerated dose (MTD) among the doses included in the study. The MTD is defined as
the dose with dose limiting toxicity (DLT) probability closest to a prespecified target θT .
Numerous model based designs have been proposed for determining the MTD since the
introduction of the continual reassessment method (CRM) (O’Quigley et al., 1990). For
cytotoxic agents, the usual assumption of a complete ordering is reasonable when only
one agent is allowed to vary in the study. In the case of drug combination treatment
where more than one drug is allowed to vary, the monotonicity assumption on each
marginal induces a partial ordering on the set of dose combinations. Several model
based designs have been studied under this setting with the goal of estimating an MTD.
Some of these methods recommend a single MTD (Yin and Yuan (2009a), Wages et al.
(2011), Shi and Yin (2013), Riviere et al. (2014)) while other approaches propose a set
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of MTDs at the end of the trial, see e.g., Thall et al. (2003); Wang and Ivanova (2005);
Braun and Wang (2010); Mander and Sweeting (2015); Tighiouart et al. (2014, 2016,
2017).

For early phase studies where efficacy is ascertained in a short period of time such
as one or two cycles of therapy, efficacy outcomes in addition to DLT are used to guide
the dose allocation to successive cohorts of patients. The efficacy measurements may
consist of tumor response or biomarker modulation if one or both drugs are biologic
or immunotherpy. For single agent trials, sequential designs for modeling the joint
probability of toxicity and efficacy and estimating the optimal dose have been studied
extensively in the literature, see e.g. Murtaugh and Fisher (1990); Thall and Russell
(1998); Braun (2002); Ivanova (2003); Thall and Cook (2004a); Chen et al. (2015); Sato
et al. (2016). These methods are designed to identify one safe dose that maximizes
the probability of treatment response or a prespecified utility function. The recent
widespread use of combination therapy in cancer treatment using mixtures of cytotoxic,
biologic, immunotherapy, and radiation therapy lead to various extensions of the previous
designs to accomodate dual endpoint trials with two or more drugs allowed to vary
during the trial (Yuan and Yin (2011); Wages and Conaway (2014); Cai et al. (2014),
Riviere et al. (2015)). In general, these methods use a two-stage design approach where
a set of tolerable dose combinations is first estimated, then patients are allocated to
efficacious doses in the second stage according to the revised probabilities of DLT and
treatment response. At the end of the trial, a dose combination is recommended for
future randomized studies unless the trial stops early for safety or lack of efficacy.

In this manuscript, we study the performance of a two-stage design for drug combi-
nation of two cytotoxic agents where dose allocation is guided by DLT outcome in stage
I and by using the outcomes DLT and efficacy in stage II. Unlike previous approaches
that recommend a single dose for future studies, our method can recommend either one
dose or a set of dose combinations at the end of the trial for future randomized phase
II/III studies. Recommending more than one dose combination avoids the paradigm of
specifying a utility function that trades the risk of toxicity with the probability of re-
sponse and may lead to alternative optimal combinations that use desirable levels of one
or both drugs. For instance, when treating metastatic castrate resistant prostate cancer
patients with the combination cabazitaxel and cisplatin, and if two dose combinations
are recommended, then the one with the lowest level of cisplatin may be selected due
to the severe toxicities associated with cisplatin such as nephrotoxicity. During stage
I, dose escalation/de-escalation is guided using only toxicity outcomes due to the high
uncertainty about the model parameters. In the second stage, toxicity probabilities are
updated sequentially. It becomes possible to control the safety of the trial while op-
timizing the allocation of patients according to the efficacy outcomes. The marginal
model for stage I is extended by using a model of the contingency table for toxicity and
efficacy outcomes. Two version are proposed: a Morgenstern model, already studied for
single agent early phase dose finding studies (Thall and Cook, 2004b) and a Positive
Dependent Model that assumes a positive association between the toxicity and efficacy
outcomes. Such an assumption is natural in phase I cancer trials for cytotoxic agents.
Since our method recommends a set of doses, we introduce a statistic that measures the
reliability of the estimator for a prospective trial. This statistic can also be used for

1333



Drug Combination Trials Using CRM and Adaptive Randomization

phase I trials based on single DLT outcome whenever more than one MTD is selected
at the end of the trial.

The manuscript is organized as follows. In Section 2, we introduce joint models for
toxicity and efficacy outcomes based on copula models. The dose allocation algorithm is
described in Section 3. Design operating characteristics are studied in Section 4 under
a large number of scenarios for the marginal probabilities of toxicity and efficacy and
models for generating the pairs toxicity and efficacy. Some concluding remarks are found
in Section 5.

