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Abstract 

Exponential distribution plays an important role in modeling real-life data relating to the 
continuous waiting time. In this presentation, a new estimator of the Exponential parameter 
has been proposed. Some important characteristics of the estimator have been studied. The 
performance of the new estimator has been compared theoretically, and empirically with 
the one using maximum likelihood estimator. Empirical study with simulation, and 
examples to real-life data reveal that the new estimator is more efficient than the maximum 
likelihood estimator.  
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1. Introduction 

Exponential distribution has widely been used in modeling distributions in areas ranging 
from studies on the lifetimes of manufactured items [1-3] to research involving survival or 
remission times in chronic diseases [4-5]. The wide applicability of exponential 
distribution in lifetime modeling is due to the availability of simple statistical methods for 
it [2] and it represents the lifetimes of many things such as various types of manufactured 
items [1]. Exponential distribution and of its parameter estimation appear in any standard 
book of statistics [6-8].  We say that a continuous random variable 𝑋 follows an exponential 
distribution with parameter 𝜃 (mean) if the probability density function is given by 

𝑓(𝑥) =
1

𝜃
𝑒

−
𝑥
𝜃; 𝑥 > 0;  𝜃 > 0 

In general, 𝜃 is unknown and estimated using sample data. Let 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 be a random 
sample of size 𝑛. Then, the maximum likelihood function of 𝑓(𝑥) is given by 

𝐿(𝜃) =
1

𝜃𝑛
𝑒

−
1
𝜃

∑ 𝑥𝑖
𝑛
𝑖=1  

Taking logarithm on both sides of the likelihood function, we get 

𝑙(𝜃) = 𝑙𝑛𝐿(𝜃) = −𝑛𝑙𝑛𝜃 −
1

𝜃
∑ 𝑥𝑖

𝑛

𝑖=1

 

______________________ 
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Taking derivative of 𝑙 with respect to 𝜃, and setting equal to zero, a maximum likelihood 
estimate (MLE) of 𝜃, 𝜃 is given by 

𝜕𝑙

𝜕𝜃
= −𝑛

1

𝜃
+

1

𝜃2
∑ 𝑥𝑖

𝑛

𝑖=1

= 0 

𝜃 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
= �̅� 

It is easy to see that 𝜃 is an unbiased estimate of 𝜃, i.e.,  

𝐸(𝜃) = 𝜃 

with variance of 𝜃 given by 

𝑉(𝜃) =
𝜃2

𝑛
 

In the next section, we propose a new estimator of the exponential parameter 𝜃 and study 
some statistical properties of the proposed estimator. 

2. Proposed Estimator 

The moment generating function of 𝑋~𝐸𝑥𝑝(𝜃) is  

𝑀𝑋(𝑡) = 𝐸(𝑒𝑋𝑡) = (1 − 𝜃𝑡)−1 

Given a random sample 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 of size 𝑛, the moment generating function of ∑ 𝑋𝑖
𝑛
𝑖=1  

is given by 

𝑀∑ 𝑋𝑖
𝑛
𝑖=1

(𝑡) = 𝐸(𝑒∑ 𝑋𝑖
𝑛
𝑖=1 𝑡)                       

= ∏ 𝐸(𝑒𝑋𝑖𝑡)

𝑛

𝑖=1

 

= ∏ 𝑀𝑋𝑖
(𝑡)

𝑛

𝑖=1

  

      = ∏(1 − 𝜃𝑡)−1

𝑛

𝑖=1

 

      = (1 − 𝜃𝑡)−𝑛       

Then, by the method of moments, a new estimator of 𝜃, �̃� follows from solving the equation   

𝑒∑ 𝑋𝑖
𝑛
𝑖=1 𝑡 = (1 − �̃�𝑡)−𝑛 

After an algebraic manipulation, we have the following new estimator of 𝜃 
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�̃� =
1 − 𝑒−𝑡�̅�

𝑡
; 𝑡 ≠ 0 

3. Properties of New Estimator 

In this section, we study some properties of the proposed estimator, which we state in terms 
of the following theorems: 

Theorem 3.1 The expected value of �̃� =
1−𝑒−𝑡�̅�

𝑡
 is 𝐸(�̃�) =

1

𝑡
[1 − (1 +

𝑡𝜃

𝑛
)

−𝑛
] and if 𝑡 →

0, then �̃� is an unbiased estimate of 𝜃. 

Proof: The expected value of �̃� =
1−𝑒−𝑡�̅�

𝑡
 is  

𝐸(�̃�) =
1 − 𝐸(𝑒−𝑡�̅�)

𝑡
=

1

𝑡
[1 − (1 +

𝑡

𝑛
𝜃)

−𝑛

] ; 𝑡 ≠ 0 

Taking limit as 𝑡 → 0 and applying the L’ Hospital Rule, we have  

lim
𝑡→0

𝐸(�̃�) = lim
𝑡→0

(−)(−𝑛) (1 +
𝑡
𝑛

𝜃)
−𝑛−1

(
1
𝑛

𝜃)

1
= 𝜃 

Theorem 3.2 The bias of �̃� =
1−𝑒−𝑡�̅�

𝑡
 is  

𝐵(�̃�) =
1

𝑡
[1 − (1 +

𝑡𝜃

𝑛
)

−𝑛

] − 𝜃 

and if 𝑡 → 0, then bias of �̃� is 0. 

 

Proof: The bias of �̃� =
1−𝑒−𝑡�̅�

𝑡
 is  

𝐵(�̃�) = 𝐸(�̃�) − 𝜃 =
1 − 𝐸(𝑒−𝑡�̅�)

𝑡
− 𝜃 =

[1 − (1 +
𝑡
𝑛

𝜃)
−𝑛

]

𝑡
− 𝜃; 𝑡 ≠ 0 

Taking limit as 𝑡 → 0 and applying the L’ Hospital Rule, we have  

lim
𝑡→0

𝐵(�̃�) = lim
𝑡→0

𝑛 (1 +
𝑡
𝑛

𝜃)
−𝑛−1

(
1
𝑛

𝜃)

1
− 𝜃 = 𝜃 − 𝜃 = 0 

Theorem 3.3 The variance of �̃� =
1−𝑒−𝑡�̅�

𝑡
 is  

𝑉(�̃�) =
1

𝑡2
[(1 +

2𝑡𝜃

𝑛
)

