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Abstract

In this paper we propose model-based penalties for smoothing spline density estimation

and inference. These model-based penalties incorporate indefinite prior knowledge that the

density is close to, but not necessarily in a family of distributions. We will use the Pearson and

generalization of the generalized inverse Gaussian families to illustrate the derivation of penalties

and reproducing kernels. We also propose new inference procedures to test the hypothesis that

the density belongs to a specific family of distributions. We conduct extensive simulations to

show that the model-based penalties can substantially reduce both bias and variance in the

decomposition of the Kullback-Leibler distance, and the new inference procedures are more

powerful than some existing ones.
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1 Introduction

Density estimation has been widely studied due to its principal role in statistics and machine 

learning. Many methods such as kernel (Silverman 1986), local likelihood (Loader 1999) and 

smoothing spline (Gu 2013) have been developed to estimate density functions nonparametrically. 

These nonparametric techniques allow data to speak for themselves.

Often there is prior information suggesting that the density function can be well approximated 

by a parametric family of densities. For example, it may be known that the density is close to, 

but not necessarily is a Gamma distribution. This kind of indefinite information has not been 

explored in the field of density estimation. In his classic book on density estimation, Silverman 

(1984) alluded that different penalties may be considered for different situations in the context 

of penalized likelihood density estimation. In particular, he suggested penalties to the second and 

third derivatives of the logarithm of the density so that zero penalties correspond to the exponential 

and normal density functions respectively. To the best of our knowledge, no research has been done 

to incorporate indefinite prior information into the construction of the penalties.

We will consider different penalties through L-splines in this paper. The L-spline has been 

developed to incorporate prior knowledge in nonparametric regression models. It is known that 

the L-spline can reduce bias in the estimation of a regression function (Wahba 1990, Heckman & 

Ramsay 2000, Wang 2011, Gu 2013). The goal of this paper is to develop novel density estimation 

methods that can incorporate indefinite prior knowledge and consequently lead to better estima-

tion procedures. In particular, we will consider model-based penalties for the Pearson family and 

the generalization of the generalized inverse Gaussian (GGIG) family, and derive penalties and
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reproducing kernels for some special cases in these families of distributions. We will show that the

model-based penalties can substantially reduce both bias and variance in the decomposition of the

Kullback-Leibler (KL) distance of smoothing spline estimates of density functions. Many methods

have been developed in the literature to test the hypothesis that the density belongs to a specific

family of distributions (Anderson & Darling 1954, Stephens 1974, Stephens 1986). We will develop

new inference procedures based on L-spline estimates. To the best of our knowledge, this paper is

the first to employ L-splines for density estimation and inference.

The remainder of the article is organized as follows. Section 2 reviews smoothing spline den-

sity estimation and L-splines. Sections 3 and 4 present model constructions for the Pearson and

GGIG families respectively. Section 5 introduces new inference procedures based on L-spline esti-

mates. Section 6 presents simulation studies to compare the proposed L-spline based estimation

and inference procedures with existing methods.

2 Smoothing Spline Density Estimation and L-Splines

2.1 Smoothing spline density estimation

Let X1, . . . , Xn be independent and identically distributed (iid) random samples with a probability

density f(x) on an interval [a, b]. We assume that f > 0 on [a, b]. To enforce the conditions of f > 0

and
∫ b
a f = 1 for a density function, throughout this article we will use the logistic transformation,

f = exp(g)/
∫
X exp(g), where g will be referred to as the logistic transformation of f (Gu 2013).

We will model and estimate the function g which is free of constraints.

Assume that g ∈ H where H is a reproducing kernel Hilbert space (RKHS). To make the logistic

transformation one-to-one, the constant functions are removed from the space H (Gu 2013). A
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popular choice of H is H = Wm
2 [a, b]	 {1} where

Wm
2 [a, b] = {f : f, f ′, . . . , f (m−1)are absolutely continuous,

∫ b

a
(f (m))2dx <∞} (1)

is the Sobolev space. In this article we assume that g ∈Wm
20 [a, b] where Wm

20 [a, b] = Wm
2 [a, b]	{1}.