2. A Joint Model for Toxicity and Efficacy Outcomes

2.1. Marginal Models for toxicity and efficacy outcomes
Let A1 = {ai, i = 1, . . . , p} and B1 = {bj , i = 1, . . . , q} be the ordered dose levels of
two synergistic drugs A and B, respectively. Denote by D = A1 × B1 the set of dose
combinations available in the trial and T and E the binary indicators of toxicity and
efficacy. In the remainder of the manuscript, we use the terms toxicity and DLT inter-
changeably. The class of models for the dose-toxicity relationship studied in Tighiouart
et al. (2014, 2017) will be adopted to model the marginal probabilities of toxicity and
efficacy. Specifically, for a patient treated with dose combination (x, y) ∈ D, we have

P (T = 1|x, y, βT , ηT ) = FT (βT,0 + βT,1 x+ βT,2 y + ηT xy) (1)

P (E = 1|x, y, βE , ηE) = FE (βE,0 + βE,1 x+ βE,2 y + ηE xy) , (2)

where FT , FE are known cumulative distribution functions, and ηT , ηE are non-
negative interaction coefficients. We will assume that the probabilities of toxicity and
efficacy increase with the dose of any one of the agents when the other one is held
constant. A necessary and sufficient condition for this to hold is βT,1, βT,2, βE,1, βE,2
are all positive. Suppose that the dose levels of the two drugs are standardized to be
in the interval [0, 1], a1 = b1 = 0, ap = bq = 1. Building on the work of Tighiouart
et al. (2014, 2017), we reparameterize model (1) in terms of the probabilities of toxicity
at dose combinations (0, 0), (0, 1), (1, 0), denoted by ρT,00, ρT,01 and ρT,10, respectively.
These parameters can be easily interpreted by the clinicians and they facilitate prior
distributions specification. We then have


βT,0 = F−1

T (ρT,00)
βT,1 = F−1

T (ρT,10)− F−1
T (ρT,00)

βT,2 = F−1
T (ρT,01)− F−1

T (ρT,00)

(3)

The marginal model for efficacy (2) is similarly reparameterized in terms of the
probabilities of efficacy ρE,00, ρE,01, ρE,10 at dose combinations(0, 0), (0, 1), (1, 0), respec-
tively. Denotes by ρT = (ρT,00, ρT,01, ρT,10), ρE = (ρE,00, ρE,01, ρE,10), ρ = (ρT , ρE), and
η = (ηT , ηE).
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Table 1. Contingency Table for Toxic-
ity/Efficacy Outcomes

1− PT PT
1− PE Π00 Π10

PE Π01 Π11

2.2. Joint toxicity and efficacy models
Denote by Πik the joint probability of toxicity and efficacy for a patient treated with
dose combination (x, y), i = 0, 1, k = 0, 1 and PT = P (T = 1|(x, y)) and PE = P (E =
1|(x, y)). In this section, we omit the dose combination notation (x, y) and parameters
of the marginals (ρ, η) to facilitate the description of the joint model for toxicity and
efficacy with the understanding that the two marginals are conditional on the dose and
parameters of models (1) and (2).

There exist several models for bivariate binary outcomes (Joe, 1997). In particular,
copula models link the marginal distributions of toxicity and efficacy in a 2× 2 contin-
gency table (1) to form the joint distribution, see e.g, (Nelsen, 1999). For single agent
phase I/II trials, the Morgenstern or Gumbel copula model was used in (Thall and Cook,
2004b) to model the joint distribution of toxicity and efficacy. This model was also used
in dose combination phase I trials in (Yin and Yuan, 2009b) by collapsing the probabil-
ities of DLT attributed to either one or both drugs. Let f(γ) = (eγ − 1)/(eγ + 1), γ ∈ R.
The Morgenstern model is defined by


Π11 = PTPE × {1 + (1− PT )(1− PE)× f(γ)}
Π10 = PT (1− PE)× {1− PT (1− PE)× f(γ)}
Π01 = (1− PT )PE × {1− (1− PT )PE × f(γ)}
Π00 = 1− (Π11 + Π10 + Π01)

(4)

This is a flexible model since it accommodates the case of independence between tox-
icity and efficacy outcomes when γ = 0, positive association between these two outcomes
for γ > 0, and negative association when γ < 0. We note that the Morgenstern model can
be seen as a deviation from the independent assumption between efficacy and toxicity.
For fixed γ, the probability of the joint event {T = i, E = k} obtained in the independent
case is multiplied by a linear function of the probability of the event {T = 1−i, E = 1−k}
under the independent case. However the morgenstern model can induce a tight range for
the joint probability at certain dose combinations. For example, if the toxicity probabil-
ity is PT = 0.25 and the efficacy probability is PE = 0.8, then the probability Π01 varies
in the interval [0.57, 0.63] as γ varies in (−∞,∞). For such marginals, the probability of
the joint event Π01 ”observing an efficacy outcome without toxicity” can in theory be-
long to [0.55, 0.75]. Indeed, for any marginals PE and PT , the probability Π11 is bounded
by the Fréchet-Hoeffding bounds m = max(0, PE + PT − 1) ≤ Π11 ≤M = min(PE , PT ),
see (Nelsen, 1999). Since for many cytotoxic agents, there exists a positive correlation
between efficacy and toxicity, we modify model (4) by restricting γ to be in the interval
[0, 1] so that Π11 achieves the Fréchet-Hoeffding lower and upper bounds as follows. A
linear transformation of [PT × PE ,M ] into the interval [0, 1] is made by identifying the
value 0 with the independent case where the probability Π11 is equal to PE × PT . Let
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γ ∈ [0, 1]. The positive dependent model (PDM) is defined by
Π11 = PTPE + (M − PTPE) γ
Π10 = PT (1− PE)− (M − PTPE) γ
Π01 = (1− PT )PE − (M − PTPE) γ
Π00 = 1− (Π11 + Π10 + Π01)

(5)

The PDM should be used if there is a priori belief that toxicity and efficacy events
are positively correlated, as is the case for many cytotoxic agents. In the simulation
studies, we will evaluate the robustness of the model when the data are generated from
a model with a negative association between toxicity and efficacy.

