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Abstract
Risk prediction models play an important role in selecting prevention and treatment strategies for

various diseases. While it is common to observe poorer performance in a validation set compared to
a development set, this difference is generally attributed to optimistic bias in measuring performance
in the development set. However, this difference might be rather due to differences in the distribu-
tion of the predictors, which can strongly affect predictive performance. Conventional validation
analysis does not take account of it. It could erroneously give a low rating to a useful risk prediction
model even when the model is working for each subject in the validation set in the exactly same
way as for those in the development set. Because results of validation studies ultimately determine
which prediction models are adopted for research and clinical use, it is critical that validation meth-
ods be grounded in rigorous cross-study comparisons. We will present new inference procedures
for estimating predictive performance measures in validation studies, systematically adjusting for
differences in the distribution of predictors across studies.
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1. Introduction

Recent years have seen significant progress in the development and refinement of predic-
tion models, some of which are widely used in clinical settings. Statistical methodology
for risk prediction has also been extensively investigated; however, there still exist issues
in validation methodology that require new methods. We have identified a potentially crit-
ical pitfall in the standard analysis approach to validating a prediction model. In current
practice, performance indices are estimated by simply applying a model to a validation set;
however, if the distribution of risk factors (or predictors) in the validation set is different
from that on the relevant clinical population, such an approach may not provide a useful
estimate of the predictive performance. For example, we sometimes observe unexpectedly
poor performance in a validation set because of 1) overfitting in the development set (i.e.,
optimistic bias), 2) difference in distribution of the predictors between the development and
validation sets, and 3) sampling variability. Unfortunately, the current analytical practice
does not take the second issue into account and thus sometimes results in the inappropri-
ate rejection of a sound and potentially useful prediction model (Steyerberg et al., 2004;
Janssen et al., 2008).

2. Method

2.1 A general framework

Our proposed method is formulated in a general way, utilizing an intuitive weighting tech-
nique. Let Y be a response variable and Z be a vector variable of predictors for Y. Let
FO denote the distribution of O = (Y,Z) on a population. For a given prediction model,
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ψ(Z), a general form of predictive performance measures is given by D =
∫
Qψ(O)dFO,

where Qψ(O) is a function to determine how to measure the performance. For example,
one might useQψ(O) = |Y − ψ(Z)| , which will give the L1-error of the prediction model
ψ(Z) for Y. Let F̂ (d)

O and F̂ (v)
O be empirical distributions O of a development sample and

a validation sample, respectively. Estimators for D on FO, based on the development and
validation samples, are then given by D̂d =

∫
Qψ(O)dF̂

(d)
O and D̂v =

∫
Qψ(O)dF̂

(v)
O ,

respectively.
Now, let F ∗Z be a marginal distribution function of Z on a given target population.

To estimate a performance measure on the target population, we consider the following
“adjusted” estimator with the validation sample

D̃v(F
∗
Z) =

∫
Qψ(O)

{
dF ∗Z(O)
dF̂

(v)
Z (O)

}
dF̂

(v)
O , (1)

where F̂ (v)
Z (·) is the marginal distribution function ofZ of the validation sample. For exam-

ple, if we consider F ∗Z to be the empirical (marginal) distribution of Z of the development
sample F̂ (d)

Z , we will then obtain an adjusted validation estimator for D

D̃v(F̂
(d)
Z ) =

∫
Qψ(O)

{
dF̂

(d)
Z (O)

dF̂
(v)
Z (O)

}
dF̂

(v)
O , (2)

adjusted to the observed distribution of Z in the development set. Note that, if Z includes
important predictors for Y, and the two sets are similar in the sense that F̂ (d)

Y |Z ≈ F̂
(v)
Y |Z ,

then F̂
(d)
Z (·)
F̂

(v)
Z (·)

≈ F̂
(d)
O (·)
F̂

(v)
O (·)

and thus D̃v(F̂
(d)
Z ) ≈

∫
Qψ(O)

{
dF̂

(d)
O (O)

dF̂
(v)
O (O)