−𝑛

− (1 +
𝑡𝜃

𝑛
)

−2𝑛

] 

and if 𝑡 → 0, then variance of �̃� is same as the variance of 𝜃. 
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Proof: Note that  

𝑀∑ 𝑋𝑖
𝑛
𝑖=1

(𝑡) = 𝐸(𝑒∑ 𝑋𝑖
𝑛
𝑖=1 𝑡) = (1 − 𝜃𝑡)−𝑛 

It also follows that  

𝑀�̅�(𝑡) = 𝑀∑ 𝑋𝑖
𝑛
𝑖=1

(𝑡/𝑛) = (1 −
𝜃𝑡

𝑛
)

−𝑛

 

𝑀�̅�(−𝑡) = (1 +
𝜃𝑡

𝑛
)

−𝑛

 

𝑀�̅�(−𝑘𝑡) = (1 +
𝜃𝑘𝑡

𝑛
)

−𝑛

 

Now, the variance of �̃� =
1−𝑒−𝑡�̅�

𝑡
 is  

𝑉(�̃�) = 𝑉 (
1 − 𝑒−𝑡�̅�

𝑡
) =

1

𝑡2
𝑉(𝑒−𝑡�̅�) 

𝑉(𝑒−𝑡�̅�) = 𝐸(𝑒−𝑡�̅�)2 − [𝐸(𝑒−𝑡�̅�)]2 

                = 𝐸(𝑒−2𝑡�̅�) − [𝐸(𝑒−𝑡�̅�)]2 

                = 𝑀�̅�(−2𝑡) − [𝑀�̅�(−𝑡) ]2 

                              = (1 +
2𝑡𝜃

𝑛
)

−𝑛

− [(1 +
𝑡𝜃

𝑛
)

−𝑛

]

2

 

                          = (1 +
2𝑡𝜃

𝑛
)

−𝑛

− (1 +
𝑡𝜃

𝑛
)

−2𝑛

 

Then, 

𝑉(�̃�) =
1

𝑡2
[(1 +

2𝑡𝜃

𝑛
)

−𝑛

− (1 +
𝑡𝜃

𝑛
)

−2𝑛

] ; 𝑡 ≠ 0 

Taking limit as 𝑡 → 0 and applying the L’ Hospital Rule, we have  

lim
𝑡→0

𝑉(�̃�) = lim
𝑡→0

(−𝑛)(1+
2𝑡𝜃

𝑛
)

−𝑛−1
(

2𝜃

𝑛
)−(−2𝑛)(1+

𝑡𝜃

𝑛
)

−2𝑛−1
(

𝜃

𝑛
)

2𝑡
  

                  = lim
𝑡→0

−𝜃(1+
2𝑡𝜃

𝑛
)

−𝑛−1
+𝜃(1+

𝑡𝜃

𝑛
)

−2𝑛−1

𝑡
  

                = lim
𝑡→0

𝜃(𝑛+1)(1+
2𝑡𝜃

𝑛
)

−𝑛−2
(

2𝜃

𝑛
)−(2𝑛+1)𝜃(1+

𝑡𝜃

𝑛
)

−2𝑛−2
(

𝜃

𝑛
)

1
  

                      = 𝜃(𝑛 + 1)(1 + 0) (
2𝜃

𝑛
) − (2𝑛 + 1)𝜃(1 + 0) (

𝜃

𝑛
)  
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                                                         = 2𝜃2(𝑛+1)

𝑛
−

𝜃2(2𝑛+1)

𝑛
  

                                                          = 2𝜃2−𝜃2

𝑛
  = 𝜃2

𝑛
= 𝑉(𝜃)  

Theorem 3.4 The mean square error (MSE) of �̃� =
1−𝑒−𝑡�̅�

𝑡
 is  

𝑀𝑆𝐸(�̃�) =
1

𝑡2
[(1 +

2𝑡𝜃

𝑛
)

−𝑛

− (1 +
𝑡𝜃

𝑛
)

−2𝑛

] + [
1

𝑡
{1 − (1 +

𝑡

𝑛
𝜃)

−𝑛

} − 𝜃]

2

 

and if 𝑡 → 0, then MSE of �̃� is the same as the variance of 𝜃. 

Proof: The MSE of �̃� =
𝑡�̅�

𝑒𝑡−1
 is  

            𝑀𝑆𝐸(�̃�) = 𝑉( �̃�) + [𝐵( �̃�)]
2
        

 = 1

𝑡2 [(1 +
2𝑡𝜃

𝑛
)

−𝑛
− (1 +

𝑡𝜃

𝑛
)

−2𝑛
] + [

1

𝑡
{1 − (1 +

𝑡

𝑛
𝜃)

−𝑛
} − 𝜃]

2

 

Taking limit as 𝑡 → 0 and applying the L’ Hospital Rule, we have  

lim
𝑡→0

𝑀𝑆𝐸(�̃�) = lim
𝑡→0

𝑉(�̃�) + [lim
𝑡→0

𝐵(�̃�)]
2
  

=
𝜃2

𝑛
+ 0  

=
𝜃2

𝑛
  

= 𝑉(𝜃)   

Theorem 3.5 The relative efficiency (RE) of  �̃� =
1−𝑒−𝑡�̅�

𝑡
 with respect to 𝜃 is  

𝑅𝐸 =
𝜃2/𝑛

1
𝑡2 [(1 +

2𝑡𝜃
𝑛

)
−𝑛

− (1 +
𝑡𝜃
𝑛

)
−2𝑛

] + [
1
𝑡

{1 − (1 +
𝑡
𝑛

𝜃)
−𝑛

} − 𝜃]
2 × 100% 

Proof: The relative efficiency of �̃� =
𝑡�̅�

𝑒𝑡−1
 with respect to 𝜃 is given by 

          𝑅𝐸 =
𝑉(�̂�)

𝑀𝑆𝐸(�̃�)
× 100  

=
𝜃2/𝑛

1
𝑡2 [(1 +

2𝑡𝜃
𝑛

)
−𝑛

− (1 +
𝑡𝜃
𝑛

)
−2𝑛

] + [
1
𝑡

{1 − (1 +
𝑡
𝑛

𝜃)
−𝑛

} − 𝜃]
2 × 100 

It is easy to see that as 𝑡 → 0, �̃� and 𝜃 are same. If  𝑡 ≠ 0, then there may exist a non-zero 
𝑡 such that  

𝑀𝑆𝐸(�̃�) < 𝑉(𝜃)  
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or, 

           
1

𝑡2
[(1 +

2𝑡𝜃

𝑛
)

−𝑛

− (1 +
𝑡𝜃

𝑛
)

−2𝑛

] + [
1

𝑡
{1 − (1 +

𝑡

𝑛
𝜃)

−𝑛

} − 𝜃]

2

<
𝜃2

𝑛
               (1) 

In section 5 below, we search for values of 𝑡, for selected values of  𝜃 and 𝑛, for which the 
relation (1) holds true and hence find the percent relative efficiency of the proposed 
estimator �̃� with respect to 𝜃 using R code. 