Let θT , θE be the target probabilities of toxicity and efficacy, respectively. The goal
of the phase I/II trial is to determine dose combination (x, y) ∈ G that satisfy P (T =
1|(x, y)) ≤ θT + εT and P (E = 1|(x, y)) > θE where εT ≥ 0 is a tolerance parameter
pre-specified in collaboration with the clinician.

3. Algorithm

At the start of the trial, the uncertainty about the nine model parameters is high. We
therefore propose a two-stage design where in stage 1, N1 patients are allocated to dose
combinations according to univariate CRM and the algorithm described in (Tighiouart
et al., 2017) using toxicity data only (xi, yi, Ti), i = 1, . . . , N1. In the second stage,
successive cohorts of m patients are allocated to ”safe” dose combinations that are likely
to have high probability of efficacy using toxicity and efficacy data (xi, yi, Ti, Ei) and
adaptive randomization.

3.1. Stage I
Let ΛT be a prior distribution for the parameters (ρT , ηT ). Using Bayes rule, the poste-
rior distribution given DT,n = {(xj , yj , Tj), j = 1, . . . , n} is

Λn(ρT , ηT |DT,n) ∝
n∏
j=1

L(Tj |xj , yj , ρT , ηT )× ΛT (ρT , ηT ), n = 1, . . . , N1, (6)

where

L(Tj |xj , yj , ρT , ηT ) =

1∑
i=0

P (Tj = i|xj , yj , ρT , ηT )× I{Tj=i} (7)

is the likelihood of a single observation (xj , yj , Tj). During this phase, cohorts of two
patients are treated simultaneously and only moves in one direction of the range of dose
combinations are allowed. Thus, a patient in the current cohort can be treated at a
dose (x, y) if and only if a patient in the previous cohort was treated at a dose on the
same horizontal or vertical line in our dose range: (x

′
, y) with x

′ ∈ A1 or (x, y
′
) with

y
′ ∈ B1. An estimator working on vertical or horizontal line can be used to allocate the

next cohort of patients. Let X̂ and Ŷ be plug in estimators as described for the CRM
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((O’Quigley et al., 1990)). The posterior estimators of the parameters are (ρ̂Tn , η̂
T
n ) =

EΛT [(ρT , ηT )|DT,n]. We then have

X̂n(y) = arg min
x∈A1

|HT (x, y, ρ̂Tn , η̂
T
n )−θT | and Ŷn(x) = arg min

y∈B1

|HT (x, y, ρ̂Tn , η̂
T
n )−θT | , (8)

where the function HT is given by

HT (x, y, ρ̂T , η̂T ) =FT [F−1
T (ρ̂T,00) +

{
F−1
T (ρ̂T,10)− F−1

T (ρ̂T,00)
}
× x

+
{
F−1
T (ρ̂T,01)− F−1

T (ρ̂T,00)
}
× y + η̂T × xy.

CRM algorithm:

• In the first cohort, the two patients receive the minimum dose combination (0, 0)

• In the k−cohort of two patients, if i is even,
(x2k+1, y2k+1) = (X̂2(k−1)+1(y2(k−1)+1), y2(k−1)+1) and (x2k, y2k) = (x2(k−1), Ŷ2(k−1)+1(x2(k−1))) ,

and if k is odd,
(x2k+1, y2k+1) = (x2(k−1)+1, Ŷ2(k−1)+1(x2(k−1)+1)) and (x2k, y2k) = (X̂2(k−1)+1(y2(k−1)), y2(k−1)) .

Since the number of dose levels of each agent is not very large in our simulation
studies, p = 6 and q = 5, dose skipping is not allowed. However, for larger number of
dose levels or when using continuous dose levels, the maximum size of the jump can be
set as a function of the dose range of either agent as in Tighiouart et al. (2017).

3.2. Stage II
Let Λ(ρ, η, γ) = ΛT (ρT , ηT ) × ΛE(ρE , ηE) × ΛC(γ) be a prior distribution for the pa-
rameters (ρ, η, γ). The posterior distribution given Dn = {(xj , yj , Tj , Ej), j = N1, N1 +
1, . . . , N} is

Λn(ρ, η, γ) ∝
n∏
j=1

L(Tj , Ej |xj , yj , ρ, η, γ)× Λ(ρ, η, γ), n = N1, . . . , N, (9)

where

L(Tj , Ej |xj , yj , ρ, η, γ) =

1∑
i=0

1∑
k=0

Πik|xj ,yj ,ρ,η,γ × I{E=i} × I{T=k} (10)

is the likelihood of a single observation (xj , yj , Tj , Ej), Πik|xj ,yj ,ρ,η,γ is given by (4)
or (5), and N is the total sample size from both stages. At the end of stage I, a set of
admissible doses AN1

is determined

AN1
= {(x, y) ∈ D : θT − εL < P̂N1

(T = 1|(x, y)) < θT + εT }, (11)

where εL is a design parameter and

P̂N1
(T = 1|(x, y)) = EΛN1

[P (T = 1|x, y, ρ, η, γ)]. (12)
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For each dose combination (x, y) ∈ AN1
, we estimate the probability of efficacy