A smoothing spline estimate of g is the minimizer of the penalized likelihood

− 1

n

n∑
i=1

g(Xi) + log

∫ b

a
egdx+

λ

2
J(g), (2)

in H, where J(g) is a square (semi) norm penalty. The solution to (2) does not fall in a finite

dimensional space. Let H = H0 ⊕ H1 where H0 = {g : J(g) = 0} and H1 is an RKHS with

reproducing kernel (RK) R1. Consider the finite-dimentional space H∗ = H0⊕ span{R1(Zj , .), j =

1, ..., q} where {Zj} is a random subset of {Xi}. As in Gu & Wang (2003) we will approximate the

solution to (2) by the solution in the finite dimensional space H∗. Gu & Wang (2003) showed that

with appropriate choice of q, the approximation is efficient in the sense that the estimates in the

whole model space H and the subspace H∗ have the same convergence rate. Asymptotic properties

were studied by Gu & Qiu (1993). We will use the approximate cross-validation estimate of the

relative KL distance to select the smoothing parameter λ. See Gu (2013) for details.

2.2 Model-based penalty and L-splines

As discussed in Section 2.1, in the construction of a smoothing spline model, one needs to decide

the penalty functional J(g), or equivalently, the null space H0 consisting of functions which are

not penalized. The most popular choice of the penalty is the roughness penalty with J(g) =∫ b
a (g(m))2dx. When m = 2 and m = 3 respectively, the null spaces H0 are the linear and quadratic

functions which correspond to the exponential and normal distributions suggested in Silverman

(1984).

Often there exists information suggesting that f can be well approximated by a parametric fam-
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ily of densities, and logistic transformation of density functions in this family satisfy the differential

equation Lg = 0 where

L = Dm +
m−1∑
j=1

ωj(x)Dj (3)

is a linear differential operator with m ≥ 1, Dj is the jth derivative operator, and ωi are continuous

real-valued functions. Two such families of distributions, Pearson and GGIG, will be discussed in

Sections 3 and 4.

An L-spline density estimate is the solution to (2) with penalty J(g) =
∫ b
a (Lg)2dx. Instead

of the standard roughness penalty, an L-spline uses a penalty constructed based on a parametric

model. The null space H0 corresponds to the specified parametric family of densities. Therefore, it

allows us to incorporate the information that g is close to, but not necessarily in the null space H0.

Heckman & Ramsay (2000) called H0 as the favored parametric model. We will show in Section 6

that the model-based penalty can lead to better estimates of density functions. We will construct

test procedures for the hypothesis that the density belongs to the specific parametric family in

Section 5.

Since g ∈ Wm
20 [a, b], Lg exists and is square integrable. There exists real-valued functions,

φ1, ..., φm, such that they form a basis of H0 = {g : Lg = 0}. Let

W (x) =



φ1(x) φ2(x) · · · φm(x)

φ′1(x) φ′2(x) · · · φ′m(x)

...
...

...

φ
(m−1)
1 (x) φ

(m−1)
2 (x) · · · φ

(m−1)
m (x)


be the Wronskian matrix associated with φ1, ..., φm, and

G(x, s) =


φT (x)φ∗(s), s ≤ x,

0, s > x,
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be the Green function associated with L where φ(x) = (φ1(x), . . . , φm(x))T and φ∗(x) = (φ∗1(x), . . . , φ∗m(x))T

is the last column of W−1(x). Then Wm
20 [a, b] is an RKHS under the inner product

(f, g) =

m−1∑
ν=0

f (ν)(a)g(ν)(a) +

∫ b

a
(Lf)(Lg)dx,

and Wm
20 [a, b] = H0 ⊕ H1, where H0 = span {φ1, . . . , φm} and H1 = {f ∈ Wm

20 [a, b] : f (ν)(a) =

0, ν = 0, . . . ,m− 1} are RKHS’s with corresponding RKs

R0(x, z) =φT (x){W T (a)W (a)}−1φ(z), (4)

R1(x, z) =

∫ b

a
G(x, s)G(z, s)ds. (5)

See Wang (2011) for details.

3 L-spline for Pearson Family of Distributions

The Pearson family is a continuous distribution system proposed by Karl Pearson (Pearson 1894).

A Pearson density function f(x) is any valid solution to the Pearson differential equation

1

f(x)

df(x)

dx
+

a0 + (x− a5)
a1(x− a5)2 + a2(x− a5) + a3

= 0, (6)

where a0 = a2 =
√
µ2β1(β2 + 3)/(10β2 − 12β1 − 18), a1 = (2β2 − 3β1 − 6)/(10β2 − 12β1 − 18),

a3 = µ2(4β2 − 3β1)/(10β2 − 12β1 − 18), β1 is the skewness, β2 is the kurtosis, and µ2 is the

second central moments. Pearson identified 12 types of distributions based on different values of

parameters. The Pearson family includes most commonly used distributions such as the uniform,

exponential, normal, Gamma, Beta, inverse Gamma, Student’s t and Cauchy distributions.

