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Abstract 

While software has replaced the need for tables in statistics courses, many statistical 

programs do not go far enough.   Some programs have several separate functions for each 

distribution, and some only calculate cumulative probabilities.  Ideally, a software program 

should have exactly one function per distribution.  Combining this distribution function 

with a relation allows us to calculate a whole host of probabilities consistently.  The secret 

is in the use of operators which modify functions or combine two functions to produce 

another function.  While operators may seem esoteric to many, the resulting syntax appears 

surprisingly English-like. For example, to find the probability that a randomly-selected 

student is taller than 6 feet, given a normal distribution with mean and standard deviation 

of 68 and 3 inches respectively, we simply state:  

 
68 3 normal probability > 72 

 

which produces a value of 0.09121.    This syntax is easily implemented in a functional 

programming language such as APL.    
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1. Basic Concepts 

 

Most of the operations in statistics can be reduced to the concepts of arrays, functions and 

operators described by Iverson in [2]. 

 

Arrays consist of scalars, vectors and matrices.  A scalar is a single value such as 2.   A 

vector is a list of values such as (5,8,3,2) and a matrix is a table of values.   

 

Functions may be monadic (take one argument) or dyadic (take a left and right argument).   

Examples of monadic functions include ln 𝑥 or  |𝑥|.   Dyadic functions include the four 

common arithmetic functions  +,−,×,÷.    The domains of functions which normally take 

scalar arguments have been extended to allow item-by-item calculations on vectors.  Some 

functions may treat vectors and matrices as a whole; i.e. the function mean calculates the 

average of the values in its vector right argument.  

 

An operator may take one or two functions as input to produce a different function.    

Mathematical examples of a monadic operator include the derivative 𝑓′(𝑥) and the inverse  

𝑓−1(𝑥).    Some examples of dyadic operators are function composition   𝑓°𝑔 ,  and 

generalized inner product 〈𝑓, 𝑔〉.  Other examples of operators are listed in [3] and [5].   

 

In the examples in the next section, each variable begins with a capital letter (e.g. Height 

or STATE ) to distinguish it from a function or operator which begins with a lower-case 

letter (e.g. binomial or criticalValue) or symbol (e.g +).    
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2. Statistical Functions 

 

There are four basic types of statistical functions:   summary functions, distributions, 

relational functions and logical functions.   In this paper, we will look primarily at 

distributions and relational functions.  

 

A summary function is a monadic function which takes a vector as its argument and 

produces a scalar as its result.   Examples include mean, median and standard deviation.    

A summary function applied to a population produces a parameter; when it is applied to a 

sample it produces a statistic.    The mathematical form of a summary function is: 

𝑦 = 𝑓(𝑥1,⋯,𝑥𝑛) 
 

There are two types of distributions, discrete and continuous.   Each can be characterized 

as a function:   the probability mass function defines a discrete distribution, while the 

density function defines a continuous distribution.   These functions are dyadic functions 

whose left argument is a vector of parameters and whose right argument is either a scalar 

or a vector.  The result is the probability mass or density corresponding to each item in the 

right argument.   

 

A mathematical relation between two values is either true or false.   Iverson [5] defined 

relations as dyadic functions whose domain is numeric and whose range is Boolean.    The 

Boolean value 1 represents truth, and 0 represents falsehood.     Thus, the expression    5>2 

results in the value 1, whereas 3<3 results in 0. 

 

Logical functions bind propositions together; they include not, and, or, and if.  Both 

the domain and range of logical functions are Boolean.  Since the results of logical and 

relational functions are {0,1}, the results can be used directly in mathematical expressions 

since they do not need to be converted to numeric.   

 
3. Statistical Operators 

 
Unfortunately, the density function and to some extent the probability mass function 

produce results that are not always useful in some applications.   Statistical operators were 

designed to modify these functions to extract important information from them such as 

critical values and cumulative probabilities.  Operators are a useful mathematical construct 

developed by Iverson in 1979 for the computer language APL [1].   