P̂N1
(E = 1|(x, y)) = EΛN1

[P (E = 1|x, y, ρ, η, γ)] (13)

and every patient in a cohort of m patients is allocated to dose combination (x∗, y∗) ∈
AN1

with probability

πN1
(x∗, y∗) =

P̂N1
(E = 1|(x∗, y∗))∑

(x,y)∈AN1 P̂N1 (E=1|(x,y))

. (14)

The set of admissible doses AN1
in (11) consists of dose combinations with estimated

probability of toxicity in a neighborhood of the target probability of toxicity θT . Patients
in the first cohort of m patients at the start of stage II are allocated to doses in AN1

using
adaptive randomization according to the probability distribution πN1

(·) defined in (14)
so that these patients are likely to be allocated to dose combinations that are likely to
have high probability of efficacy. After the toxicity and efficacy status of these patients
are resolved, the posterior distribution of the model parameters is updated using (9)
to ΛN1+m and the set of admissible doses is updated to AN1+m. The next cohort of m
patients are allocated to dose combinations in AN1+m using adaptive randomization with
updated probability distribution πN1+m(·) obtained as in (14). The algorithm continues
this way enrolling successive cohorts of m patients until a total of N patients are enrolled
to the trial subject to one of the stopping rules defined in Section 3.3.

In a real trial, new patients may be available for enrollment while the toxicity or
efficacy outcomes of some patients are not resolved. We note that our model works
under this circumstance by adjusting the likelihood. Denote by Z a missing data. The
likelihood for a single observation (T,E, x, y) is then:

L(T,E|x, y, ρ, η, γ) =

1∑
i=0

1∑
k=0

Πik|x,y,ρ,η,γ×
(
I{T=i} + I{T=Z}

)
×
(
I{E=k} + I{E=Z}

)
. (15)

3.3. Stopping rules
For both phases of the study, stopping rules based on Bayesian tests at each dose combi-
nation are introduced. Let PT,(x,y) and PE,(x,y) be the toxicity and efficacy probabilities
at a dose (x, y) and U a uniform prior in [0, 1] on these probabilities. Let n(x,y) and

n1
(x,y) the number of patients treated at dose (x, y) and the number of patient having

experienced a DLT at dose (x, y), respectively. During stage I, the trial is stopped if the
minimum dose combination (0, 0) is too toxic:
Stopping rule for Stage I: We stop enrollment to the trial after n patients if:

PU

(
PT,(0,0) > θT + εT

∣∣∣ (n(0,0), n
1
(0,0))

)
> δT . (16)

The stopping rule for stage II is more complex since it deals with two objectives:
localizing both the set H of dose combinations that are too toxic and the set L of dose
combinations that are less efficacious define by
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H = {(x, y) ∈ D : PT,(x,y) > θT + εT } and L = {(x, y) ∈ D : PE,(x,y) < θE} . (17)

For n = N1, N1 + 1, . . . , N − 1, let H̃n and L̃n be the estimated sets of doses that are
too toxic and less efficacious, respectively:

H̃n = {(x, y) ∈ D : PU

(
PT,(x,y) > θT + εT

∣∣∣ (n(x,y), n
1
(x,y))

)
> δT , (18)

L̃n = {(x, y) ∈ D : PU

(
PE,(x,y) < θE

∣∣∣ (n(x,y), n
1
(x,y))

)
> δE . (19)

The monotonicity assumptions for the probabilities of toxicity and efficacy described
in Section 2.1 imply that for any dose (x, y) ∈ H̃n, then (x′, y′) ∈ H̃n whenever x′ ≥ x
and y′ ≥ y. Similarly, for any dose (x, y) ∈ L̃n, then (x′, y′) ∈ L̃n whenever x′ ≤ x and
y′ ≤ y. The idea here is to stop the trial if there are no ”good” doses in D, i.e, doses
that have an acceptable level of toxicity with a desirable level of efficacy.
Stopping rule for Stage II: We stop enrollment to the trial after n patients if:

D = {(x, y) ∈ D : ∃ (x′, y′) ∈ H̃n, x > x′ and y > y′}
∪ {(x, y) ∈ D : ∃ (x′, y′) ∈ L̃n, x < x′ and y < y′}, (20)

which means that there exists no more ”good” doses in the set of available dose
combinations in the trial D, based on the estimated sets H̃n and L̃n.

The design parameters δT , δE in (16), (18), and (19) are selected to achieve good
operative characteristics.

3.4. Final selection
At the end of the trial, we recommend a set of doses or a single dose to be used in future
randomized Phase II or III studies. Our goal is to estimate the set G of good doses
defined by G = D \ (H ∪ L), see (17). An estimator of the set G is

ĜN = D \
[
{(x, y) ∈ D : P̂N (T = 1|(x, y)) > θT + εT }

∪{(x, y) ∈ D : P̂N (E = 1|(x, y)) < θE}
]
, (21)

where P̂N (T = 1|(x, y)) and P̂N (E = 1|(x, y)) are given by (12) and (13), respectively.
Thus, we exclude doses with low probability of efficacy and high probability of toxicity.

