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Abstract:  
A p-value is a most widely used measure of evidence against a null hypothesis in 
statistical testing of hypothesis. In Phase 3 clinical trials, a threshold of 0.05 alpha 
level is usually used to judge against a calculated p-value to conclude whether 
there is appropriate statistical evidence to support drug regulatory approval 
decision. The p-value, being derived from a statistical sample via test statistic, has 
inherent variability, which is generally ignored or not assessed and thus leads to a 
lack of understanding of its quality when evaluating study outcome from phase 3 
clinical trials.  In this paper, we use parametric bootstrap approach to assess the p-
value variability from published Phase 3 clinical trials. 
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1. Introduction 

 
1.1 Motivation 

P-value has been widely used statistics in research in almost all scientific 
disciplines. There are many criticisms about the value of using p-values for 
research. For example, in drug development, usually two phase 3 studies that 
demonstrate p-value ≤ 0.05 are required for FDA approval. However, the quality 
of the p-value is usually uncertain as only one observed p-value is reported per 
study. In this research, we utilized publicly available data from a recent FDA 
approved drug Xiidra for dry eye disease in July 2016 to assess the quality of the 
p-values from the four clinical studies.  
 

 

1.2 P-value History 

Based on Wikipedia (https://en.wikipedia.org/wiki/P-value), records of p-values dated 
back to 1,770 when a p-value was calculated by Pierre-Simon Laplace when looking at 
the proportion of births for an excess of boys compared to girls. It was formally 
introduced by Karl Pearson for Chi-Square test in early 1900s. Then Ronald Fisher 
popularized the concept in his book, Statistical Methods for Research Workers (1925). 
Fisher also established the 0.05 level for statistical significance.   
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1.3 P-value Definition 

From Wikipedia: “The p-value is defined as the probability, under the assumption of 
hypothesis H, of obtaining a result equal to or more extreme than what was actually 
observed.” 
 
For this research, we define a simple null hypothesis 𝐻0, a test statistic 𝑇, and the 
observed value of the test statistic T(𝑥); p-value can be defined as: 

𝑃(𝑇 ≥ 𝑇(𝑥)|𝐻0) 
 

1.4 P-value Controversy 

A p-value is linked to the idea of statistical significance / evidence adopted in 
many research applications today. Heated debates in scientific communities 
including top-notch journals such as Nature and Science. Basic and Applied 

Social Psychology (BASP) banned p-values in early 2015. American Statistical 
Association (ASA) releases statement regarding p-values (2016). 
 
Due to this controversy, we also consider in this assessment the reproducibility 
probability. 
 
 

2. Notations and the Two Sample Testing Setting 

 
2.1 Notations 

For the Xiidra analysis we used the large two sample T-test setting comparing a 
treatment group and placebo (vehicle) group. This drug considered the end points 
for Eye dryness score (EDS) and inferior fluorescein corneal staining score 
(ICSS); more details about the observations are discussed in section 5.2. Let the 
first sample be change of baseline of EDS or ICSS for the treatment group and 
these observations are notated as 𝑌1, 𝑌2, … ,  𝑌𝑚1

 of size 𝑚1 and let the second 
sample be the change of baseline EDS or ICSS defined as 𝑋1, 𝑋2, … ,  𝑋𝑚2

 for 
placebo group of size 𝑚2.  
 
Let 𝑌1, 𝑌2, … ,  𝑌𝑚1

 have mean 𝜇1 and variance 𝜎1
2 and 𝑋1, 𝑋2, … ,  𝑋𝑚2

 have mean 
𝜇2 and variance 𝜎2

2. We may notate the collection of sample observations as 𝑋 
and 𝑌The estimates for the 𝑗𝑡ℎ sample 𝜇𝑗 and 𝜎𝑗

2 are calculated to be the sample 
average �̂�1 =

1

𝑚1
∑ 𝑌𝑖

𝑚1
𝑖=1  or �̂�2 =

1

𝑚2
∑ 𝑋

𝑚2
𝑖=1  with sample variances calculated to be 

�̂�1
2 =

1

𝑚1−1
∑ (𝑌𝑖 − �̂�1)2𝑚1

𝑖=1  or �̂�2
2 =

1

𝑚2−1
∑ (𝑋𝑖 − �̂�2)2𝑚2

𝑖=1 . 
 