It is not difficult to show that the logistic transformation of density function in the Pearson

family satisfy the differential equation Lg = 0 where

L = D3 +
2(2a1(x− a5) + a2)

D2 +
2a1

a1(x− a5)2 + a2(x− a5) + a3
D. (7)

a1(x − a5)2 + a2(x − a5) + a3 
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Therefore we can construct model-based penalties using (7) for densities in the Pearson family.

Explicit constructions can be derived for many special cases. We illustrate two such cases in the

following two subsections.

3.1 Gamma distribution

The Gamma distribution (denoted as Gamma(α, β)) has density function

f(x) =
βα

Γ(α)
xα− 1e−βx, x > 0, (8)

where α > 0 and β > 0 are the shape and rate parameters, and Γ is the Gamma function.. It is a

special case of the Pearson family (type III) with a1 = a3 = a5 = 0, a2 = 1/β and a0 = −a2(α−1).

The logistic transformation of the density g(x) = −βx+ (α− 1) log(x).

Now consider the L-spline with model space g(x) ∈W 3
20[a, b] and differential operator

L = D3 +
2

x
D2. (9)

As the domain of the Gamma distribution is (0,∞), we set a to be a small value closed to 0 and

b large enough to cover all observations. The same method will be used for other distributions

in the rest of this paper which are not defined on compact intervals. It can be shown that H0 =

span{x, log(x)} and the RK of H1

R1(x, z) = [1 + log(z) + log(x) + log(z) log(x)]I4(x ∧ z)− [z + x+ z log(x) + x log(z)]I3(x ∧ z)

+xzI2(x ∧ z) + I4,2(x ∧ z)− [2 + log(z) + log(x)]I4,1(x ∧ z) + (z + x)I3,1(x ∧ z),

where x∧z = min(x, z), Ip(s) =
∫ s
0 x

pdx = sp+1/(p+1), and Ip,k(s) =
∫ s
0 x

p[log(x)]k = sp+1[log(s)]k/(p+

1)− kIp+1,k−1(s)/(p+ 1). A brief derivation of the RK can be found in Appendix A.
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3.2 Beta distribution

The Beta distribution has the density function

f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 ≤ x ≤ 1, (10)

where α > 0 and β > 0 are the shape parameters. It is a special case of the Pearson family (type

I) with a5 = a3 = 0, a1 = −a2, α = a0/a1 + 1 and β = (a0− 1)/a1 + 1. The logistic transformation

g(x) = (α− 1) log(x) + (β − 1) log(1− x).

Now consider the L-spline with model space g(x) ∈W 3
20[a, b] and differential operator

L = D3 +
2(2x− 1)

x(x− 1)
D2 +

2

x(x− 1)
D. (11)

It can be shown that H0 = span{log(x), log(1− x)}, and the RK of H1

R1(x, z) = [log(z) log(1− x) + log(x) log(1− z)]I(x ∧ z; 3, 3, 0, 0)

+ log(1− x) log(1− z)I(x ∧ z; 2, 4, 0, 0) + log(x) log(z)I(x ∧ z; 4, 2, 0, 0)

+I(x ∧ z; 2, 4, 0, 2)− (log(x) + log(z))I(x ∧ z; 3, 3, 0, 1)

−[log(1− x) + log(1− z)]I(x ∧ z; 2, 4, 0, 1)

+I(x ∧ z; 4, 2, 2, 0)− [log(x) + log(z)]I(x ∧ z; 4, 2, 1, 0)

−[log(1− x) + log(1− z)]I(x ∧ z; 3, 3, 1, 0) + 2I(x ∧ z; 3, 3, 1, 1),

where

I(y;m1,m2,m3,m4) =

∫ y

0
xm1(1− x)m2 log(x)m3 log(1− x)m4dx.

A brief derivation of the RK is given in Appendix B.

4 L-spline for GGIG Family

Shakil, Kibria & Singh (2016) proposed the GGIG family of distributions to include some other 

commonly used distributions such as the inverse Gaussian, generlized inverse Gaussian (GIG), 
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Rayleigh and half-normal distributions which are not in the Pearson family. A GGIG density

function f(x) is the solution to the following differential equation

1

f(x)

df(x)

dx
=
a0 + apx

p + a2px
2p

xp+1
, x > 0. (12)

The solution to the differential equation (12) is f(x) = Cxτ1−1 exp(−τ2xp − τ3x−p) where τ2 ≥ 0,

τ3 ≥ 0, τ1 = ap + 1, τ2 = −a2p/p, τ3 = a0/p, and C is the normalizing constant. Then g(x) =

(τ1 − 1) log(x)− τ2xp − τ3x−p which satisfies the differential equation Lg = 0 where

L =

p+1∑
k=0

(
2p+ 1

k

)(
Dkxp+1

)
D2p+2−k. (13)

The null space H0 = span{log(x), x, . . . , xp, x−1, . . . , x−p}.