If the goal of the trial is to recommend a single dose, we can use the 0−1 loss function
l and determine the optimal decision rule ∆?

N selecting one dose in ĜN . Let

l(ρ, η, γ,∆N ) =

{
1 , if P (E = 1|(x, y) = ∆N , ρ, η, γ) < θE
0 , otherwise,

(22)

the decision rule in ĜN minimizing the risk function R(ρ, η, γ,∆N ) = EΛN
[l(ρ, η, γ,∆N )]

is:
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∆?
N = arg max

(x,y)∈ĜN
PΛN

[P (E = 1|(x, y), ρ, η, γ) > θE ] . (23)

The estimator ∆?
N maximizes the probability to select the most efficaciousious dose in

ĜN . Properties of this estimator will be studied in the next section. Other loss functions
can be chosen in collaboration with the clinicians.

4. Simulation Studies

4.1. Simulation set-up and scenarios
We assume that drug A has p = 6 levels and drug B has q = 5 levels. The trial sample
size is N = 60 patients with N1 = 20 enrolled in stage I. Stage II enrolls consecutive
cohorts of m = 5 patients. The target probability of toxicity is θT = 0.33 and the target
probability of efficacy is θE = 0.5. The link functions for the marginal models are the
logistic function FT (u) = FE(u) = (1 + e−u)−1.

We take vague priors on the model parameters (ρ, η) by assuming that ρT,01, ρT,10 are
i.i.d ∼ U(0, 1), and conditional on (ρT,01, ρT,10), ρT,00/min(ρT,01, ρT,10) ∼ U(0, 1) and ηT
has gamma distribution with mean 20 and variance 500 as in Tighiouart et al. (2017).
The same prior is placed on the marginal model parameters for efficacy (ρE , ηE). The
prior distribution for the association parameter γ is taken as a normal distribution with
mean 0 and variance 100 when the working model is the Morgenstern model (4) and
a uniform distribution in [0, 1] when the working model is the PDM given in (5). The
tolerance parameter is fixed at εT = 0.1. During stage II, the set of admissible doses An
may be empty if the design parameter εL is too small. We therefore start with εL = 0.1
and increase it by increments of 0.05 until An contains at least one dose. The design
parameters δT and δE for the stopping rules are δT = 0.7, δE = 0.9. A sensitivity analysis
on these parameters is included in Table 7.

We considered nine scenarios for the marginal probabilities of toxicity and efficacy
shown in Tables 2 and 3. For each scenario of the marginals, the pairs (T,E) are
generated using the Morgenstern model with γ = −2, 0, 2 and the PDM model with
γ = 0, 0.9. This gives us a total of 9 × 4 = 36 scenarios for the true model. These
scenarios reflect various number and location of ”good” dose combinations, e.g, near
the minimum dose combination for scenario IX, middle of the dose range for scenario
III-V, towards the highest dose combination for scenario VI, and cases of no set of good
doses for scenarios VII and VIII. Only scenario IV is fully generated under the logistic
model. The true efficacy probabilities for scenario I and II are also generated under the
logistic model. All the other scenarios are misspecified in order to assess the robustness
of our model. For each scenario, M = 2000 trial replicates are generates to evaluate the
performance of the models and dose allocation algorithm.

4.2. Operating characteristics
For each scenario, we report several statistics to evaluate safety and efficiency of the
methodology.

- TOX is the average % of DLTs observed across the M trials.
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Table 2. Scenarios for the marginal probabilities PT and PE .

Scenario Toxicity Efficacy

1 2 3 4 5 6 1 2 3 4 5 6

I

1 01 03 07 13 17 38 01 02 03 06 11 19

2 02 05 09 24 36 47 04 08 15 27 42 59

3 08 19 35 45 50 60 17 31 48 67 81 90

4 18 36 44 53 59 68 52 68 83 92 96 98

5 27 45 50 62 71 80 81 91 96 98 99 1.00

II

1 01 03 07 13 17 38 05 11 23 41 62 79

2 02 05 09 24 36 47 07 16 33 55 75 89

3 08 19 35 45 50 60 10 23 44 68 85 94

4 18 36 44 53 59 68 14 31 57 79 92 97

5 27 45 50 62 71 80 19 41 69 87 95 98

III

1 01 02 05 19 28 49 01 03 08 12 15 28

2 04 08 21 35 46 58 05 25 55 75 85 90

3 14 25 37 51 68 75 09 32 68 85 87 95

4 23 36 44 53 70 79 15 37 73 86 92 96

5 31 50 50 59 79 92 21 40 75 90 93 98

IV

1 02 03 06 09 15 24 05 11 23 41 62 79

2 04 07 11 18 28 42 07 16 33 55 75 89

3 07 12 20 32 47 62 10 23 44 68 85 94

4 13 22 35 50 66 79 14 31 57 79 92 97

5 22 36 52 68 81 89 19 41 69 87 95 98

V

1 02 03 05 10 16 20 01 02 04 06 11 20

2 03 04 07 12 19 25 02 05 24 55 70 75

3 05 12 32 47 63 70 04 32 78 85 90 92

4 07 20 40 55 70 85 09 55 82 86 92 93

5 10 29 47 60 75 90 13 58 84 89 93 94

VI

1 01 02 04 05 09 11 02 13 16 17 18 22

2 02 05 06 07 14 23 06 16 17 19 31 35

3 04 06 08 11 23 33 08 15 23 28 40 44

4 05 08 13 24 35 41 11 20 30 34 55 62

5 06 14 22 30 38 53 15 23 37 52 65 72
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- EFF is the average % of observed responses across the M trials.