Let 𝜆 be the proportion of observations that belong in sample 2, then 𝜆 =

𝑚2

𝑚1+𝑚2
. 

Half the harmonic mean 𝑚 can be calculated as 𝑚 = 𝑚1𝜆 =
𝑚1𝑚2

𝑚1+𝑚2
. We can then 

derive the quantities 𝜎 = √𝜆�̂�1
2 + (1 − 𝜆)�̂�2

2 and 𝛿 =
(�̂�1−�̂�2)

𝜎
 which will be used 

for large sample T-test statistic 𝑇(𝑌, 𝑋). For a given null hypothesis 𝐻0, the p-
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value is then calculated to be 𝑃(𝑇 ≥ 𝑇(𝑌, 𝑋)|𝐻0 ). We use p-value as an observed 
value from hypothesis testing and as a random variable in some cases, we use 
them interchangeably. 
 
 

2.2 Large-sample Two Sample T-test 

Since the mean baseline data for treatment group and placebo group in each of the 
study appear to be identical we can test the hypothesis if the treatment is effective, 
 
𝐻0: 𝜇1 − 𝜇2 = 0 vs 𝐻𝑎: 𝜇1 − μ2 > 0 
   
A large sample T-test statistic used between treatment and vehicle group would be 
calculated as, 

 𝑇𝑑𝑓 =
(�̂�1 − �̂�2)

√
�̂�1

2

𝑚1
+

�̂�2
2

𝑚2

= √𝑚�̂� 

T is asymptotically normal with mean √𝑚𝛿 and variance 1. Since we are working 
with large samples, the null hypothesis 𝐻0: 𝜇1 = 𝜇2 , we could calculate the p-
value to be: 
 

𝑃(𝑇 ≥ 𝑇(𝑌, 𝑋)|𝐻0 ) ≈ 𝑃(𝑍 ≥ 𝑇(𝑌, 𝑋)|𝐻0 ) = 𝑃(𝑍 ≥ √𝑚𝛿) 
 
 
 

3. Theoretical Distribution of P-values 

 
3.1 The Distribution of the P-value Under the Null Hypothesis 

The distribution under the null hypothesis of p-value is stochastically greater than or 
equal to uniform(0,1) distribution. For continuous data, it is equal to uniform(0,1). In 
other words, if we had data that followed the assumptions of the null hypothesis, then the 
mean of the p-value distribution E(p)=1/2=0.5, the variance is Var(p)=1/12 ~= 0.0833. 
These are interesting characteristics of the p-value distribution if in fact the null 
hypothesis is true. 
 
3.2 Exact Distribution of the P-value Under the Alternative Hypothesis 

For the two sample T-test the exact distribution of the p-value can be derived by Hung, 
Biometrics (1997). The density of p-value is as follows, 
 

𝑔𝛿(𝑝) =
𝜙(Φ−1(1 − 𝑝) − √𝑚𝛿 )

𝜙(Φ−1(1 − 𝑝))
 

 
Where 𝜙(𝑥) is the standard normal density evaluated at 𝑥 and Φ−1(1 − 𝑝) = 𝑍𝑝 
percentile of the standard normal distribution.  
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3.3 Asymptotic Distribution Under the Alternative Hypothesis 

Asymptotic normality of –log(p-value) has been shown by Lambert and Hall (1982). For 
a hypothesis test where 𝑛 is the sample size, 𝜃 is a population parameter of interest, 𝑐(𝜃) 
and 𝜏2(𝜃) are the asymptotic mean and variance for the asymptotic distribution,  
  

√𝑛 ( 
− log(𝑝)

𝑛
− 𝑐(𝜃))

𝑑
→ 𝑁(0, 𝜏2(𝜃)) as 𝑛 → ∞ 

 
In our two-sample T test scenario, we can define 𝜃 to be the true population mean 
difference 𝜃 = 𝜇1 − 𝜇2; we then have 𝑐(𝜃) =

𝑚𝜆2𝛿2

2
 and  τ2(𝜃) = 𝑚𝜆2𝛿2 

 

4. Statistical Simulation and Computation Methods 

 
For each study and endpoint, we only have one observed p-value based on the 
data. If we could replicate each study multiple times, we would have multiple p-
values and would be able to understand some characteristics of the p-value 
distribution such as mean and variance. Since we don’t have each study 
replicated, we will use parametric bootstrap prediction intervals to generate the 
empirical p-value distribution to assess the mean and variance of p-values for 
each study. Using this, we can assess the reproducibility probabilities for each 
study. 
 