We now consider the special case with p = 1 which includes many commonly used distributions

such as the inverse Gaussian (IG) (τ1 = −0.5), GIG, reciprocal IG (τ1 = 0.5), hyperbolic (τ1 = 1),

Gamma (τ3 = 0), inverse Gamma (τ1 = 0), Erlang (τ1 > 0 and is an integer, τ3 = 0), and

exponential (τ1 = 1 and τ3 = 0). In this case we have g(x) = (τ1 − 1) log(x)− τ2x− τ3x−1 and

L = D4 + 6x−1D3 + 6x−2D2. (14)

It is not difficult to show that H0 = span{log(x), x, x−1} and the RK of H1 is

R1(x, z) =
1

36xz
(x ∧ z)9 − 1

16
(x ∧ z)8 log(x ∧ z)

(
1

x
+

1

z

)
+

1

16
(x ∧ z)8

(
1

8x
+

1

8z
+

1

z
log(x) +

1

x
log(z)

)
−1

7
(x ∧ z)7 log(x ∧ z)

(
2

7
+ log(x) + log(z)

)
+

1

7
(x ∧ z)7 log(x ∧ z)2

+
1

7
(x ∧ z)7

(
2

49
− z

4x
− x

4z
+

1

7
log(x) +

1

7
log(z) + log(x) log(z)

)
+

1

12
(x+ z)(x ∧ z)6 log(x ∧ z)− 1

12
(
x

6
+ x log(z) +

z

6
+ z log(x))(x ∧ z)6 +

1

20
(x ∧ z)5xz.

A brief derivation of the RK is given in Appendix C.
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5 Inference of Density Using L-splines

Effective assessment of goodness-of-fit (GOF) and formal inference for a density function is critical

in applications (Romantsova 1996, Del Castillo & Puig 1997, Lehmann & Romano 2006). In this

section we consider the problem of deciding whether the density belongs to a parametric family of

distributions. Let X1, . . . , Xn be iid samples with a density f(x) on an interval [a, b]. We consider

the null hypothesis H0 : f ∈ F0 versus the alternative hypothesis H1 : f /∈ F0 where F0 is a specific

family of distributions. We assume that there exists a differential operator L as in (3) such that

Lg = 0 for all f ∈ F0 where g is the logistic transformation f . Note that the null hypothesis H0 is

eqivalent to g ∈ H0.

5.1 Modified Anderson-Darling, Cramer-von Mises and Kolmogorov-Smirnov

tests

A quadratic norm statistic based on the empirical distribution (EDF) is defined as

Q = n

∫ ∞
−∞

(Fn(x)− F0(x))2w(x) dF0(x),

where Fn is the EDF, F0 is an estimate of the cumulative density function (CDF) under the null 

hypothesis, and w(x) is a weight function. Two well-konwn special cases are the Anderson-Darling 

(AD) and Cramer-von Mises (CVM) statistics with w(x) = [F0(x) (1 − F0(x))]−1 and w(x) = 1 

respectively (Stephens 1986).

Denote the CDF associated with the L-spline estimate of the density function as Fs(x). Since 

L-splines with penalties constructed from specific families of distributions may provide better es-

timates of density functions (see Section 6), a natural extension of the AD and CVM statistics is 

to replace the EDF Fn in the quadratic norm statistic and weight function by Fs. The resulting 

modified testing methods are refered to as AD-L and CVM-L.
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Kolmogorov-Smirnov test statistic is defined as

KS = sup
x
|Fn(x)− F0|. (15)

Again, we can construct a new test statistic by replacing Fn with Fs(x). The resulting modified

testing method is refered to as KS-L.

5.2 Likelihood ratio and Kullback-Leibler tests

The likelihood ratio (LR) statistic is

LRT = 2(ls − l0) (16)

where ls is the log-likelihood with the L-spline density estimate, and l0 is the log-likelihood with

MLE estimates of the parameters under the null hypothesis.

