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Abstract: 

A Bayesian method for obtaining predictive distribution for the Lognormal life distribution under normal 
operating stress level is proposed for using failure data from accelerated levels of stress.  Failure times of 
experimental samples from higher than the nominal level of stress, under constant stress levels is 
considered.  Estimation of the model parameters by means of posterior distributions and posterior 
predictive distribution of future failure times, under nominal use conditions is achieved through Gibbs 
Sampler Markov Chain Monte-Carlo (MCMC) approach. An example is used to demonstrate the method.  
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1. Introduction 

Accelerated life tests (ALT) are commonly used to save time and reduce cost in product development in a 
highly competitive manufacturing environment.  Accelerated test methods have been developed over the 
last 50 years mostly from the frequentist approach.  There are more and more Bayesian ALT articles in 
literature in recent years.  Achcar (1991), proposes a Bayesian analysis of the data set using Laplace 
method of approximation and Jeffreys priors but fits an Exponential model to the data and obtains a 
Pareto predictive distribution.  Achcar and Louzado-Neto (1992), develop Bayesian analysis theory for 
the Weibull life model with the Eyring model, Inverse Power Law model, and Arrhenius model using the 
Laplace approximation and Jeffreys priors.  Nelson (1972) discusses a data set of an accelerated life 
experiment for breakdown of insulating fluids subject to several constant elevated test voltages.  Barbosa 
and Louzada-Neto (1994) assume a small proportion of Type II censoring and analyze the data via 
generalized linear models. Mattos and Migon (2001) uses the same censoring scheme proposed by 
Barbosa and Louzada-Neto (1994) and report a fully Bayesian analysis of the same data set under Type II 
censoring using Gibbs sampler and Inverse Power Law.  They assume a Gamma prior for the shape 
parameter and locally uniform priors for the proportionality constant and the exponent of the Power Law 
Model.  Leon et al. (2007) analyze a different set of accelerated life test data with random effects using 
Bayesian Weibull regression. They assume Gamma prior for the shape parameter and Normal priors for 
the proportionality constant and the exponent of the Power Law Model.  They also report a detailed and 
complete WinBUGS code for the Bayesian analysis.  

2. Problem 

This research was motivated by an article written by Zhang et al. (2012) on an ALT study of white 
organic light-emitting diodes. They analyzed the data (Table 1) using the Lognormal distribution and 
assuming the Inverse Power law. They report that testing under nominal conditions will take more than18 
months.  The failure was measured as less than 50% brightness from the initial intensity. Nominal level of 
stress is reported to be 3.20 mA. Their test consists of constant stress ALT experiment at three levels of 
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acceleration 9.64 mA, 17.09 mA, and 22.58 mA.  In an earlier paper in 2012 Zhang et al. explain that 9.64 
mA and 17.09 mA were constant stress test levels but data from a step-stress test with four levels were 
converted to pretend a constant stress at 22.58 mA.  They converted the step-stress data into constant 
stress failure times using a method described in Nelson (1980). This conversion of data assumes that “the 
remaining life of specimens depends only on the current cumulative fraction failed and current stress 
regardless how the fraction accumulated.” They used maximum likelihood methods to analyze the data.   
They concluded that the Lognormal distribution fit the ALT data well and the acceleration was consistent 
with the Inverse Power Law.  

 

2.1 Model 

Zhang et al. (2012) modeled the data using a Lognormal distribution with pdf 
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 and   is assumed to be a constant and the mean is modeled as 

 ln I    , where I is the current (stress) measured in mA.  

 

2.2 Data 

Table 1 displays the data from Zhang et al. (2012).  

Table 1 
  Failure times in hours 
Current 
Stress 

Stress 
Method 1t  2t  3t  4t  5t  6t  7t  8t  9t  10t  

9.46 
mA 

Constant 
Stress 

1691.5 2084.7 210.3 2374.5 2421.5 2586.0 2621.5 2680.5 2868.0 2879.5 

17.09 
mA 

Constant 
Stress 

601.5 689.7 697.3 716.5 785.5 854.5 889.5 1115.7 1131.3 1251.5 

22.58 
mA 

Converted 
 

529.67 543.24 592.63 615.33 629.80 741.30 781.30 816.30   

  

 

2.3 Estimates of Parameters 

Parameter estimates calculated at each level of stress from Zhang et al. (2012) are displayed in Table 2.  

Table 2 
Stress 9.64 mA 17.09 mA 22.58 mA 

𝜇�̂� (MLE) 7.7840 6.7445 6.3320 
𝜎�̂� (MLE Corrected for 

Bias) 
0.1669 0.2462 0.2229 
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They calculate the weighted average of the standard deviations using sample sizes as the weights and 
report it as 0 0.21161  .  Using the three points and plotting a straight line they derived a linear 

relationship between the mean  and the current I ,  11.6735 1.7223ln I   .  Then for the nominal 

current 0 3.20I  mA, average log life is equal to 0 9.6702  hours and therefore the average life 

2
0

1exp 16,196.6
2

  
 

   
 

 hours and median life  0.5 0exp 15,838t   hours.  