 
Let us look at the normal distribution.  The function normal gives us the density for the 

standard normal distribution, e.g. 

 
     normal 1.25 
0.1826490854 

 
Since this is not a probability, it is not meaningful to students.   In most textbooks, the 

normal distribution is usually displayed as a cumulative probability table.    So, we use the 

probability operator using the left operand normal and the right operand “<” to produce 

useful output: 

 
    normal probability < 1.25 
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0.8943501801  

 
The operator probability combines the distribution function normal with the 

relational function “<” to produce the cumulative normal distribution function : 

 
(normal probability <) 

 

which is then applied to the numeric argument 1.25.  To find the upper-tail probability, one 

could subtract the result from one: 

 
              1-normal probability < 1.25 
0.1056498199 

 

But it’s much easier to change the right operand to “>” and get the answer directly:  

 
          normal probability > 1.25 

0.1056498199 

     

 Suppose we wish to find the following normal probability:  𝑃(1.25 < 𝑍 < 1.75).  This 

usually requires three steps:   finding 𝑃(𝑍 < 1.75), finding 𝑃(𝑍 < 1.25) and subtracting 

the two values.   However, we can simply change the right operand of probability to 

between and get the appropriate result: 

 
             normal probability between 1.25 1.75 
0.06559071228 

 

One of the more difficult tasks for students is to find a critical value which cuts off a certain 

percentage of values.    Suppose we want to find the critical value which cuts off the top 

5% of values.  This becomes much easier when we define the criticalValue operator:  

      
    normal criticalValue < 0.05 

1.6448534   

 

The rationale for the above expression is we want the critical value of the normal 

distribution which is less than 5% of all values.  We could obtain the same result by asking 

for the critical value which is greater than 95% of all values: 

 
           normal criticalValue > 0.95 
1.6448534 

 

Now let’s look at a real-world problem:   A brewery produces 12-ounce bottles of beer.      

Quality assurance draws a sample and finds that the mean amount of beer in each bottle is 

12.13 oz. with a standard deviation of 0.06 oz.  What is the probability that a randomly 

selected bottle of beer will contain less than 12 ounces?  

 

Instead of converting 12 oz to standard normal units, we simply assign a left argument to 

the normal function consisting of the mean and standard deviation: 

 
          12.13 0.06 normal probability < 12 

0.01513008392          
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The probability of a bottle containing less than 12 ounces is 1.513%  

 

Let’s try an example with a discrete distribution.   A commuter plane seats 20 passengers.    

10% of passengers with reservations fail to show up.    The airline overbooks by issuing 

21 reservations.  What is the probability that they will have to throw a passenger off the 

plane?  This would be the binomial probability that exactly 21 passengers show up.   This 

is a binomial distribution with 𝑛 = 21 and 𝑝 = 0.9, so we use the binomial function with 

a left argument consisting of the two-item parameter vector (21,0.9): 
 
     21 0.9 binomial probability = 21 

0.1094189891 

          

This will happen about 10% of the time.  Suppose the airline decides to issue 22 

reservations.   In this case we want to know the probability that more than 20 passengers 

show up:  

 
         22 0.9 binomial probability > 20 

0.3391988663 

  

The airline will have to bump at least one passenger about a third of the time.   We can 

simulate passenger arrivals by using generating binomial random variables, by using the 

randomVariable operator: 

 
             21 0.9 binomial randomVariable 20 
18 19 20 17 20 19 19 20 21 18 20 20 20 20 20 19 21 18 20 17  

 

We see that two times out of 20 we had 21 passengers show up which agrees with the 10% 

probability figure.  

 
      22 0.9 binomial randomVariable 20 

17 22 20 19 22 19 19 21 18 16 21 19 19 21 21 21 16 19 18 20 

 

In this example, we see that 7 out of 20 times we had to turn away at least one ticketed 

passenger which is close to the 1/3 estimate.   

 

To find the expected value we use the theoretical operator with the summary function 

mean: 

 
      22 0.9 binomial theoretical mean '' 

19.8  

 
The variance of the distribution can be found similarly:  

 
     22 0.9 binomial theoretical var '' 

1.98 

 
In statistical inference, we often use the Student-t, chi-Square and F distributions.   The 

tables for these distributions display critical values.  We can use the critical value operator 

to obtain these values.   The degrees of freedom are the left argument(s) to these functions: 
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      7 tDist criticalValue outside .95 
2.364624256  

      7 chiSquare criticalValue < .05 

14.06714045 

      3 8 fDist criticalValue < .05 

4.066180551 

 
Other than the normal distribution, most statistical tables do not give us p-Values.  