4. Fitting of an Exponential Distribution 

In this section, we discuss how we can employ the two underlying estimates for fitting of 
exponential distributions to real life data using the chi-squared goodness of fit, and 
𝐴𝐼𝐶 (Akaike Information Criterion) and 𝐵𝐼𝐶 (Bayesian Information Criterion) criteria. 
 
4.1 Chi-squared Goodness of Fit 

For chi-squared goodness of fit [8-9], we compare observed and expected frequency using 
a chi-squared distribution. The algorithm for the goodness of fit is as follows: 

Given an observed sample, we divide the range of the observed values into 𝑘 equal intervals 
and evaluate the observed and expected frequency in each of the 𝑘 intervals using the 
following procedure. 

Let the 𝑘 intervals be designated by [𝑢0, 𝑢1], (𝑢1, 𝑢2], …, (𝑢𝑖−1, 𝑢𝑖], …, (𝑢𝑘−1, 𝑢𝑘], where 
𝑢𝑖 is the upper end-point of 𝑖th interval, 𝑖 = 1, 2, … , 𝑘. Note that an observation of the given 
sample can be observed in any of the intervals with probability 𝑝 = 1/𝑘. Then, it follows 
that  

𝐹(𝑢𝑖) = 𝑖𝑝 

Also, by the property of the exponential distribution, 

𝐹(𝑢𝑖) = ∫
1

𝜃
𝑒

−
𝑡
𝜃

𝑢𝑖

0

𝑑𝑡 = 1 − 𝑒
−

𝑢𝑖
𝜃   

We solve the two expressions of 𝐹(𝑢𝑖) to find the upper end-point of the 𝑖th interval, 𝑢𝑖: 

𝑖𝑝 = 1 − 𝑒
−

𝑢𝑖
𝜃  

By algebraic manipulation, it follows that 

                       𝑢𝑖 = 𝜃 ln (
1

(1−𝑖𝑝)
)                                                                                                 (2)  

Let 𝑜𝑖 be the observed frequency in the 𝑖th interval. Then,  

                      𝑜𝑖 = #(𝑢𝑖−1 < 𝑥 ≤ 𝑢𝑖)                                                                                            (3) 

The expected frequency for the 𝑖th interval is  

𝑒𝑖 = 𝑛 × 𝑝𝑖;  𝑝𝑖 =
1

𝑘
= 0.125, 𝑖𝑓 𝑘 = 8 
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The goodness of fit statistic is then given by  

𝜒2 = ∑
(𝑜𝑖 − 𝑒𝑖)2

𝑒𝑖

𝑘

𝑖=1
 

which follows a chi-squared distribution with (𝑘 − 1 − 𝜈) degrees of freedom, where 𝜈 is 
the number of parameters estimated. In our example, we only estimate one parameter 𝜃. 
Therefore, 𝜈 = 1. 

4.2 Goodness of Fit Using  𝑨𝑰𝑪 and 𝑩𝑰𝑪 Criteria 

The likelihood function of exponential distribution is given by: 

𝐿 = ∏
1

𝜃
𝑒

−
𝑥𝑗

𝜃

𝑛

𝑗=1

= (
1

𝜃
)

𝑛

𝑒
−

∑ 𝑥𝑗
𝑛
𝑗=1

𝜃  

In order to apply 𝐴𝐼𝐶 and 𝐵𝐼𝐶 [10-12], we find the estimated likelihood functions given 
by two estimators 𝜃 and �̃� of 𝜃. 

Then, using the likelihood estimator 𝜃, 

�̂� = (
1

𝜃
)

𝑛

𝑒
−

∑ 𝑥𝑗
𝑛
𝑗=1

�̂� = (
1

�̅�
)

𝑛

𝑒−𝑛 

Using the new estimator �̃�, 

�̃� = (
1

�̃�
)

𝑛

𝑒
−

∑ 𝑥𝑗
𝑛
𝑗=1

�̃� = (
1

1 − 𝑒−𝑡�̅�

𝑡

)

𝑛

𝑒𝑥𝑝 (−
𝑛�̅�

1 − 𝑒−𝑡�̅�

𝑡

) 

Then, 𝐴𝐼𝐶 and 𝐵𝐼𝐶 due to the estimator 𝜃 are  

𝐴𝐼�̂� = (−2)(𝑙𝑛�̂�) + 2𝜈 

𝐵𝐼�̂� = (−2)(𝑙𝑛�̂�) + 𝜈(𝑙𝑛(𝑛)) 

Similarly, 𝐴𝐼𝐶 and 𝐵𝐼𝐶 due to the estimator �̃� are 

𝐴𝐼�̃� = (−2)(𝑙𝑛�̃�) + 2𝜈 

𝐵𝐼�̃� = (−2)(𝑙𝑛�̃�) + 𝜈(𝑙𝑛(𝑛)) 

The method with the lower of values of 𝐴𝐼𝐶 and 𝐵𝐼𝐶 provides the better fit. 

 

5. Real Life Applications with Examples 

In order to assess the goodness of fit and compare performance of the two underlying 
estimates, we consider two examples (Examples 1 and 2) of real-life data.  We evaluate 
chi-square goodness of fit and 𝐴𝐼𝐶-𝐵𝐼𝐶 for the two underlying estimates. 
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For both examples we consider 8 intervals (i.e., 𝑘 = 8) designated by [𝑢0, 𝑢1], (𝑢1, 𝑢2], …, 
(𝑢6, 𝑢7], …, (𝑢7, 𝑢8], where 𝑢𝑖 is the upper end-point of 𝑖th interval, 𝑖 = 1, 2, … , 8. Then, 
an observation of a given sample of size 𝑛 = 72 can be observed in any of the intervals 
with probability 𝑝 =

1

8
= 0.125, with an expected frequency of each interval 𝑛 × 0.125 =

72 × 0.125 = 9. Tables (1) and (2) provide observed and expected frequencies for each 
examples using equation (2) and (3). 