 

3. Bayesian Method 

Our objective of this research is to use fully Bayesian analysis to analyze the data reported by Zhang et al.  
First we used the OpenBUGS program to find equivalent numbers for the maximum likelihood estimators 
of parameters at each level.  OpenBUGS codes for this part is given in Appendix I. Then we used all the 
data to get a fully Bayesian estimation of parameters.   OpenBUGS codes for this part is given in 
Appendix II.     

 

3.1 Model Formulation 

We also assume the Lognormal distribution and model the mean as 21exp
2LN N

V 


  

 
   

 
 

where   and   are parameters of the Inverse Power Law, V is the stress, and N  and   are the 
parameters of the corresponding normal distribution. This equation can be rewritten as 

 0 1 lnN V     where   2
02 2ln     and 1  .  Parameter   is assumed to be constant 

and the mean is modeled as  0 1 lnN V    , where V I  is the current (stress) measured in mA.  

  

3.2 Comparison of MLE and Bayesian Estimates of the Parameters 

 

Table 3 
Stress Level  9.64 mA 17.09 mA 22.58 mA 
𝜇�̂� (MLE) 7.784 6.744 6.332 

𝜇�̂�(Bayesian)  7.784 6.744 6.332 
𝜎�̂� (MLE) 0.1669 0.2462 0.2229 

𝜎�̂� (Bayesian) 0.2083 0.2299 0.2020 
 

Maximum Likelihood Estimates and the Bayesian estimates of the mean are identical to 3 decimal places. 
Parameter   is assumed to be a constant and the Bayesian method produces more consistent estimates 
than the MLE estimates.  
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4. Results 

4.1 Overall Comparison 

 

Table 4 
Parameter or Quantity Estimated from Zhang et al. 

Paper 
Bayesian Estimates 

𝛽0 11.6735 11.66 
𝛽1 -1.7223 -1.718 
𝜎 0.2116 0.2118 
𝜇0 9.6702 9.6617 

Average life under 3.2 mA 16,196.6 hours 16,160.7 hours 
Median life under 3.2 mA 15,838 hours 15,704.5 hours 

 

 

5. Conclusions 

Parameter estimates of the Inverse Power Law are similar up to the first decimal place. Standard deviation 
parameter is similar up to the third decimal place.  For all practical purposes, the estimate of average life 
are less than 50 hours away from each other and the estimates of the median life are less than 150 hours 
away from each other. Bayesian method performs as well as Maximum Likelihood methods.      

OpenBUGS did not have any convergence issues and error estimates justified that the Lognormal and 
Inverse Power Model were appropriate ways to model the data.    
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Appendix I 

OpenBUGS Codes to Replicate Zhang et al. MLE Results at Each Level of Stress: 
 

(Using one data line at a time) 

Model { 

  for (j in 1:N) 

  { 

   z[j]<-log(y[j]) 

   z[j]~dnorm(mu, tau) 

   } 

  mu~dunif(5,15) 

  tau~dunif(10,30) 

 } 

#Data 

list(N=10, y=c(1691.5, 2084.7, 2100.3, 2374.5, 2421.5,2586, 2621.5, 2680.5, 2868, 2879.5)) 

#list(N=10,y=c(601.5, 689.7, 697.3, 716.5, 785.5, 854.5, 889.5, 1115.7, 1131.3, 1251.5))  

#list(N=9, y=c(406,440.50,463.50,532.50,555.50,643.67,651.33, 716.50, 762.50))  

#Init 

list( mu=10, tau=20) 
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Appendix II 

OpenBUGS Codes to Estimate Parameters using all the Data: 
 

model{ 

for (i in 1:N){ 

 mu[i]<- beta0+beta1*log(V[i])  

  for (j in 1:r[i]) 

  { 

        y[i,j]~dnorm(mu[i],tau) 

  } 

    } 

  beta1~dnorm(0,0.001) 

  beta0~dnorm(0,0.001) 

  tau~dgamma(0.001,0.001) 

          } 

#Data  

list(N=3, r=c(10,10,10), V=c(9.64, 17.09, 22.58), 

y=structure( 

.Data=c( 

7.4333, 7.6424, 7.6498, 7.7725, 7.7921, 7.8579, 7.8715, 7.8937, 7.9614, 7.9654, 

6.3994, 6.5362, 6.5472, 6.5744, 6.6663, 6.7505, 6.7907, 7.0172, 7.0311, 7.1321, 

6.0063, 6.0879, 6.1388, 6.2776, 6.3199, 6.4672, 6.4790, 6.5744, 6.6366,NA), 

.Dim=c(3,10) 

) 

)  

#Initial values 

list( beta0=15, beta1=-2, tau=25) 
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