4.1 Bias-Corrected (BC) Bootstrap Prediction Intervals 

If we have a random sample 𝑌1, 𝑌2, … ,  𝑌𝑛 and an independent replicate 
𝑋1,  𝑋2, … ,  𝑋𝑚, then we can calculate two p-values based off these replicates to 
get 𝑃𝑌,𝑛 and 𝑃𝑋,𝑚. Define 𝑃𝑌,𝑛

(1) be derived from the first resample. Repeating the 
process independently B times results in 𝑃𝑌,𝑛

(1), 𝑃𝑌,𝑛
(2) …, 𝑃𝑌,𝑛

(𝐵).  A 1 − 𝛼 bias-
corrected (BC) bootstrap prediction interval for 𝑃𝑋,𝑚 has the prediction limits to 
be in the form {�̂�𝐵(𝛼1)), �̂�𝐵(1 − 𝛼2)} where �̂�𝐵(𝛼) is the 𝛼th sample quantile. 

We would calculate  𝛼1 = Φ (𝑧𝛼

2
(1 +

𝑚

𝑛
)

1

2
+ �̂�0 (

𝑚

𝑛
)

1

2
) and 𝛼2 = Φ (𝑧𝛼

2
(1 +

𝑚

𝑛
)

1

2
− �̂�0 (

𝑚

𝑛
)

1

2
).  𝑧𝛼

2
 is the 1 −

𝛼

2
 percentile of the standard normal distribution or 

Φ−1 (1 −
𝛼

2
). We would also need to calculate �̂�0 = Φ−1 (�̂�𝐵(𝑃𝑌,𝑛)), where 

�̂�𝐵(∙) is the empirical CDF for 𝑃𝑌,𝑛
(𝑖). 

 
4.2 Reproducibility Probability 
Following Shao & Chow (2002), define RP to be the reproducibility population 
parameter: 

𝑅𝑃 = 𝑃(𝑝𝑛𝑒𝑤 ≤ 𝛼) 
For the two-sample test scenario: 

𝑅�̂� = 1 − Φ(−𝑇(𝒙) + 𝑧𝛼) = Φ(−Φ−1(𝑝𝑜𝑏𝑠) − 𝑧𝛼) 
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5.  Clinical Trial Data  

 
The study data for this research comes from a recent FDA approved drug label 
which is publically available. The drug name is called Xiidra™ (lifitegrast 
ophthalmic solution) 5%. This data was used here for p-value quality research 
purposes only. 
 
5.1 The Drug  

From Xiidra label, Lifitegrast is a chemical drug. The molecular formula of 
lifitegrast is C29H24Cl2N2O7S and its molecular weight is 615.5 g·mol−1. Xiidra 
(lifitegrast ophthalmic solution) 5% is a lymphocyte function-associated antigen-1 
(LFA-1) antagonist supplied as a sterile, clear, colorless to slightly brownish-
yellow colored, isotonic solution with a pH of 7.0–8.0 and an osmolality range of 
200–330 mOsmol/kg. In vitro studies demonstrated that lifitegrast may inhibit 
secretion of inflammatory cytokines in human peripheral blood mononuclear 
cells. The exact mechanism of action of lifitegrast in dry eye disease is not 
known. 
 
5.2 Four Clinical Studies and the Endpoints 

The safety and efficacy of lifitegrast for the treatment of dry eye disease (DED) were 
assessed in a total of four 12-week, randomized, multi-center, double-masked, vehicle-
controlled studies. Patients were randomized to Xiidra or vehicle (placebo) in a 1:1 ratio 
and dosed twice a day. Use of artificial tears was not allowed during the studies. The 
mean age was 59 years (range, 19–97 years). Most patients were female (76%). 
Enrollment criteria included, minimal signs (i.e., Corneal Fluorescein Staining (CFS) and 
non-anesthetized Schirmer Tear Test (STT)) and symptoms (i.e., Eye Dryness Score 
(EDS) and Ocular Discomfort Score (ODS)) severity scores at baseline. 
 