Example 1 

 

This data represents the survival times (in days) of 72 guinea pigs infected with virulent 
tubercle bacilli, observed and reported by Bjerkedal [13], and appeared in [5]. 
 

12 15 22 24 24 32 32 33 34 38 38 43 
44 48 52 53 54 54 55 56 57 58 58 59 
60 60 60 60 61 62 63 65 65 67 68 70 
70 72 73 75 76 76 81 83 84 85 87 91 
95 96 98 99 109 110 121 127 129 131 143 146 

146 175 175 211 233 258 258 263 297 341 341 376 
The density histogram in Figure 1 demonstrates that the shape of the distribution of the 
data is positive skewed.  

 

The mean survival time is 99.82 days. We test the null hypothesis that the data come from 
an exponential distribution with mean 100. 

Table 1 below provides observed and expected frequencies evaluated using equations (2) 
and (3) using the MLE estimate 𝜃 = �̅�. 

Figure 1: Density of survival time of guinea pigs 

 for data in Example 1
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Table 1: Observed and expected frequencies of survival times of guinea pigs infected 
with virulent tubercle bacilli for Example 1 using the MLE 𝜃 = �̅� of 𝜃. 

Interval 𝑜𝑖 𝑒𝑖 (𝑜𝑖 − 𝑒𝑖)2/𝑒𝑖 

[0,13.329 ) 1 9 7.111 
[13.329, 28.716) 4 9 2.778 
[28.716, 46.915) 8 9 0.111 
[46.915, 69.189) 22 9 18.778 
[69.189, 97.905) 15 9 4.000 
[97.905, 138.379) 8 9 0.111 
[138.379, 207.568) 5 9 1.778 
[207.568, ∞) 9 9 0.000 
 Total 72 72 34.667 

 

Then, the observed value of the Chi-square test statistic under the MLE estimate  𝜃 = �̅� is  

𝜒
�̂�
2 = ∑

(𝑜𝑖 − 𝑒𝑖)2

𝑒𝑖

8

𝑖=1
= 34.667 

and the 𝑝-value is 0.000005 with 𝑑. 𝑓. =  (8 − 1 − 1) = 6.  

It also follows that 𝐴𝐼𝐶 = 808.8836 and 𝐵𝐼𝐶 = 811.1603. 

For the new estimate �̃� =
1−𝑒−𝑡�̅�

𝑡
 with 𝑡 = 0.00051, the observed and expected frequencies 

evaluated using equations (2) and (3) appear in Table 2 below. 

Table 2: Observed and expected frequencies of survival times of guinea pigs infected 
with virulent tubercle bacilli for Example 1 using the new estimate  �̃� =

1−𝑒−𝑡�̅�

𝑡
 of 𝜃. 

Interval 𝑜𝑖 𝑒𝑖 (𝑜𝑖 − 𝑒𝑖)2/𝑒𝑖 

[0, 12.995) 1 9 7.111 
[12.995, 27.998) 4 9 2.778 
[27.998, 45.741) 8 9 0.111 
[45.741, 67.458) 21 9 16.000 
[67.458, 95.455) 15 9 4.000 
[95.455, 134.916) 9 9 0.000 
[134.916, 202.373) 5 9 1.778 
[202.373, ∞) 9 9 0.000 
Total 72 72 31.778 

 

Then, the observed value of the Chi-square test statistic under the new estimate �̃� =
1−𝑒−𝑡�̅�

𝑡
 

is  
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𝜒
�̃�
2 = ∑

(𝑜𝑖 − 𝑒𝑖)2

𝑒𝑖

8

𝑖=1
= 31.778 

and the 𝑝-value is 0.00002 with 𝑑. 𝑓. =  (8 − 1 − 1) = 6. 

It also follows that 𝐴𝐼𝐶 = 808.9303 and 𝐵𝐼𝐶 = 811.2069. 

Given above analyses, at 5% level of significance we reject the null hypothesis that the 
data come from an exponential distribution with mean 100 using the both estimates 𝜃 and 
�̃�. However, the relative efficiency of the proposed estimate �̃� compared to 𝜃 is 105.49%. 

It is to be noted that we can search for values of 𝑡 for selected values of  𝜃 and 𝑛, satisfying 
the relation in equation (1) in order to compute the percent relative efficiency of the 
proposed estimator �̃� with respect to 𝜃.  

Below we provide R code that was used to search for values of 𝑡 and computing relative 
efficiency of �̃� with respect to 𝜃, along with other computations aspects for data in Example 
1. 

n=length(x); 

mean=mean(x)#observed value of mean=99.82 

theta=100; 

nu=1; 

for (t in seq(0.00001,.001,.0001)){ 

a<-(1/t^2)*((1+(2*t*theta/n))^(-n)-(1+(t*theta/n))^(-2*n))+((1/t)*(1-(1+t*theta/n)^(-n))-

theta)^2 

b<-theta^2/n; 

ifelse (a<b,{print(t);print(b/a*100)},print(0)) 

} 

est1=round(mean(x),digits=3);# MLE estimate 

est2=round((1-exp(-est1*0.00051))/0.00051,digits=3);#New estimate 

 

#Assessing GOF for using est1; 

u=c(); 

for (i in 1: 7){u[i]=round(-est1*log(1-i*.125),digits=3)} 

print(u) 

o=c(); 

o[1]=sum(x<u[1]); 

o[2]=sum(x>=u[1] & x<u[2]) 

o[3]=sum(x>=u[2] & x<u[3]) 

o[4]=sum(x>=u[3] & x<u[4]) 

o[5]=sum(x>=u[4] & x<u[5]) 

o[6]=sum(x>=u[5] & x<u[6]) 

o[7]=sum(x>=u[6] & x<u[7]) 

o[8]=sum(x>=u[7]) 

print(o) 

e=rep(1,8)*.125*n; 

chi2.1=round(sum((o-e)^2/e), digits=3); 

pval.1=pchisq(chi2.1, df=6,nc=0,lower.tail=F) 

like1=((1/est1)^n)*(exp(-n)) 

aic1=-(2*log(like1))+2*nu 
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bic1=-2*log(like1)+nu*log(n) 