}
dF̂

(v)
O = D̂d. Therefore,

when the observed difference between D̃v(F̂
(d)
Z ) and D̂d is large, we can determine that it is

not due to the difference between F̂ (d)
Z (·) and F̂ (v)

Z (·), but F̂ (d)
Y |Z(·) would be different from

F̂
(v)
Y |Z(·). Since the difference D̂v − D̂d is affected by the difference between F̂ (d)

Z (·) and

F̂
(v)
Z (·), reporting the adjusted result D̃v(F̂

(d)
Z ), in addition to (D̂d, D̂v) would be useful

for understanding the difference between D̂v and D̂d better. Furthermore, when both the
development set and the validation set are considered to be samples from the same target
population, one may expect that the empirical distribution of Z derived from a pooled
sample F̂ (d+v)

Z is more representing FZ on the target. In that case, D̃v(F̂
(d+v)
Z ) would be

also a useful estimator for D.

2.2 Density ratio fitting approach

The key component of the general framework is estimation of the weight function

dF ∗Z(·)
dF̂

(v)
Z (·)

in the equation (1). At first glance, this may look a difficult problem, because it consists of
two density functions. It may seem that density estimation is involved. However, estimation
of “ratio” of two densities can be performed without density estimation. Recently, the
methodology for density ratio estimation was extensively studied in the field of machine
learning Sugiyama et al. (2012).

It is interesting to note that the density ratio estimation is implicitly used in causal
inference as well. In causal inference, the inverse-probability-weighting method is often

1157



used to adjust for confounding factors, where a propensity score is derived to calculate the
probability of being exposed or unexposed, where the propensity score is playing a role of
the density ratio estimate of the confounding factors. Often in practice, a logistic regression
model is used to derive a propensity score. It is shown that the resulting logistic regression
model can provide a consistent estimator for the density ratio when the model is correctly
specified. There are various methods to perform density ratio estimation, other than the
simple linear logistic regression modeling approach, such as kernel mean matching (Huang
and Harrington, 2005), KullbackLeibler importance estimation procedure (Sugiyama et al.,
2008), Least-squares importance fitting (Kanamori et al., 2009), Unconstraint least-squares
importance fitting (Kanamori et al., 2012), generalized additive model (GAM)(Hastie and
Tibshirani, 1995), and so on.

2.3 Estimating performance measures with the validation set for comparing results
with those from the development set

Now we consider inference of the model performance D using the adjusted performance
estimator with the validation set, assuming that development set well represents the target
population in the sense that F̂ (d)

Z ≈ F ∗Z . Specifically, we derive the D̃v(F̂
(d)
Z ) shown in the

equation (2), using the both development and validation sets.
We apply a density ratio estimation to obtain the weight. We will use a GAM to approx-

imate the weight
{

dF̂ d
Z

dF̂
(v)
Z

}
. By applying the weight to each observations in the validation

set, we will calculate D̃v(F̂
(d)
Z ).

To obtain a standard error, we will apply a bootstrap method. We generate a bootstrap
sample from the development and the validation set for each and calculate

D̃†v(F̂
†(d)
Z ) =

∫
Qψ(O)

{
dF̂ †(d)Z(O)

dF̂
†(v)
Z (O)

}
dF̂
†(v)
O ,

where F̂ †(d)Z and F̂ †(v)Z are the distribution of the bootstrap samples from the development
set and the validation set, respectively. We repeat this process M times. A confidence
interval is constructed from the M of D̃†v(F̂

†(d)
Z ) by the percentile method.