- AG , AL, AH are the average % of patients allocated to doses in sets G,L and H
across the M trials, respectively.

When more than one dose combination is recommended at the end of the trial, the
percent selection of each dose combination is a useful summary of trial efficiency but these
percentages are hard to interpret. For example, Table 4 shows the percent selection of
each dose combination with levels (1, 4), (1, 5), (2, 4) in the true set of good doses. These
percentages are 32%, 78%, and 70%, respectively. While two of these percentages are
reasonably high, they do not reflect the reliability of the estimate ĜN of the set of good
doses G given in (21). We therefore introduce a statistic that measures the reliability of
an estimated set of doses as follows. For any set E ⊂ G, let

SE =
1

M∑
j=1
|ĜN,j |

×
M∑
j=1

|E ∩ ĜN,j |, and S1
E =

1

M
×

M∑
j=1

I{∆?
N ∈ E}, (24)

where ĜN,j is the estimated set of ”good” doses from the jth trial and |T | denotes
the cardinal of a set T . The following statistics are used to summarize trial efficiency:

- SG , SL, SH are the percent selection in sets G,L and H, respectively, when the set
of doses ĜN is recommended at the end of the trial.

- S1
G , S1

L, S1
H are the percent selection in sets G,L and H, respectively, when a single

dose is selected with the decision rule ∆?
N at the end of the trial.

- NS is the average of number of dose selected in ĜN .

Note that SG can be interpreted as an estimate of the probability that a dose in ĜN
belongs to G, the set of good doses. Indeed, the expression SG in (24) is a weighted

probability that any dose in ĜN is a good dose with weights given by |ĜN,i|/
∑M

j=1 |ĜN,j |.
Finally, two additional statistics are reported to study the properties of the stopping
rules:

- ET is the percent of trials that are stopped early.

- Net is the average of number of patients enrolled when the trial stops.

4.3. Results
Table 4 shows the percent selection and allocation of patients to each dose combination
under scenario 1 and γ = 0, that is assuming independence between toxicity and efficacy
when the working model is the PDM. We can see that the percent of patients allocated to
too toxic doses is small whereas the two good dose combinations with levels (1, 5), (2, 4)

are selected with high probability. However, since the final selection uses ĜN , it is hard
to interpret these percentages when recommending a group of doses to the clinician as
discussed in Section 4.2. Percent selection and allocation for the other scenarios are not
shown.
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Table 3. Scenarios for the marginal probabilities PT and PE .

Scenario Toxicity Efficacy

1 2 3 4 5 6 1 2 3 4 5 6

VII

1 05 10 19 35 45 55 01 05 08 15 22 42

2 08 18 28 42 51 70 02 07 10 19 23 45

3 12 22 35 45 53 72 04 10 13 20 28 50

4 20 34 45 55 65 75 08 15 18 24 37 56

5 28 37 47 57 70 82 14 22 34 45 55 70

VIII

1 30 35 41 60 68 72 01 03 08 13 17 29

2 42 55 57 63 72 75 05 10 12 15 20 35

3 53 60 70 75 80 83 08 15 16 20 25 40

4 65 67 74 77 85 90 14 22 24 28 32 44

5 71 79 81 85 90 95 23 25 31 36 43 50

IX

1 30 40 55 65 68 74 32 55 60 62 64 70

2 43 53 57 66 72 75 75 85 87 89 91 93

3 57 62 72 74 81 83 80 87 90 91 92 93

4 65 69 74 77 85 92 81 88 91 92 93 95

5 71 79 81 85 91 98 90 92 95 96 98 99
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Table 4. Percent selection and allocation.

Scenario Toxicity Efficacy

1 2 3 4 5 6 1 2 3 4 5 6

I

1 01 03 07 13 17 38 01 02 03 06 11 19

2 02 05 09 24 36 47 04 08 15 27 42 59

3 08 19 35 45 50 60 17 31 48 67 81 90

4 18 36 44 53 59 68 52 68 83 92 96 98

5 27 45 50 62 71 80 81 91 96 98 99 1.00

Percent allocation Percent selection using ĜN
1 2 3 4 5 6 1 2 3 4 5 6

PDM
1 3 2 0 0 2 4 0 0 0 0 0 0

2 2 4 6 8 5 2 0 0 0 1 12 12

3 0 9 15 4 1 0 0 3 42 17 3 1

4 3 11 4 1 0 0 32 70 15 1 0 0

5 7 5 1 0 0 0 78 30 3 0 0 0

Operating characteristics under scenarios I–VI with γ = 0 for the true model are
presented in Table 5. The summary statistics are conditional on the event that the trial
did not stop early. The average percent of DLTs is below the target θT = 0.33 for all
scenarios. Similarly, the average percent of efficacy is around the target (θE = 50%)
except for the scenario VI where the good dose combinations are near the highest dose
combinations. The mean value of EFF across scenarios I to V is 48%. The average
percent of patients allocated to highly toxic doses (doses with probability more than
θT + 0.1) never exceeds 19%. The percent selections when recommending either one or
more than one dose are reasonably high for phase I/II trials. In particular, the estimator