 

# Assessing GOF for using est2; 

u=c(); 

for (i in 1: 7){u[i]=round(-est2*log(1-i*.125),digits=3)} 

print(u) 

o=c(); 

o[1]=sum(x<u[1]); 

o[2]=sum(x>=u[1] & x<u[2]) 

o[3]=sum(x>=u[2] & x<u[3]) 

o[4]=sum(x>=u[3] & x<u[4]) 

o[5]=sum(x>=u[4] & x<u[5]) 

o[6]=sum(x>=u[5] & x<u[6]) 

o[7]=sum(x>=u[6] & x<u[7]) 

o[8]=sum(x>=u[7]) 

print(o) 

chi2.2=round(sum((o-e)^2/e), digits=3); 

pval.2=pchisq(chi2.2, df=6,nc=0,lower.tail=F) 

like2=((1/est2)^n)* exp((-n*est1/est2)) 

aic2=-(2*log(like2))+2*nu 

bic2=-2*log(like2)+nu*log(n) 

print(c(chi2.1, pval.1, chi2.2, pval.2,qchisq(0.05, df=6,nc=0,lower.tail=F))) 

print(c(aic1, bic1)) 

print(c(aic2, bic2)) 

 

Example 2  

The data set reported by Efron [14] and also appeared in [5] represent the survival times 
of a group of patients suffering from Head and Neck cancer disease and treated using a 
combination of radiotherapy and chemotherapy (RT+CT). 
 

12.2 23.6 23.7 25.9 32 37 41.35 47.38 55.46 58.4 63.5 
68.46 78.3 74.5 81.4 84 92 94 110 112 119 127 

130 133 140 146 155 159 173 179 194 195 209 
249 281 319 339 432 469 519 633 725 817 1776 

 

The density histogram in Figure 2 demonstrates that the shape of the distribution of the 
data is positive skewed.  
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The mean survival time is 223.477. We test the null hypothesis that the data come from 
an exponential distribution with mean 223. 

Table 3 below provides observed and expected frequencies evaluated using equations (2) 
and (3) using the MLE estimate 𝜃 = �̅�. 

Table 3: Observed and expected frequencies of survival times of patients suffering from 
Head and Neck cancer treated with a combination of radiotherapy and chemotherapy 

(RT+CT) for Example 2 using the MLE 𝜃 = �̅� of exponential parameter 𝜃. 

Interval 𝑜𝑖 𝑒𝑖 (𝑜𝑖 − 𝑒𝑖)2/𝑒𝑖 

[0, 29.841 ) 4 5.5 0.409 
[29.841, 64.290) 7 5.5 0.409 
[64.290, 105.035) 7 5.5 0.409 
[105.035, 154.902) 8 5.5 1.136 
[154.902, 219.193) 7 5.5 0.409 
[219.193, 309.805) 2 5.5 2.227 
[309.805, 464.707) 3 5.5 1.136 
[464.707, ∞) 6 5.5 0.045 
 Total 44 44 6.182 

 

Then, the observed value of the Chi-square test statistic under the MLE estimate  𝜃 = �̅� is  

Figure 2: Density of survival time of patients with head and neck 

 cancer for data in Example 2
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𝜒
�̂�
2 = ∑

(𝑜𝑖 − 𝑒𝑖)2

𝑒𝑖

8

𝑖=1
= 6.182 

and the 𝑝-value is 0. 40311 with 𝑑. 𝑓. =  (8 − 1 − 1) = 6. 

It also follows that 𝐴𝐼𝐶 = 566.0191 and 𝐵𝐼𝐶 = 567.8033. 

For the new estimate �̃� =
1−𝑒−𝑡�̅�

𝑡
 with 𝑡 = 0.00041, the observed and expected frequencies 

evaluated using equations (2) and (3) appear in Table 4 below. 

Table 4: Observed and expected frequencies of survival times of patients suffering from 
Head and Neck cancer treated with a combination of radiotherapy and chemotherapy 

(RT+CT) for Example 2 using the new estimate  �̃� =
1−𝑒−𝑡�̅�

𝑡
 of exponential parameter 𝜃. 

Interval 𝑜𝑖 𝑒𝑖 (𝑜𝑖 − 𝑒𝑖)2/𝑒𝑖 

[0, 28.515) 4 5.5 0.409 
[28.515, 61.433) 6 5.5 0.045 
[61.433, 100.367) 8 5.5 1.136 
[100.367, 148.018) 8 5.5 1.136 
[148.018, 209.451) 7 5.5 0.409 
[209.451, 296.036) 2 5.5 2.227 
[296.036, 444.054) 3 5.5 1.136 
[444.054, ∞) 6 5.5 0.045 
Total 44 44 6.545 

 

Then, the observed value of the Chi-square test statistic under the new estimate �̃� =
1−𝑒−𝑡�̅�

𝑡
 

is  

𝜒
�̃�
2 = ∑

(𝑜𝑖 − 𝑒𝑖)2

𝑒𝑖

8

𝑖=1
= 6.545 

and the 𝑝-value is 0.36498 with 𝑑. 𝑓. =  (8 − 1 − 1) = 6. 

It also follows that 𝐴𝐼𝐶 = 566.1115 and 𝐵𝐼𝐶 = 567.8957. 

Given above analyses, at 5% level of significance there is a strong evidence that the data 
come from an exponential distribution with mean 223 using the both estimates 𝜃 and �̃�. 
However, the relative efficiency of the proposed estimate �̃� compared to 𝜃 is 108.7%. 

6. Relative Efficiency of the New Estimator 

In this section, we investigate relative efficiency of the proposed estimator �̃� compared to 
𝜃 for given values of 𝑡, 𝜃 and 𝑛 using R code.  

We consider various values of the parameter 𝜃 fixed at 0.5, 2.5, 5, 10, 15, 20, 25, 30, 50, 
100, arbitrarily and sample size at 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 and 100. For each 
combination of 𝜃 and 𝑛, we consider values of 𝑡 between 𝑎 and 𝑏 with an increment of 
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0.0001, notationally expressed as 𝑡 ∈ [𝑎, 𝑏, @ 0.0001], where 𝑎 = 0.0001 and values of 𝑏 
are evaluated using the search so as to satisfy (1) and are reported along with the relative 
efficiency for a given combination of 𝜃  and 𝑛 in the Table 5. 