The KL distance between two density functions f1 and f2 is defined as

KL(f1, f2) =

∫ b

a
f1(x) log

f1(x)

f2(x)
dx. (17)

Let f0 be the estimated density under the null hypothesis, and fs be the L-spline estimate of the 

density function. We will then use the KL distance between f0 and fs, KL(f0, fs), as the KL test 

statistic.

6 Simulations

In this section, we conduct simulations to evaluate the proposed estimation and inference methods 

and compare them with existing methods. The function ssden in the R package gss is used to 

compute smoothing spline estimates of density functions (Gu 2013).

We will compare the estimation performance between the L-spline and cubic spline models. 

Denote f as the true density and f̂  as an estimate. We will use the KL distance KL(f, f̂) to assess
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the performance of estimation. We will use the generalized decomposition

E(KL(f, f̂)) = KL(f, f̄) + E(KL(f̄ , f̂)) = bias + variance (18)

proposed by Heskes (1998) to evaluate the bias-variance trade-off where f̄ = exp[E(log f̂)]/Z and

Z is a normalization constant.

For density inference we will consider eight methods: Anderson-Darling (AD), Cramer-von Mises

(CVM), Kolmogorov-Smirnov (KS), modified AD (AD-L), modified CVM (CVM-L), modified KS

(KS-L), likelihood ratio (LR) and Kullback-Leibler (KL) tests. We will use the bootstrap method

to approximate null distributions for all tests where the number of bootstrap samples is set to be

1000.

We will present results for two distributions, Gamma and inverse Guassian, as the favored

parametric models. We will consider three sample size, n = 100, n = 200 and n = 300. Results for

other distributions and sample sizes are similar. We generate 100 data replicates for each simulation

setting.

6.1 Gamma distribution as the favored parametric model

The generalized Gamma family has the density function

f(x;α, β, δ) =
δβα

Γ(α/δ)
xα−1e−(βx)

δ
, α > 0, β > 0, δ > 0, x > 0. (19)

The Gamma distribution Gamma(α, β) is a special case with δ = 1. We set α = 2 and β = 1 in our 

simulations, and consider three choices of δ: δ = 1, δ = 2, and δ = 3 which reflect different degree 

of closeness to the Gamma distribution.

For each simulated data set, we compute the L-spline estimate of the density where L is given 

in (9) and the cubic spline estimate of the density. Table 1 lists biases, variances, and KL distances 

for the L-spline and cubic spline estimates under different simulation settings. The L-spline with
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model-based penalty has smaller biases, variances, and KL distances than the cubic spline when

δ = 1 and δ = 2. As expected, the improvement is larger when the true distribution is closer to the

Gamma distribution.

δ Model
n=100 n=200 n=300

Bias Var KL Bias Var KL Bias Var KL

1
Cubic 15.84 19.64 35.48 10.29 13.39 23.68 7.68 10.48 18.16

L-spline 0.94 13.31 14.25 0.53 6.20 6.73 0.13 4.61 4.74

2
Cubic 7.61 15.07 22.68 5.98 9.30 15.28 4.14 7.07 11.21

L-spline 1.78 16.05 17.83 0.92 9.76 10.67 0.89 6.22 7.11

3
Cubic 3.18 17.40 20.58 3.05 8.13 11.18 1.89 6.78 8.67

L-spline 3.17 17.62 20.79 2.37 9.52 11.89 1.41 6.36 7.77

Table 1: Biases, variances, and KL distances in 10−3 with the generalized Gamma distribution.

For density inference we consider the null hypothesis that the distribution is Gamma. Table

2 lists powers of eights test methods with significance level set at 5%. The powers are the type I

errors when δ = 1. It is clear that all methods have type I errors smaller or close to 5%. With the

EDF being replaced by the L-spline estimte, the modified AD, CVM and KS testsin general have

larger powers than those from the original tests.

Table 3 lists more simulation results for testing the null hypothesis of a Gamma distribution

against one of the distributions listed below:

1. The inverse gaussian distributionis defined in (21). We set κ = 1 and denote the density as

IG(µ).