ĜN that recommends a set of dose combinations achieves 68% recommendation on the
average for the six scenarios when the working model is Morgenstern. For scenarios IV
and V, the percent selection is 80% or more. This is not very surprising since the true
set of good doses contains 7 dose combinations. The fact that scenario IV was generated
under the true model but scenario V is completely misspecified does not seem to affect
the performance of the method. We also note that the summary statistics obtained using
the two working models Morgenstern and PDM when toxicity and efficacy are generated
independently are very similar with the largest difference of SG = 3% obtained under
scenario VI.

In Table 6, we present the operating characteristics when toxicity and efficacy are
generated from the Morgenstern model γMorg = −2, 0, 2 and the PDM model γPDM =
0.9. These statistics are presented for scenarios III and IV and averaged across the six
scenarios I–VI denoted by AV(·). The performance of these models are quite close when
the pair (T,E) is generated using the Morgenstern model with γMorg = 0, 2. When
γMorg = −2 the PDM has a slightly lower percent selection relative to the Morgenstern
model on the average. In particular, under scenario III the percent selection of the PDM
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Table 5. Operating characteristics when γ = 0.

Model Scenario TOX EFF AG AH AL S1
G S1

H S1
L SG SH SL NS

Morg.
I 28.5 46.9 22 18 58 61 33 5 57.1 24.8 18.2 3

II 28.1 46.5 31 16 56 73 24 2 72.4 17.7 12 3.3

III 30.1 43.8 34 18 55 42 32 37 47.8 33 36.5 2

IV 25.6 52.2 47 9 45 83 15 1 81.2 7.3 11.5 5.5

V 24.1 55.5 59 11 28 72 26 1 83 13.3 3.7 5.1

VI 21.1 36 25 2 74 61 6 32 64.2 2.7 33.2 2.3

PDM.
I 28.3 46.2 21 18 60 59 36 4 56.2 25.6 18.1 3.2

II 28.2 46.7 31 17 56 74 24 2 71.7 17.3 13 3.5

III 30.1 44.2 34 19 55 42 33 35 48.6 32 36.9 2.2

IV 25.9 52.6 47 9 43 81 18 1 80.4 7.6 11.9 5.8

V 24.4 56 59 12 28 72 27 0 82.1 13.3 4.6 5.4

VI 21 35.9 25 2 74 62 6 31 61.2 2.4 36.3 2.5

Table 6. Operating characteristics for selected values of γ and selected scenarios.
Scenario Model TOX EFF AG AH AL S1

G S1
H S1

L SG SH SL NS

AV (γMorg = 0)
Morg. 26.2 46.8 36.3 12.3 52.7 65.3 22.7 13 67.6 16.5 19.2 3.5

Pos. 26.3 46.9 36.2 12.8 52.7 65 24 12.2 66.7 16.4 20.2 3.8

AV (γMorg = 2)
Morg. 26.3 46.8 36.3 12.5 52.5 65.7 22.3 12.7 67.6 16.4 18.9 3.5

Pos. 26.2 46.6 35.3 12.3 53 65.7 22 13 66.4 16.1 20.3 3.6

AV (γMorg = −2)
Morg. 26.3 46.6 36.3 12.3 52.7 65.5 22.5 13 67.2 16.6 19.4 3.5

Pos. 26.4 46.8 35.8 12.7 52.8 63.8 24.2 14.3 65.7 16.8 21.0 3.8

III (γMorg = −2)
Morg. 30.0 43.8 33.0 19.0 56.0 43.0 31.0 37 47.4 33.6 36.5 2.1

Pos. 30.1 43.8 34.0 19.0 55.0 38.0 36.0 41.0 46.5 33.3 38.6 2.3

AV (γPDM = 0.9)
Morg. 26.1 46.5 35.2 12.3 53.8 66.8 22.2 10.3 68.6 16.4 17.0 3.5

Pos. 26.1 46.7 35.8 11.8 52.8 68.3 21.7 9.3 69.8 15.0 17.1 3.6

III (γPDM = 0.9)
Morg. 29.7 43.7 34.0 16.0 56.0 49.0 26.0 28.0 53.1 30.4 27.8 1.9

Pos. 30.0 44.6 34.0 17.0 54.0 57.0 23.0 23.0 55.6 27.8 27.3 2.0

IV (γPDM = 0.9))
Morg. 25.5 51.7 45.0 9.0 46.0 84.0 15.0 0.0 81.4 8.2 10.4 5.5

Pos. 25.5 51.8 46.0 9.0 45.0 87.0 14.0 0.0 83.1 7.1 9.8 5.6
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when recommending a single dose at the end of the trial S1
G is 38% compared to 43%

for the Morgenstern model. This is not surprising since the PDM assumes nonnegative
association between toxicity and efficacy. On the other hand, when (T,E) is generated
using the PDM with γPDM = 0.9, the percent selection using the PDM as the working
model is slightly better than the Morgenstern model on the average but is substantially
higher under scenario III when recommending a single dose, 57% compared to 49%. This
shows that the PDM can be an improvement over the Morgenstern model in capturing
strong association between toxicity and efficacy.