Table 5: Relative efficiency of proposed estimate compared to the maximum likelihood 
estimate for varying sample size and 𝑡 

 
𝜃 𝑛 Range of 𝑡 in the search Range of relative efficiency (𝑟𝑒) 
 
 

0.50 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

100 

0.0001 ≤ 𝑡 ≤ 2.1600 
0.0001 ≤ 𝑡 ≤ 1.2320 
0.0001 ≤ 𝑡 ≤ 0.8789 
0.0001 ≤ 𝑡 ≤ 0.6862 
0.0001 ≤ 𝑡 ≤ 0.5637 
0.0001 ≤ 𝑡 ≤ 0.4786 
0.0001 ≤ 𝑡 ≤ 0.4159 
0.0001 ≤ 𝑡 ≤ 0.3679 
0.0001 ≤ 𝑡 ≤ 0.3298 
0.0001 ≤ 𝑡 ≤ 0.2989 
0.0002 ≤ 𝑡 ≤ 0.1544 

100.01 ≤ 𝑟𝑒 ≤ 164.85 
100.00 ≤ 𝑟𝑒 ≤ 135.59 
100.01 ≤ 𝑟𝑒 ≤ 124.59 
100.01 ≤ 𝑟𝑒 ≤ 118.79 
100.00 ≤ 𝑟𝑒 ≤ 115.21 
100.00 ≤ 𝑟𝑒 ≤ 112.78 
100.01 ≤ 𝑟𝑒 ≤ 111.02 
100.00 ≤ 𝑟𝑒 ≤ 109.68 
100.00 ≤ 𝑟𝑒 ≤ 108.64 
100.00 ≤ 𝑟𝑒 ≤ 107.80 
100.00 ≤ 𝑟𝑒 ≤ 103.95 

2.5 5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

100 

0.0001 ≤ 𝑡 ≤  0.4330 
0.0001 ≤ 𝑡 ≤ 0.2464 
0.0001 ≤ 𝑡 ≤ 0.1757 
0.0001 ≤ 𝑡 ≤ 0.1372 
0.0001 ≤ 𝑡 ≤ 0.1127 
0.0001 ≤ 𝑡 ≤ 0.0957 
0.0001 ≤ 𝑡 ≤ 0.0831 
0.0001 ≤ 𝑡 ≤ 0.0735 
0.0001 ≤ 𝑡 ≤ 0.0659 
0.0001 ≤ 𝑡 ≤ 0.0597 
0.0001 ≤ 𝑡 ≤ 0.0308 

100.06 ≤ 𝑟𝑒 ≤ 164.85 
100.00 ≤ 𝑟𝑒 ≤ 135.59 
100.04 ≤ 𝑟𝑒 ≤ 124.59 
100.02 ≤ 𝑟𝑒 ≤ 118.79 
100.02 ≤ 𝑟𝑒 ≤ 115.21 
100.01 ≤ 𝑟𝑒 ≤ 112.78 
100.04 ≤ 𝑟𝑒 ≤ 111.02 
100.04 ≤ 𝑟𝑒 ≤ 109.68 
100.03 ≤ 𝑟𝑒 ≤ 108.64 
100.04 ≤ 𝑟𝑒 ≤ 107.80 
100.04 ≤ 𝑟𝑒 ≤ 103.95 

5 5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

100 

0.0001 ≤ 𝑡 ≤ 0.2166 
0.0001 ≤ 𝑡 ≤ 0.1232 
0.0001 ≤ 𝑡 ≤ 0.0877 
0.0001 ≤ 𝑡 ≤ 0.0686 
0.0001 ≤ 𝑡 ≤ 0.0563 
0.0001 ≤ 𝑡 ≤ 0.0478 
0.0001 ≤ 𝑡 ≤ 0.0415 
0.0001 ≤ 𝑡 ≤ 0.0367 
0.0001 ≤ 𝑡 ≤ 0.0329 
0.0001 ≤ 𝑡 ≤ 0.0298 
0.0001 ≤ 𝑡 ≤ 0.0154 

100.01 ≤ 𝑟𝑒 ≤ 164.85 
100.00 ≤ 𝑟𝑒 ≤ 135.59 
100.11 ≤ 𝑟𝑒 ≤ 124.59 
100.02 ≤ 𝑟𝑒 ≤ 118.79 
100.06 ≤ 𝑟𝑒 ≤ 115.21 
100.05 ≤ 𝑟𝑒 ≤ 112.78 
100.09 ≤ 𝑟𝑒 ≤ 111.02 
100.08 ≤ 𝑟𝑒 ≤ 109.68 
100.08 ≤ 𝑟𝑒 ≤ 108.64 
100.09 ≤ 𝑟𝑒 ≤ 107.80 
100.04 ≤ 𝑟𝑒 ≤ 103.95 

10 5 
10 
15 
20 
25 
30 
35 
40 
45 

0.0001 ≤ 𝑡 ≤ 0.1083 
0.0001 ≤ 𝑡 ≤ 0.0616 
0.0001 ≤ 𝑡 ≤ 0.0439 
0.0001 ≤ 𝑡 ≤ 0.0343 
0.0001 ≤ 𝑡 ≤ 0.0281 
0.0001 ≤ 𝑡 ≤ 0.0239 
0.0001 ≤ 𝑡 ≤ 0.0207 
0.0001 ≤ 𝑡 ≤ 0.0183 
0.0001 ≤ 𝑡 ≤ 0.0164 

100.01 ≤ 𝑟𝑒 ≤ 164.85 
100.00 ≤ 𝑟𝑒 ≤ 135.59 
100.07 ≤ 𝑟𝑒 ≤ 124.59 
100.02 ≤ 𝑟𝑒 ≤ 118.79 
100.14 ≤ 𝑟𝑒 ≤ 115.21 
100.05 ≤ 𝑟𝑒 ≤ 112.78 
100.18 ≤ 𝑟𝑒 ≤ 111.02 
100.17 ≤ 𝑟𝑒 ≤ 109.68 
100.17 ≤ 𝑟𝑒 ≤ 108.64 
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50 
100 