2. The lognormal distribution with density

f(x;µ, σ) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 . (20)
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δ Sample Size AD AD-L CVM CVM-L KS KS-L LRT KL

0.6

100 0.19 0.10 0.18 0.04 0.14 0.16 0.15 0.27

200 0.37 0.29 0.34 0.19 0.31 0.36 0.32 0.46

300 0.58 0.37 0.58 0.47 0.38 0.55 0.54 0.64

1

100 0.06 0.06 0.05 0.05 0.05 0.04 0.06 0.05

200 0.04 0.05 0.06 0.04 0.05 0.04 0.05 0.05

300 0.04 0.02 0.04 0.01 0.04 0.01 0.01 0.01

2

100 0.13 0.17 0.15 0.16 0.17 0.14 0.17 0.14

200 0.38 0.48 0.30 0.47 0.24 0.46 0.45 0.42

300 0.47 0.56 0.45 0.56 0.33 0.56 0.53 0.53

3

100 0.25 0.32 0.22 0.31 0.17 0.32 0.31 0.31

200 0.48 0.67 0.39 0.64 0.32 0.64 0.66 0.66

300 0.66 0.77 0.61 0.76 0.53 0.75 0.75 0.76

Table 2: Powers of eight test methods for the Gamma distribution.

We set µ = 0, and denote the density as LN(σ) .

3. The Gompertz distribution with density

f(x; η, b) = bηebxeη exp
(
−ηebx

)
bηebxeη exp

(
−ηebx

)
.

We set b = 1, and denote the density as GO(1/η) .

4. The linear failure rate distribution with density

f(x; θ) = (1 + θx) exp

(
−x− θx2

2

)
.

We denote it as LF (θ).
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We also calculate the skewness of each distribution. When the distributions under the alterna-

tive are GG(0.6,2), IG(1), IG(1.5) and LN(0.8) with which the skewness is greater than the Gamma

distribution under the null (GG(1,2)), the KL statistic is more powerful. When the distributions

under the alternative are GG(2,2), GG(3,2), GO(2), GO(4), LF(2) and LF(4) whose skewness is

less than the Gamma distribution (GG(1,2)), the AD-L statistic is more powerful. We note that

this pattern also holds for results listed in Table 2.

6.2 Inverse Gaussian distribution as the favored parametric model

The inverse Gaussian (IG) has density function

f(x;µ, κ) =
( κ

2πx3

)1/2
exp

{
−κ(x− µ)2

2µ2x

}
, x > 0, (21)

where µ > 0 is the mean and κ > 0 is the shape parameter. It belongs to the GGIG family with

p = 1, τ1 = −0.5, τ2 = 0.5κ/µ2, and τ3 = κ/2. We set τ2 = τ3 = 2 in our simulations, and consider

three choices of p: p = 1, p = 2 and p = 3 in (12), which reflect different degrees of closeness to the

inverse Gaussian distribution.

For each simulated data set, we compute the L-spline estimate of the density where L is given in

(14) and the cubic spline estimate of the density. Table 4 lists biases, variances, and KL distances

for the L-spline and cubic spline estimates under different simulation settings. The L-spline with

model-based penalty has smaller biases, variances, and KL distances than the cubic spline for all

settings except when p = 3 and n = 100.

For density inference we consider the null hypothesis that the distribution is IG. We generate

iid samples from the generlized inverse Gaussian (GIG) density

f(x) =
(α0/α1)

ζ/2

2Kζ(
√
α0α1)

x(ζ−1)e−
(α0x+α1/x)

2 , α0 > 0, α1 > 0, x > 0, (22)

where Kζ is a modified Bessel function of the second kind. The IG is a special case of GIG 
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Distribution Size AD AD-L CVM CVM-L KS KS-L LRT KL

IG(1)

30 0.36 0.25 0.32 0.37 0.29 0.38 0.32 0.38

50 0.51 0.42 0.41 0.53 0.39 0.54 0.53 0.58

100 0.83 0.81 0.81 0.84 0.66 0.85 0.87 0.89

IG(1.5)

30 0.20 0.23 0.19 0.24 0.19 0.23 0.18 0.26

50 0.30 0.33 0.27 0.37 0.21 0.38 0.28 0.40

100 0.68 0.69 0.65 0.72 0.48 0.73 0.74 0.77

LN(0.8)

30 0.21 0.21 0.17 0.31 0.10 0.31 0.21 0.30

50 0.30 0.33 0.30 0.39 0.25 0.41 0.31 0.42

100 0.60 0.60 0.57 0.60 0.47 0.64 0.61 0.68

GO(2)

30 0.32 0.54 0.31 0.43 0.28 0.42 0.30 0.30

50 0.59 0.79 0.57 0.75 0.48 0.78 0.64 0.69

100 0.91 0.99 0.88 0.99 0.70 0.99 0.95 0.98

GO(4)

30 0.49 0.66 0.45 0.53 0.39 0.52 0.47 0.41

50 0.70 0.85 0.68 0.81 0.49 0.80 0.75 0.74

100 0.96 1.00 0.96 1.00 0.91 1.00 0.98 0.99

LF(2)