However, we can use the probability operator to obtain them.   

 
      7 tDist probability outside 2.36  
0.05034128863 

       7 chiSquare probability > 14 

0.05118135341 

       3 8 fDist probability > 4 

0.05189367685 

 

Finally, we can perform goodness of fit tests on various distributions.    First we’ll generate 

some data.  The diagraph <- is used to assign the name X to the data. 

 
       X <- 25 0.5 binomial randomVariable  100 
 

Then we’ll use the goodnessOfFit operator to test whether the data seem to be 

uniformly distributed.  The uniform distribution assumes that each outcome is equally 

likely.    For example, in tossing a 6-sided die, the probabilities of the number between 1 

and 6 are equal:  

 
      6 uniform probability = 1 2 3 4 5 6 

0.16667 0.16667 0.16667 0.16667 0.16667 0.16667 

 
The goodness0fFit operator is a monadic operator taking a distribution function as its 

operand.   

 
      U <- uniform goodnessOfFit X 
 

The result is a namespace containing various outputs.   We can obtain the value of the (Chi-

Square) test statistic, and compare it to the critical value of the Chi-Square distribution with 

10 degrees of freedom. 

 
      U.TestStatistic 
48.94 

      U.DegreesOfFreedom  

10            

      10 chiSquare criticalValue < .05 

21.02606982   
 

 Or we can simply obtain the p-value directly from the output and conclude that the 

distribution is not uniform. 

 
      U.P 
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4.17767236E¯7 

 
We reject the hypothesis that the data are uniform because the p-value is extremely small.  

Now let us test the data to see if they are normally distributed:  In this case we simply 

replace the function uniform with normal: 

 
      N <- normal goodnessOfFit X 
      N.DegreesOfFreedom 

7  

      N.TestStatistic 

9.34402855 

      7 chiSquare criticalValue < .05 

14.06714045 

      N.P 

0.2288906756 

 

The p-value is much larger and the test statistic is smaller than the critical value so we fail 

to reject the hypothesis that the data are normally distributed.  And if we display a 

histogram of the data we can see that indeed they are bell-shaped: 

 
         histogram X 
   20┤                                                                     

     │                                                                     

     │                                                                     

     │                                                                     

     │                                                                     

   15┤                          ┌────┬────┐                                

     │                          │    │    │                                

     │                          │    │    │                                

     │                          │    │    │                                

     │                ┌────┬────┤    │    ├────┐                           

   10┤                │    │    │    │    │    ├────┐                      

     │           ┌────┤    │    │    │    │    │    │                      

     │           │    │    │    │    │    │    │    ├────┐                 

     │           │    │    │    │    │    │    │    │    │                 

     │           │    │    │    │    │    │    │    │    │                 

    5┤           │    │    │    │    │    │    │    │    │                 

     │           │    │    │    │    │    │    │    │    │                 

     │      ┌────┤    │    │    │    │    │    │    │    │    ┌────┐       

     │ ┌────┤    │    │    │    │    │    │    │    │    │    │    │       

     │ │    │    │    │    │    │    │    │    │    │    ├────┤    ├────┐  

    0└─┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴─ 

          7    8    9   10   11   12   13   14   15   16   17   18   19   

 

4. Conclusion 

 

Chen[6] states that the suitability of a programming language for a particular task is less 

about the functionality of the language and more about the expressability of that language.  

The use of operators allows us to express statistical concepts in a consistent way without a 

proliferation of functions.   Languages such as R do wonderful calculations, but the syntax 

is rather cryptic.   A student would find it much easier to enter: 

 
          100 20 normal probability > 90   

        

rather than the R syntax: 

 
           pnorm (90,100,20, lower.tail=FALSE) 
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We have developed a working software program in APL using the syntax in this paper and 

which has the option of calling R to perform the statistical calculations without the user 

having to know R syntax. 
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