EDS was used to measure the symptoms of DED and was rated by patients using a visual 
analogue scale (VAS) (0 = no discomfort, 100 = maximal discomfort) at each study visit 
(Days 0, 14, 42, 84). While ICSS was used to measure the signs of DED and was rated a 
score (0 = no staining, 1 = few/rare punctate lesions, 2 = discrete and countable lesions, 3 
= lesions too numerous to count but not coalescent, 4 = coalescent) which was recorded 
at each study visit (Days 0, 14, 42, 84). For our research purposes, we have taken data to 
be the change of baseline at day 84 for both EDS and ICSS. 
 
5.3 Safety Data 

The most common adverse reactions reported in 5-25 % of patients: instillation site 
irritation, dysgeusia and reduced visual acuity. Other adverse reactions reported in 1% to 
5% of the patients: blurred vision, conjunctival hyperemia, eye irritation, headache, 
increased lacrimation, eye discharge, eye discomfort, eye pruritus and sinusitis. The drug 
seems to be safe, for this research we will not assess safety data and we will focus on 
efficacy only. 
 
5.4 Efficacy Data 

Efficacy data including symptoms and signs measures for EDS and ICSS. In this study 
we focus on study endpoint day 84 (12 weeks). The data was extracted from the drug 
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label. See table 1 for EDS change from baseline at Day 84 and table 2 for ICSS change 
from baseline at Day 84.  

Table 1. EDS - Change from baseline at day 84. 

 𝑚𝑖 �̂�𝑖 �̂�𝑖 
Study Ctl Xiidra  Ctl Xiidra Ctl Xiidra 
1 58 58 -7.2 -14.4 25.29 25.26 
2 295 293 -11.2 -15.2 28.78 31.48 
3 360 358 -22.8 -35.3 28.60 28.40 
4 356 355 -30.5 -37.7 28.03 28.91 

 
 

Table 2. ICSS - Change from baseline at Day 84. 
 

𝑚𝑖 �̂�𝑖 �̂�𝑖 
Ctl Xiidra Ctl Xiidra Ctl Xiidra 
58 58 0.38 0.04 0.79 0.75 
295 293 0.17 -0.07 0.82 0.87 
360 358 -0.71 -0.73 0.94 0.93 
356 355 -0.63 -0.80 0.91 0.94 

 

 
 

6. P-value Quality Assessment Results 

 
6.1 P-value Estimates from the Two-sample T-test Results 

To roughly assess the statistical significance, we performed large sample based 
two sample two-sided T-test comparing the drug and vehicle as described in 
section 2.  The comparison results for EDS is presented in table 3 and ICSS is 
presented in table 4. From the analysis, we can see that in study 3 and 4 from EDS 
endpoints were statistically significant at 𝛼 = 0.05 and study 1, 2, and 4 were 
statistically significant at 𝛼 = 0.05. 
 
Table 3. Two sample T-test comparing drug and vehicle for change of baseline of 
EDS at day 84. 

 
study diff 

Est.  
sigma 

Est. 
effect size 

T-test 
statistic p-value 

1 -7.20 25.28 -0.28 -1.53 0.0625 
2 -4.00 30.16 -0.13 -1.61 0.0539 
3 -12.50 28.50 -0.44 -5.89 0.0000 
4 -7.20 28.47 -0.25 -3.37 0.0004 
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Table 4. Two-sample T-test comparing drug and vehicle for change of baseline of 
ICSS at day 84. 

Study Diff 
Est. 
sigma 

Est. 
effect size T-test statistic p-value 

1 -0.34 0.77 -0.44 -2.39 0.0084 
2 -0.24 0.84 -0.28 -3.45 0.0003 
3 -0.02 0.93 -0.02 -0.29 0.3872 
4 -0.17 0.93 -0.18 -2.45 0.0071 
 

6.2 Empirical Distribution 

 
To understand the p-value data, we first used parametric bootstrap method to 
obtain the empirical distribution for the p-values comparing the drug and vehicle 
for symptom measure EDS and sign measure ICSS.  
6.2.1 Empirical Distribution for P-value  

A few percentiles of empirical p-value distribution are presented such as 5th, 10th, 
25th, 50th (median), 75th, 90th, and 95th percentile in table 5 (EDS) and table 6 
(ICSS).  
 
Table 5. Percentiles of empirical P-value distribution comparing drug and vehicle 
for change of baseline of EDS at day 84. 