The performance of the stopping rules described in (16) and (20) are studied under
desirable scenarios II, IV, and VI where the set of good doses is located somewhere in
the middle of the dose combination range and under extreme scenarios where G = ∅
(scenarios VII and VIII) and scenario IX where two good doses are near the minimum
dose combination, see Table 3. Table 7 gives the percent of trials that are stopped
early (ET ) and the corresponding average sample size Net when the working model is
Morgenstern and the pairs (T,E) are generated using a Morgenstern model with γ = 2.
Under scenarios II, IV, and VI, the estimated probability of stopping the trial early is
small for δT , δE ≥ 0.7 as expected. Although scenarios VII and VIII are cases where
no good dose exists in D, the probability of stopping the trial is much higher under
scenario VIII compared to VII. The reason is that under scenario VIII, only four dose
combinations have an acceptable level of toxicity and only the last dose combination
at level (6, 5) has an acceptable level of efficacy. In other words, the sets Hc and Lc

are well separated. On the other hand, under scenario VII, half the number of doses
are acceptable whereas four dose combinations satisfy PE ≥ θE , i.e, the sets Hc and
Lc are not well separated. Nevertheless, the percent selection of each dose combination
under scenarios VII and VIII are very low (data not shown), consistent wit the ones
obtained when γ = 0. In scenario IX, two doses are good but very close of the limit in
term toxicity probability. This is why the probability of stopping the trial early is 0.71
when δT = 0.7 and δE = 0.9. In summary, the choice of the parameters δT and δE is a
compromise between the rate of wrongly terminating a trial and the rate of true positive
decision. These parameters should be chosen in close interaction with the clinicians. In
our study, we used (0.7, 0.9). We obtain 94.85% of good decision for the more toxic and
non-efficacious scenario VIII and an average of 2.3% of wrong decision for scenarios II,
IV and VI.

5. Conclusion

In this article, we proposed a two-stage design for dose finding in early phase I/II cancer
trials with drug combinations of two cytotoxic agents. We explored two different models
for the joint probability of toxicity and efficacy based on a class of copula models with
varying degrees of association between toxicity and efficacy outcomes. Unlike other
approaches, the method can recommend a single dose or a set of dose combinations at
the end of the trial. In the latter case, we proposed a summary statistic to assess the
reliability of the set estimator. The statistic gives an estimate of the probability that
any given dose among the set of recommended doses at the end of the trial is safe and
efficacious. This statistic can also be used for phase I drug combination trials with DLT
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Table 7. Sensitivity analysis of the design parameters δT and δE .

Scenario II IV VI VII VIII IX

(δT ,δE) ET Net ET Net ET Net ET Net ET Net ET Net

(0.6, 0.6) 5.00 51.7 3.40 49.5 46.95 46.5 40.05 46.0 97.45 22.6 90.75 24.4

(0.7, 0.7) 0.90 51.5 0.50 40.8 21.30 49.0 29.50 47.2 95.25 24.2 80.40 26.7

(0.8, 0.8) 0.35 49.4 0.20 30.5 13.05 48.7 18.30 47.4 88.15 27.0 68.50 27.8

(0.85, 0.85) 0.10 54.5 0.15 30.7 6.25 48.5 13.70 47.2 82.55 27.6 60.10 27.8

(0.9, 0.9) 0.00 NaN 0.00 NaN 1.15 45.8 2.20 51.2 51.45 33.7 36.75 30.9

(0.85, 0.95) 0.00 NaN 0.10 22.5 1.00 48.4 8.20 48.5 80.10 28.4 49.70 27.9

(0.7, 0.95) 0.00 NaN 0.15 30.7 1.65 49.6 14.45 48.7 93.85 25.3 62.20 28.3

(0.7, 0.9) 0.20 48.2 0.20 32.5 6.10 48.7 23.25 47.5 94.85 24.4 70.55 27.8

outcome when more than one MTD is recommended.

Extensive simulation studies under misspecified scenarios show that the method is
safe in terms of percent of patients allocated to toxic doses and that the trial stops
early very frequently when the minimum dose combination is too toxic. The percent of
recommendation of good doses is reasonably high for phase I/II trials with the lowest
level obtained when the model is extremely misspecified (scenario III). In the extreme
scenarios where no safe and efficacious dose combination exists among the set of available
doses in the trial, the probability that the trial stops early depends on how well the sets
of non-toxic and efficacious doses are separated. When these two sets are not well
separated, the probability of stopping the trial early for futility is low but the trial is
still safe. In any case, the average percent recommendation of a good dose is essentially
0 for scenarios VII and VIII (data not shown). We conclude that our approach is
useful when clincians are interested in identifying more than one dose combination for
future randomized studies. We are currently working on extending this work when the
monotonicity assumptions described in Section 2.1 do not hold, e.g., when one or more
drugs are biologic or immunotherapy. Other extensions include modeling late onset
toxicity or efficacy or cases where efficacy takes more than three cycles to resolve. In
this case, careful modeling of repeated toxicity outcome should be accounted for with
possible dose reductions before the efficacy outcome is assessed if a DLT occurs.
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