0.0001 ≤ 𝑡 ≤ 0.0149 
0.0001 ≤ 𝑡 ≤ 0.0077 

100.09 ≤ 𝑟𝑒 ≤ 107.80 
100.04 ≤ 𝑟𝑒 ≤ 103.95 

15 5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

100 

0.0001 ≤ 𝑡 ≤ 0.0722 
0.0001 ≤ 𝑡 ≤ 0.0410 
0.0001 ≤ 𝑡 ≤ 0.0292 
0.0001 ≤ 𝑡 ≤ 0.0228 
0.0001 ≤ 𝑡 ≤ 0.0187 
0.0001 ≤ 𝑡 ≤ 0.0159 
0.0001 ≤ 𝑡 ≤ 0.0138 
0.0001 ≤ 𝑡 ≤ 0.0122 
0.0001 ≤ 𝑡 ≤ 0.0109 
0.0001 ≤ 𝑡 ≤ 0.0099 
0.0001 ≤ 𝑡 ≤ 0.0051 

100.01 ≤ 𝑟𝑒 ≤ 164.85 
100.13 ≤ 𝑟𝑒 ≤ 135.59 
100.22 ≤ 𝑟𝑒 ≤ 124.59 
100.18 ≤ 𝑟𝑒 ≤ 118.79 
100.23 ≤ 𝑟𝑒 ≤ 115.21 
100.14 ≤ 𝑟𝑒 ≤ 112.78 
100.18 ≤ 𝑟𝑒 ≤ 111.02 
100.17 ≤ 𝑟𝑒 ≤ 109.68 
100.26 ≤ 𝑟𝑒 ≤ 108.64 
100.18 ≤ 𝑟𝑒 ≤ 107.79 
100.14 ≤ 𝑟𝑒 ≤ 103.95 

20 5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

100 

0.0001 ≤ 𝑡 ≤ 0.0541 
0.0001 ≤ 𝑡 ≤ 0.0308 
0.0001 ≤ 𝑡 ≤ 0.0219 
0.0001 ≤ 𝑡 ≤ 0.0171 
0.0001 ≤ 𝑡 ≤ 0.0140 
0.0001 ≤ 𝑡 ≤ 0.0119 
0.0001 ≤ 𝑡 ≤ 0.0103 
0.0001 ≤ 𝑡 ≤ 0.0091 
0.0001 ≤ 𝑡 ≤ 0.0082 
0.0001 ≤ 𝑡 ≤ 0.0074 
0.0001 ≤ 𝑡 ≤ 0.0038 

100.10 ≤ 𝑟𝑒 ≤ 164.85 
100.00 ≤ 𝑟𝑒 ≤ 135.59 
100.22 ≤ 𝑟𝑒 ≤ 124.59 
100.18 ≤ 𝑟𝑒 ≤ 118.79 
100.31 ≤ 𝑟𝑒 ≤ 115.21 
100.23 ≤ 𝑟𝑒 ≤ 112.78 
100.35 ≤ 𝑟𝑒 ≤ 111.02 
100.35 ≤ 𝑟𝑒 ≤ 109.68 
100.17 ≤ 𝑟𝑒 ≤ 108.64 
100.27 ≤ 𝑟𝑒 ≤ 107.79 
100.23 ≤ 𝑟𝑒 ≤ 103.95 

25 5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

100 

0.0001 ≤ 𝑡 ≤ 0.0433 
0.0001 ≤ 𝑡 ≤ 0.0246 
0.0001 ≤ 𝑡 ≤ 0.0175 
0.0001 ≤ 𝑡 ≤ 0.0137 
0.0001 ≤ 𝑡 ≤ 0.0112 
0.0001 ≤ 𝑡 ≤ 0.0095 
0.0001 ≤ 𝑡 ≤ 0.0083 
0.0001 ≤ 𝑡 ≤ 0.0073 
0.0001 ≤ 𝑡 ≤ 0.0065 
0.0001 ≤ 𝑡 ≤ 0.0059 
0.0001 ≤ 𝑡 ≤ 0.0030 

100.06 ≤ 𝑟𝑒 ≤ 164.85 
100.13 ≤ 𝑟𝑒 ≤ 135.59 
100.30 ≤ 𝑟𝑒 ≤ 124.59 
100.10 ≤ 𝑟𝑒 ≤ 118.79 
100.31 ≤ 𝑟𝑒 ≤ 115.21 
100.31 ≤ 𝑟𝑒 ≤ 112.78 
100.09 ≤ 𝑟𝑒 ≤ 111.02 
100.26 ≤ 𝑟𝑒 ≤ 109.68 
100.44 ≤ 𝑟𝑒 ≤ 108.64 
100.36 ≤ 𝑟𝑒 ≤ 107.80 
100.42 ≤ 𝑟𝑒 ≤ 103.95 

30 5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

100 

0.0001 ≤ 𝑡 ≤ 0.0361 
0.0001 ≤ 𝑡 ≤ 0.0205 
0.0001 ≤ 𝑡 ≤ 0.0146 
0.0001 ≤ 𝑡 ≤ 0.0114 
0.0001 ≤ 𝑡 ≤ 0.0093 
0.0001 ≤ 𝑡 ≤ 0.0079 
0.0001 ≤ 𝑡 ≤ 0.0069 
0.0001 ≤ 𝑡 ≤ 0.0061 
0.0001 ≤ 𝑡 ≤ 0.0054 
0.0001 ≤ 𝑡 ≤ 0.0049 
0.0001 ≤ 𝑡 ≤ 0.0025 

100.01 ≤ 𝑟𝑒 ≤ 164.85 
100.13 ≤ 𝑟𝑒 ≤ 135.59 
100.22 ≤ 𝑟𝑒 ≤ 124.59 
100.18 ≤ 𝑟𝑒 ≤ 118.79 
100.48 ≤ 𝑟𝑒 ≤ 115.21 
100.40 ≤ 𝑟𝑒 ≤ 112.78 
100.18 ≤ 𝑟𝑒 ≤ 111.02 
100.17 ≤ 𝑟𝑒 ≤ 109.68 
100.53 ≤ 𝑟𝑒 ≤ 108.64 
100.45 ≤ 𝑟𝑒 ≤ 107.79 
100.42 ≤ 𝑟𝑒 ≤ 103.95 