    Percentile 
Study Mean Median SD 5th 10th 25th 75th 90th 95th 
1 0.1383 0.0613 0.1799 0.0007 0.0024 0.0133 0.1928 0.3991 0.5463 
2 0.1276 0.0545 0.1707 0.0006 0.0019 0.0109 0.1767 0.3671 0.5167 
3 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
4 0.0081 0.0004 0.0288 0.0000 0.0000 0.0000 0.0036 0.0175 0.0388 

  
Table 6. Percentiles of empirical P-value distribution comparing drug and vehicle 
for change of baseline of ICSS at day 84. 

    Percentile 
Study Mean Median SD 5th 10th 25th 75th 90th 95th 

1 0.0465 0.0093 0.0938 0.0000 0.0002 0.0012 0.0447 0.1342 0.2275 

2 0.0075 0.0003 0.0293 0.0000 0.0000 0.0000 0.0029 0.0152 0.0349 

3 0.4223 0.3889 0.2842 0.0283 0.0616 0.1726 0.6557 0.8440 0.9185 

4 0.0416 0.0068 0.0899 0.0000 0.0001 0.0009 0.0363 0.1182 0.2129 
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Figure 1. Histogram of P-values for EDS change of baseline day 84 with 
theoretical P-value distribution imposed. 

 
Figure 2. Histogram of P-values for ICSS change of baseline day 84 with 
theoretical P-value distribution imposed. 
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6.2.2 Empirical Distribution for -log(P-value) 

As described in section 3.3, -log(p-value) is asymptotically normal. Here we 
present the -log transformed p-values results of a few percentiles for the empirical 
p-value distribution are presented such as 5th, 10th, 25th, 50th (median), 75th, 90th, 
and 95th percentile in table 7 (EDS) and table 8 (ICSS).  
 
Table 7. Percentiles of empirical -log(P-value) distribution comparing drug and 
vehicle for change of baseline of EDS at day 84. 

    Percentile 
Study Mean Median SD 5th 10th 25th 75th 90th 95th 
1 3.2117 2.7924 2.1184 0.6045 0.9184 1.6458 4.3181 6.0292 7.2651 
2 3.3353 2.9101 2.1312 0.6603 1.0021 1.7330 4.5129 6.2624 7.3618 
3 20.0832 19.4471 5.8625 11.4445 13.1075 15.9350 23.9280 27.9327 30.2392 
4 8.2934 7.8133 3.6472 3.2498 4.0444 5.6313 10.3868 13.2856 15.1840 

 
Table 8. Percentiles of empirical -log(P-value) distribution comparing drug and 
vehicle for change of baseline of ICSS at day 84. 

    Percentile 
Study Mean Median SD 5th 10th 25th 75th 90th 95th 

1 5.1070 4.6757 2.7055 1.4808 2.0084 3.1072 6.6872 8.7576 10.1832 

2 8.4701 8.0333 3.6351 3.3558 4.1880 5.8507 10.6178 13.3367 15.1207 
3 1.2694 0.9445 1.1652 0.0850 0.1697 0.4220 1.7567 2.7870 3.5664 
4 5.3976 4.9839 2.8423 1.5467 2.1356 3.3154 7.0093 9.2014 10.7346 

 
 
 
Figure 3. Histogram of -log(P-values) for EDS (left) and ICSS (right) change of 
baseline day 84 with theoretical P-value distribution imposed. 
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6.3 Bootstrap Prediction Intervals 

Since p-values is a statistic, which is a random variable, to quantify its variability 
we have used bootstrap prediction intervals for EDS and ICSS change from 
baseline. The bootstrap method used is described in section 4.  
 
6.3.1: Bootstrap Prediction Intervals for P-value 

 
Table 9. Bias corrected bootstrap prediction intervals for P-value for EDS change 
from baseline data. 

      study 
Point 
Estimate 

Standard 
Error 

95% 
Interval 
Lower 

95% 
Interval 
Upper 

1 0.15 0.006 0.136 0.159 
2 0.13 0.006 0.121 0.143 
3 0.00 0.000 0.000 0.000 
4 0.01 0.001 0.007 0.011 

 
 
Table 10. Bias corrected bootstrap prediction intervals for P-value for ICSS 
change from baseline data. 

study 
Point 
Estimate 

Standard 
Error 

95% Interval 
Lower 

95% Interval 
Upper 

1 0.0364 0.0049 0.0365 0.0461 
2 0.0087 0.0010 0.0066 0.0107 
3 0.4220 0.0089 0.4045 0.4395 
4 0.0405 0.0027 0.0352 0.0457 