30 0.15 0.24 0.15 0.20 0.15 0.17 0.21 0.14

50 0.24 0.43 0.20 0.29 0.18 0.32 0.26 0.23

100 0.42 0.60 0.40 0.58 0.39 0.58 0.50 0.50

LF(4)

30 0.19 0.32 0.18 0.16 0.16 0.23 0.18 0.13

50 0.16 0.35 0.16 0.24 0.11 0.26 0.16 0.14

100 0.58 0.81 0.51 0.74 0.41 0.80 0.63 0.65

Table 3: Powers of eight test methods for the Gamma distribution under different alternatives.
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p Model
n=100 n=200 n=300

Bias Var KL Bias Var KL Bias Var KL

1
Cubic 40.51 2.32 42.84 50.69 1.58 52.27 43.86 1.11 44.97

L-spline 7.51 1.67 9.18 4.72 0.88 5.60 1.85 0.54 2.39

2
Cubic 44.39 1.72 46.11 44.55 1.01 45.55 45.91 0.82 46.72

L-spline 13.59 1.49 15.07 9.07 0.89 9.96 4.07 0.82 4.89

3
Cubic 46.11 1.44 47.55 51.23 0.85 52.08 54.30 0.70 55.00

L-spline 65.28 1.86 67.15 29.34 1.79 31.13 35.74 0.45 36.19

Table 4: Biases, variances, and KL distances in 10−2 with the GIGG family.

with ζ = −0.5. We set α0 = 3 and α1 = 3 in the simulation, and consider five choices of ζ: 

ζ = −3, −2, −0.5, 2 and 3 which reflect different degrees of departure from the IG distribution. 

Table 5 lists powers of seven test methods with significance level set at 5%. The AD-L statistic 

cannot be calculated since the estimate of F0(x) (1 − F0(x)) is close to zero. The powers are the 

type I errors when ζ = −0.5. It is clear that all methods have type I error smaller or close to 5%. 

Again, the modified CVM and KS tests have larger powers than those from the original tests.

7 Conclusion

In this paper, we proposed model-based penalities for smoothing spline density estimation and 

inference. It successfully incorporates indefinite prior information about the density in density 

estimation and inference process. Two examples, respectively from Pearson and GGIG family, 

are used to show the derivation. The simulation results in Table 1 and 4 show the reduction of 

KL divergence, including both bias and variance, of density estimation from the new model-based 

penalities. And Table 2, 3 and 5 show the modification of test power using the proposed model.
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ζ Sample Size AD CVM CVM-L KS KS-L LRT KL

-0.5

300 0.05 0.03 0.06 0.06 0.06 0.03 0.08

200 0.06 0.05 0.01 0.05 0.02 0.04 0.02

100 0.04 0.04 0.02 0.03 0.03 0.03 0.05

3

300 0.54 0.48 0.67 0.36 0.67 0.54 0.54

200 0.37 0.32 0.44 0.29 0.42 0.35 0.35

100 0.19 0.2 0.24 0.1 0.22 0.15 0.16

2

300 0.34 0.32 0.37 0.22 0.36 0.26 0.28

200 0.34 0.29 0.38 0.25 0.38 0.25 0.29

100 0.16 0.15 0.18 0.11 0.19 0.12 0.08

-3

300 0.19 0.21 0.34 0.18 0.34 0.21 0.21

200 0.16 0.17 0.23 0.15 0.23 0.17 0.19

100 0.14 0.12 0.14 0.12 0.14 0.17 0.15

-2

300 0.06 0.06 0.14 0.06 0.14 0.06 0.06

200 0.13 0.14 0.15 0.13 0.14 0.08 0.08

100 0.12 0.12 0.11 0.08 0.12 0.09 0.09

Table 5: Powers of seven test methods for the IG distribution.
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Appendix A Derivation of a Reproducing Kernel for the Gamma

Distribution

To save space we show a brief derivation of the RK for the Gamma distribution. Since H0 =

{1, x, log(x)} (the constant function will be removed after this construction), the Wronskian matrix

is

W (x) =


1 x log(x)

0 1 1/x

0 0 − 1
x2

 , (A.1)

and

W−1(x) =


1 −x −x2 + x2 log(x)

0 1 x

0 0 −x2

 . (A.2)
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The Green function is

G(t, s) = −s2 + s2 log(s) + ts− s2 log(t) (s <= t). (A.3)