3. Application to the SEER-Medicare MDS Risk Score

The Surveillance Epidemiology and End Results (SEER) program has been collecting data
on MDS since 2001. These data, when linked to Medicare claims (SEER-Medicare), are
an outstanding resource for comparative effectiveness research (CER) with regard to MDS.
Unfortunately, existing clinical risk stratification systems (i.e., IPSS, WPSS, and so on)
are not applicable for the SEER-Medicare data because many of the elements they contain
do not appear in Medicare claims. Therefore, in order to make the SEER-Medicare more
useful for CER, we created a prognostic risk score (i.e., SMMRS), using the 2001-2007
SEER-Medicare MDS dataset (n=9820) (Uno et al., 2014). The risk factors included in
the SMMRS were cytopenias, MDS category, age, comorbidity, acute hospitalization, and
red blood cell (RBC) and/or platelet (PLT) transfusion dependency. The SMMRS is given
as a linear combination of these factors; the contribution of each factor was determined
by fitting the SEER-Medicare data with a Cox regression model (Table 1). Three-year
predicted risk score for mortality is then determined by

1− exp {−0.025× exp(SMMRS)}
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Table 1: Components of the SMMRS with contributions to the final model (Uno et al.,
2014)

Cytopenias
No Anemia or Anemia only 0
Anemia + Neutropenia +0.11
Anemia + Thrombocytopenia +0.31
Anemia + Neutropenia + Thrombocytopenia +0.39

MDS category
RA or 5q- 0
RAEB, RAEB-T, RCMD, tMDS +0.61
RARS -0.08
MDS NOS +0.23

Age at diagnosis (years) +0.04 × age
Charlson comorbidity index* +0.08 × index
Presence of acute hospitalization +0.46
RBC/PLT transfusion

No dependency 0
Transfusion dependent: either RBC or PLT +0.57
Transfusion dependent: both RBC and PLT +0.87

∗ An index score greater than 6 is replaced by 6

To evaluate the performance of the SMMRS, we used a granular MDS patient database
at Dana-Faber Cancer Institute (DFCI/CRIS data) as a validation set, which was indepen-
dent of the development set (the SEER-Medicare MDS data; Dana-Farber is not a SEER
institution).

As shown in Figure 1, the distribution of the risk score with the development dataset
(solid red line) is rather different from the one with the validation dataset (blue solid line).
Specifically, it is suggested that relatively more patients with higher risk are involved in the
development dataset, compared to the validation dataset. The dotted blue line in Figure 1
shows the adjusted distribution of the risk score by assigning a density ratio weight to each
subject in the validation dataset. The adjusted distribution with the validation set appears
to be similar to the distribution of the development set.

We used C-statistics (Uno et al., 2011) as the performance index of the SMMRS. The
C-statistic with the development set was 0.700, and the unadjusted C with the validation
set was 0.647 (0.95CI: 0.608 to 0.688). (Table 2) The difference in C-statistic between
the development and the validation sets was 0.053 was rather different between the two
sets. However, it is not clear from these results if the observed difference of 0.053 is
due to the difference in case-mix or something else. Interestingly, the adjusted C-statistic
0.662 (0.95CI: 0.613 to 0.711) is much closer to the C-statistic with the development set.
Reporting both unadjusted and adjusted results would enhance understanding of how the
model performs in different datasets.

4. Remarks

Model performance estimates depend on the distribution of the predictors. Without taking
the difference in the distribution between development and validation dataset into account,
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Figure 1: Distributions of the risk scores

Table 2: C-statistics and corresponding 0.95 confidence intervals of the SMMRS

Dataset Development Validation Validation
(unadjusted) (adjusted)

C-statistic 0.700 0.647 0.662
(0.95CI) (0.693 to 0.706) (0.608 to 0.688) (0.613 to 0.711)

the results sometimes would mislead us. It is recommended to calculate and report an
adjusted estimate for the performance metric in validation studies, in addition to the con-
ventional unadjusted estimate.

The proposed approach can be applied to nearly any performance measure. In fact,
the equation (1) accommodates performance metrics not only for evaluating a single model
but also for comparing two competing models. It can be applied in the same way, by
considering ψ(Z) = {ψ1(Z1), ψ2(Z2)} and Z = (Z1, Z2), where ψ1(Z1) and ψ2(Z2)
are the two prediction models to compare, and Z1 and Z2 are the predictors for ψ1(·) and
ψ2(·), respectively. For example, for the integrated discrimination index, Qψ(O) will be
Y {ψ2(Z2)− ψ1(Z1)} − (1− Y ) {ψ2(Z2)− ψ1(Z1)} .
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