 
 
6.3.2: Bootstrap Prediction Intervals for -log(P-value) 

 

Table 11. Bias corrected bootstrap prediction intervals for -log(P-value) for EDS 
change from baseline data. 

 
study 

Point 
Estimate 

Standard 
Error 

95% Interval 
Lower 

95% Interval 
Upper 

1 3.13 0.063 3.011 3.258 
2 3.32 0.069 3.187 3.456 
3 19.78 0.184 19.420 20.140 
4 8.21 0.107 8.003 8.423 
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Table 12. Bias corrected bootstrap prediction intervals for -log(P-value) for ICSS 
change from baseline data. 

 
study 

Point 
Estimate 

Standard 
Error 

95% Interval 
Lower 

95% Interval 
Upper 

1 5.29 0.088 5.116 5.462 
2 8.47 0.118 8.235 8.697 
3 1.22 0.033 1.159 1.288 
4 5.50 0.090 5.319 5.673 

 
 

6.4: Tipping Point Analysis 

Tipping point analysis is usually used for sensitivity analysis; we had adopted the 
idea to assess the p-value quality relative to clinical meaningfulness/effect size. 
When assessing the quality of the p-value, tipping point is the threshold of the 
effect size value to transition between a non-significant result and a significant 
result. We brought this idea to assess the quality of the p-value in relation to the 
effect size which is directly linked to clinical meaningfulness of the results. The 
variability for both EDS and ICSS across the four clinical studies were stable. 
 
 
6.4.1: Tipping Point Assessment  

 
Figure 4. Tipping point analysis for P-value (left) and -log(P-value) (right). 

 
 
6.4.2: Explore the Impact of Placebo Effect 

We explore the potential impact of placebo effect on the quality of p-value. After 
checking the variability of change of baseline in EDS and ICSS at day 84, we 
have found the variance is similar between 3 and 4 so we hold the variability 
(𝜎𝐸𝐷𝑆 = 28.5, 𝜎𝐼𝐶𝑆𝑆 = 0.93) and sample size constant (𝑛 = 360 per group) as 
observed. Then we explore the relationship of p-value and Cohen effect size, we 
can see from the figure that we have identified the maximum placebo effects 
before the p-value is no longer significant at 𝛼 = 0.025. For instance, assuming 
the EDS change from baseline at day 84 in the treatment group efficacy is -30, 
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then the maximum tolerable placebo effect can be -25.83 before the results are no 
longer significant at 𝛼 = 0.025. 
 
Figure 5. Exploring the impact of the placebo effect. 

 
6.5: Reproducibility Probability 

Reproducibility probability (RP) is one of the crucial topics for clinical trials. There are 
different definitions for reproducibility probability. In this research paper, we follow 
Shao & Chow (2002) and defined RP to be the reproducibility population parameter: 
 

𝑅𝑃 = 𝑃(𝑝𝑛𝑒𝑤 ≤ 𝛼) 
For the two-sample test scenario: 

𝑅�̂� = 1 − Φ(−𝑇(𝑥) + 𝑧𝛼) = Φ(−Φ−1(𝑝𝑜𝑏𝑠) − 𝑧𝛼) 
 
6.5.1: Reproducibility Probability Point Estimate 

From the derivation of RP, we can see a direct one to one relationship between p-
value and 𝑅�̂�. The issue is p-value is a statistic and thus RP which is a 
mathematical function of p-value is also inevitably a random variable. Therefore, 
the usefulness of RP is limited.  
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Figure 6. Reproducibility probability for EDS (left) and ICSS (right) for the 
change of baseline between the drug and vehicle at day 84. 

 
 
6.5.2: Reproducibility Probability Variability 

Table 13. Bias Corrected Bootstrap Prediction Intervals for -log(P-value) for EDS 
Change from Baseline Data. 

EDS: 
study 

Point 
Estimate 

BC 
Estimated 
Standard 
Error 

95% 
Interval 
Lower 

95% 
Interval 
Upper 

1 0.33 0.015 0.297 0.355 
2 0.36 0.015 0.326 0.384 
3 0.99 <0.0001 0.9999 0.9999 
4 0.91 0.009 0.893 0.929 

 

 

Table 14. Bias Corrected Bootstrap Prediction Intervals for -log(P-value) for 
ICSS Change from Baseline Data. 