Thus, the RK of H1 is

R1(x, z) =

∫ T

0
G(x, s)G(z, s)ds

=(1 + log(z) + log(x) + log(z) log(x)) ∗ I4(x ∧ z)

− (z + x+ z log(x) + x log(z)) ∗ I3(x ∧ z)

+ xzI2(x ∧ z)

+ I4,2(x ∧ z)

− (2 + log(z) + log(x)) I4,1(x ∧ z)

+ (z + x)I3,1(x ∧ z),

(A.4)

where x ∧ z = min(x, z), and

Ip(s) =

∫ s

0
xpdx =

1

p+ 1
(s)p+1

Ip,k(s) =

∫ s

0
xp log(x)k =

1

p+ 1
(s)p+1 log(s)k − k

p+ 1
Ip+1,k−1(s).

(A.5)

Appendix B Derivation of a Reproducing Kernel for the Beta Dis-

tribution

To save space we show a brief derivation of the RK for the Beta distribution. Given the differential

operator L in equation (11), the Wronskian matrix asscociated with H0 is

W (x) =


1 log(x) log(1− x)

0 1/x 1/(x− 1)

0 − 1
x2

− 1
(x−1)2

 , (A.6)
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and

W−1(x) =


1 (x− 1)2 log(1− x)− x2 log(x) x(x− 1) [(x− 1) log(1− x)− x log(x)]

0 x2 x2(x− 1)

0 −(x− 1)2 −x(x− 1)2

 . (A.7)

The Green function is

G(t, s) = s(s−1) [(s− 1) log(1− s)− s log(s)]+s2(s−1) log(t)−s(s−1)2 log(1−t), s <= t. (A.8)

Then, the RK of H1 is

R1(x, z) =

∫ x∧z

0
G(x, s)G(z, s)ds

=(log(z) log(1− x) + log(x) log(1− z))I(x ∧ z; 3, 3, 0, 0)

+ log(1− x) log(1− z)I(x ∧ z; 2, 4, 0, 0) + log(x) log(z)I(x ∧ z; 4, 2, 0, 0)

+ I(x ∧ z; 2, 4, 0, 2) + (log(x) + log(z))I(x ∧ z; 3, 3, 0, 1)

− (log(1− x) + log(1− z))I(x ∧ z; 2, 4, 0, 1)

+ I(x ∧ z; 4, 2, 2, 0)− (log(x) + log(z))I(x ∧ z; 4, 2, 1, 0)

− (log(1− x) + log(1− z))I(x ∧ z; 3, 3, 1, 0)

+ 2I(x ∧ z; 3, 3, 1, 1),

(A.9)

where

I(y;m1,m2,m3,m4) =

∫ y

0
xm1(1− x)m2 log(x)m3 log(1− x)m4dx. (A.10)

Appendix C Derivation of a Reproducing Kernel for the GGIG

Family

To save space we show a brief derivation of the RK for the GGIG family with p = 1 only. Note that L 

= D4 + 6x−1D3 + 6x−2D2 and H0 = span{1, log(x), x, x−1}. The Wronskian matrix asscociated 
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with H0 is

W (x) =



1 x x−1 log(x)

0 1 −x−2 x−1

0 0 2x−3 −x−2

0 0 −6x−4 2x−3


, (A.11)

and

W−1(x) =



1 −x −x2 + 3x2 log(x) x3 log(x)

0 1 2x .5x2

0 0 −x3 −.5x4

0 0 −3x2 −x3


. (A.12)

The Green function is

G(t, s) = −s
4

2t
+
s2t

2
+ s3 log(s)− s3 log(t), s ≤ t. (A.13)

Thus, the RK of H1

R1(x, z) =

∫ T

0
G(x, s)G(z, s)ds

=
1

36xz
(x ∧ z)9 − 1

16
(x ∧ z)8 log(x ∧ z)

(
1

x
+

1

z

)
+

1

16
(x ∧ z)8

(
1

8x
+

1

8z
+

1

z
log(x) +

1

x
log(z)

)
−1

7
(x ∧ z)7 log(x ∧ z)

(
2

7
+ log(x) + log(z)

)
+

1

7
(x ∧ z)7 log(x ∧ z)2

+
1

7
(x ∧ z)7

(
2

49
− z

4x
− x

4z
+

1

7
log(x) +

1

7
log(z) + log(x) log(z)

)
+

1

12
(x+ z)(x ∧ z)6 log(x ∧ z)− 1

12
(
x

6
+ x log(z) +

z

6
+ z log(x))(x ∧ z)6 +

1

20
(x ∧ z)5xz.
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