50 5 
10 
15 
20 

0.0001 ≤ 𝑡 ≤ 0.0216 
0.0001 ≤ 𝑡 ≤ 0.0123 
0.0001 ≤ 𝑡 ≤ 0.0087 

100.27 ≤ 𝑟𝑒 ≤ 164.85 
100.13 ≤ 𝑟𝑒 ≤ 135.58 
100.67 ≤ 𝑟𝑒 ≤ 124.59 
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25 
30 
35 
40 
45 
50 

100 

0.0001 ≤ 𝑡 ≤ 0.0068 
0.0001 ≤ 𝑡 ≤ 0.0056 
0.0001 ≤ 𝑡 ≤ 0.0047 
0.0001 ≤ 𝑡 ≤ 0.0041 
0.0001 ≤ 𝑡 ≤ 0.0036 
0.0001 ≤ 𝑡 ≤ 0.0032 
0.0001 ≤ 𝑡 ≤ 0.0029 
0.0001 ≤ 𝑡 ≤ 0.0015 

100.50 ≤ 𝑟𝑒 ≤ 118.79 
100.31 ≤ 𝑟𝑒 ≤ 115.21 
100.74 ≤ 𝑟𝑒 ≤ 112.78 
100.53 ≤ 𝑟𝑒 ≤ 111.02 
100.70 ≤ 𝑟𝑒 ≤ 109.68 
100.88 ≤ 𝑟𝑒 ≤ 108.64 
100.80 ≤ 𝑟𝑒 ≤ 107.79 
100.42 ≤ 𝑟𝑒 ≤ 103.94 

100 5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

100 

0.0001 ≤ 𝑡 ≤ 0.0108 
0.0001 ≤ 𝑡 ≤ 0.0061 
0.0001 ≤ 𝑡 ≤ 0.0043 
0.0001 ≤ 𝑡 ≤ 0.0034 
0.0001 ≤ 𝑡 ≤ 0.0028 
0.0001 ≤ 𝑡 ≤ 0.0023 
0.0001 ≤ 𝑡 ≤ 0.0020 
0.0001 ≤ 𝑡 ≤ 0.0018 
0.0001 ≤ 𝑡 ≤ 0.0016 
0.0001 ≤ 𝑡 ≤ 0.0014 
0.0001 ≤ 𝑡 ≤ 0.0007 

100.27 ≤ 𝑟𝑒 ≤ 164.84 
100.79 ≤ 𝑟𝑒 ≤ 135.58 
101.43 ≤ 𝑟𝑒 ≤ 124.59 
100.50 ≤ 𝑟𝑒 ≤ 118.79 
100.31 ≤ 𝑟𝑒 ≤ 115.20 
101.59 ≤ 𝑟𝑒 ≤ 112.76 
101.39 ≤ 𝑟𝑒 ≤ 111.02 
100.70 ≤ 𝑟𝑒 ≤ 109.68 
100.88 ≤ 𝑟𝑒 ≤ 108.64 
101.67 ≤ 𝑟𝑒 ≤ 107.78 
101.28 ≤ 𝑟𝑒 ≤ 103.94 

 

7. Results and Discussion 

We write program in R to search for values of 𝑡 and the relative efficiency of the proposed 
estimator of exponential parameter (mean) as compared to the MLE estimator. It appears 
that the values of t for the example data model remain positive for relative efficiency to be 
more than 100% for the proposed estimator compared to the MLE estimator. In the search 
of values of 𝑡, we restrict ourselves  to positive values of 𝑡 nearing to 0 for relative 
efficiency more than 100% for the proposed estimator. Theoretically, since the proposed 
estimate is unbiased as 𝑡 → 0, we wish to achieve efficiency as well as nearing unbiased 
estimate by choosing values of 𝑡 nearing 0. For example, when 𝜃 =  0.5 and the sample 
size 𝑛 = 5, the relative efficiency of the proposed estimate ranges from 100.01 to 164.85 
when 𝑡 ranges from 0.0001 to 2.16 with an increment of 0.0001. This means that the by 
choosing a value of 𝑡 = 2.16 in the estimator �̃� =

1−𝑒−𝑡�̅�

𝑡
, the relative efficiency of the 

estimator can be increased approximately 167% compared to the estimate 𝜃 = �̅� when 𝜃 =
 0.5. However, when 𝜃 =  0.5 and the sample size 𝑛 = 10, the relative efficiency ranges 
from 100.00 to 135.59 when 𝑡 ranges from 0.0001 to 1.232 with an increment of 0.0001. 
From the reported results, it appears that for a fixed parameter, lower sample size provides 
better efficiency for the proposed estimate, which makes sense because as sample size gets 
larger, the values of 𝑀𝑆𝐸(�̃�) and 𝑉(𝜃) both get smaller so as to lead to the equally efficient 
estimates �̃� and 𝜃. It also follows that relative efficiency of the proposed estimate is not 
sensitive to the values of the parameter 𝜃, rather it is sensitive to the sample size and the 
values of 𝑡.  

 

8. Concluding Remarks 

We proposed a new estimate, �̃� =
1−𝑒−𝑡�̅�

𝑡
, 𝑡 ≠ 0, for estimating the unknown exponential 

parameter 𝜃 using mgf. Some properties of the new estimator such as Expected value, Bias, 
MSE, Variance and RE have been studied. As 𝑡 → 0, the new estimator is unbiased, and 
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MSE and Variance are identical to the variance of the MLE. By searching values of 𝑡 
nearing 0, we can have the higher relative efficiency of the proposed estimate �̃� compared 
to the ML estimate, 𝜃 = �̅� . The new estimator has been justified using two real-life 
examples, where the new estimate �̃� and the competitor estimate 𝜃 = �̅� provide 
approximately similar fit, but the new estimate provide higher efficiency in the estimation 
of the parameter. In a broader search of relative efficiency, with varying values of the 
parameter 𝜃, sample size 𝑛 and 𝑡, it appears that the proposed estimator has much higher 
relative efficiency as compared to the MLE for smaller sample size. We write program in 
R to search for the range of 𝑡 and range of relative efficiency (RE) of the proposed estimate 
as compared to MLE, which will provide a guide to implement the new method. Given 
facts of the study and success in real-life application of the proposed estimate, we could 
conclude that the proposed new estimate is more efficient than usual MLE for values of 𝑡 
nearing 0, and therefore, we recommend the new method of estimation for fitting 
exponential model to survival time data and the estimation of exponential parameter. 
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