ICSS: 
study 

Point 
Estimate 

BC 
Estimated 
Standard 
Error 

95% 
Interval 
Lower 

95% 
Interval 
Upper 

1 0.67 0.015 0.646 0.703 
2 0.93 0.008 0.913 0.945 
3 0.05 0.007 0.036 0.062 
4 0.67 0.015 0.645 0.704 
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6.6: Aggregated Assessment of Multiple Studies 

Up to now, we have assessed the p-value based on individual studies. In order to 
assess the quality of p-value totality, we followed the Biometrics paper by Hung, 
O’Neill, Bauer, and Kohne (1997) which proposed Phyp plots for meta-analysis 
purposes. Here we employed the Phyp plots to aid the assessment of p-value 
quality for multiple studies. The theoretical 95th and 50th percentile of P-value 
distribution for different Cohen effect sizes. The observed outcomes (p-values and 
sample size) for the four clinical studies are plotted to assess the totality of the 
statistical significance for decision making. 
 

Figure 7. Phyp Plot for Different Effect Sizes 𝛿 Values for EDS Change of 
Baseline Comparing the Drug and Vehicle at Day 84. 
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Figure 8. Phyp Plot for Different Effect Sizes 𝛿 Values for ICSS Change of 
Baseline Comparing the Drug and Vehicle at Day 84. 

 
 

7. Limitations 

 
This study has limitations. First only summarized data (sufficient statistics) are 
available for this research. Thus, we had to use parametric bootstrap to generate 
empirical p-value distributions. Nonparametric bootstrap might be a better choice 
if individual data are available as it does not put on a parametric distribution 
constraint. For this research the mean change of baseline in EDS, ICSS, at day 84 
follow a parametric Gaussian statistical models. Secondly, the original study used 
analysis of covariance (ANCOVA) model. Here we used large-sample T test 
instead due to lack of subject level data.  Therefore, we cannot assess the impact 
of potential confounding factors or missing data on p-value quality. 
 
 

8. Discussions 

 
A p-value is a most widely used statistical measure of evidence against a null 
hypothesis in statistical hypothesis testing and is generally required in Phase 3 
clinical trials for drug registration approval process. A threshold of 0.05 alpha 
level is usually used to judge against a calculated p-value to conclude whether 
there is appropriate statistical evidence to support drug regulatory approval.  
 

In pivotal clinical trial, the p-value is a required statistic, however, only one 
observed p-value (point estimate) is usually reported for a study. The p-value, 
being derived from a sample (data) via test statistic, has inherent variability, 
which is usually ignored or not assessed and thus leads to a lack of understanding 
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of its quality. The quality of this p-value is unknown. In this paper, we assessed 
the quality of p-value using parametric bootstrap approach to assess the p-value 
distribution and variability for these four Phase 3 clinical studies from the Xiidra 
package insert.  
 
First, to describe the distribution profile of the p-value, we have developed 
better/deeper understanding on the study data of EDS and ICSS.  Secondly, 
prediction interval is used to assess the variability of p-value. For instance, the 
change of baseline at day 84 in EDS for study 3, the empirical p-value distribution 
indicates that the 95 percentile is still below 0.0001 and the 95% prediction 
interval is (0.0000,0.0001) [Note: In the Table 9, we reported up to 3 decimal 
points.]. On the other hand, change of baseline at day 84 in ICSS for study 3, the 
empirical p-value distribution indicates that the 10th percentile is above 0.06 and 
the 95% prediction interval is (0.4045,0.4395).  
 
Reproducibility can be misleading if only the p-value without variability is used. 
 
Tipping point analysis can be a critical tool assess clinical meaningfulness in 
relationship to p-value. Can help with decision making. To explore the placebo 
effect, we also use a tipping point idea fixing the treatment effect and 
understanding the magnitude of the placebo’s impact on the study outcome.  
 
In conclusion, the descriptive statistics of p-value distribution helps better 
understanding the study p-values. Characterizing p-value and its prediction 
intervals leads to better understanding about the variability of the p-value and the 
study data outcome. We recommend reporting the p-value along with its 
characteristics such as percentiles and prediction interval in clinical studies.  P-
value itself may not be very useful as we demonstrated through the reproducibility 
probability. The assessment of p-value quality should be conducted in linkage 
with external information such as Cohen’s effect size and sample size.  
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