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Abstract

Exponential distribution plays an important role in modeling real-life data relating to the
continuous waiting time. In this presentation, a new estimator of the Exponential parameter
has been proposed. Some important characteristics of the estimator have been studied. The
performance of the new estimator has been compared theoretically, and empirically with
the one using maximum likelihood estimator. Empirical study with simulation, and
examples to real-life data reveal that the new estimator is more efficient than the maximum
likelihood estimator.
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1. Introduction

Exponential distribution has widely been used in modeling distributions in areas ranging
from studies on the lifetimes of manufactured items [1-3] to research involving survival or
remission times in chronic diseases [4-5]. The wide applicability of exponential
distribution in lifetime modeling is due to the availability of simple statistical methods for
it [2] and it represents the lifetimes of many things such as various types of manufactured
items [1]. Exponential distribution and of its parameter estimation appear in any standard
book of statistics [6-8]. We say that a continuous random variable X follows an exponential
distribution with parameter 8 (mean) if the probability density function is given by

1 _x
f(x)=§e 0;x>0;,0>0

In general, 8 is unknown and estimated using sample data. Let x4, x5, -+, x,, be a random
sample of size n. Then, the maximum likelihood function of f(x) is given by

1 _1¢n
L(6) =gne gli=1%i

Taking logarithm on both sides of the likelihood function, we get

1
1(6) = InL(0) = —nlnd — 5

n
X
i=1
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Taking derivative of [ with respect to €, and setting equal to zero, a maximum likelihood
estimate (MLE) of 6, 8 is given by

al 1+1Z": _,
26~ ez LNT
=1
9=Z?:1xi=f
n

It is easy to see that 0 is an unbiased estimate of 6, i.c.,

E(0) =6
with variance of § given by

L

V() = —

In the next section, we propose a new estimator of the exponential parameter 6 and study
some statistical properties of the proposed estimator.

2. Proposed Estimator
The moment generating function of X~Exp(0) is
Mx(t) = E(e*) =1 -06t)7"

Given arandom sample X3, X,, -+, X, of size n, the moment generating function of };/-, X;
is given by

MZ?=1 Xi(t) = E(ez?:;L Xit)

= | | E(eXi®)
11

E

= MXL' (t)

=1-6t)™
Then, by the method of moments, a new estimator of 8, 8 follows from solving the equation
elisiXit = (1 — f)™

After an algebraic manipulation, we have the following new estimator of 8
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_ 1—e7tX
0=—;t+0

3. Properties of New Estimator

In this section, we study some properties of the proposed estimator, which we state in terms
of the following theorems:

1—

Theorem 3.1 The expected value of § = et_ﬁ is E(é) = %[1 — (1 + %)_n] and if t —»

0, then @ is an unbiased estimate of 6.

- _p—tXx
Proof: The expected value of 8 = 1=¢ Tis

E(é)zﬂ:%[l—<1+%9)_n];t¢0

Taking limit as t = 0 and applying the L’ Hospital Rule, we have

Oem(1+50) " (50)

ling£(6) = fig 1 =
- _po—tx
Theorem 3.2 The bias of § = ——— i
1 to\™"
B(6) =—[1—(1+—) ]—9
t n
and if t = 0, then bias of 8 is 0.
. ~ 1-e7t%
Proof: The bias of 6 = is
t -n
5 5 1_Ee—tf [1— 1+-=6 ]
B(6) =E() -6 = E )_g- ( t") —0;t%0
Taking limit as t — 0 and applying the L’ Hospital Rule, we have
-n—-1
N I 1)
lim B(6) = lim -0=6-6=0

t—0 t—0 1

—tx

Theorem 3.3 The variance of 8 = is

0=3{+5) ()]

and if t = 0, then variance of 8 is same as the variance of .
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Proof: Note that

Myz, (D) = E(eXi=X) = (1 - 607"

It also follows that

-n

1) = g 0 = (1)

Me(-0) = (1+ %)_n

My(—kt) = (1 + 97“)

1-e~ %,
1S
t

Now, the variance of =

1-— e—t)?

~ 1 _
V(Q) =V <f> = t_ZV(e_tx)
V(e—tf) — E(e—tf)z _ [E(e—tf)]z
= B(e2%) - [E(e™)]?

= Mg(—2t) — [Mg(~t) ]?
(12" [0

2t0\ ™" to\ "
=(1+==) -(1+2)
n n
Then,
1 2to\ " to\ "
v(6) == (1+—) —(1+—) st #0
t n n
Taking limit as £ — 0 and applying the L’ Hospital Rule, we have

() " (G () 6

2t

EUORT
t@)_zn_l

—6(1+¥)_n_1+9(1+7

= lim
t—0 t

n2 -2n-2
i on+1)(1+22) (%)1(2n+1)9(1+§) ©)

=0+ DA +0) (%) - @+ 1o +0)(3)
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_20%(n+1) _ 02(2n+1)
- n n

20%-6% _ 92 A
= ===v(®

n

1-e~tX

Theorem 3.4 The mean square error (MSE) of § = is

@)= 12~ (12) ] o= (050 o

and if t — 0, then MSE of 8 is the same as the variance of 6.

2

Proof: The MSE of § = " is

et

MSE(8) = v(8) + [B(8)]"

{002 () Bl (0 20) ) -

Taking limit as £ — 0 and applying the L’ Hospital Rule, we have

2

~ . ~ . ~ 2
lim MSE(6) = limy (9) + [lim B(9)]

1-e~ %

Theorem 3.5 The relative efficiency (RE) of 8 = ;

with respect to 8 is

0% /n
RE = ~ % 100%

o (S R I B (R (DR

tx
et—1

Proof: The relative efficiency of 6 = with respect to 8 is given by

_ V(9
RE = G x 100

0% /n X 100
-n -2n -n 2
w05 ) T - (59

It is easy to see thatas t — 0, 6 and 0 are same. If t # 0, then there may exist a non-zero
t such that

MSE(8) < V()
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or,
2

I O I N e (O N R R G

In section 5 below, we search for values of t, for selected values of 6 and n, for which the
relation (1) holds true and hence find the percent relative efficiency of the proposed
estimator § with respect to § using R code.

4. Fitting of an Exponential Distribution

In this section, we discuss how we can employ the two underlying estimates for fitting of
exponential distributions to real life data using the chi-squared goodness of fit, and
AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) criteria.

4.1 Chi-squared Goodness of Fit
For chi-squared goodness of fit [8-9], we compare observed and expected frequency using
a chi-squared distribution. The algorithm for the goodness of fit is as follows:

Given an observed sample, we divide the range of the observed values into k equal intervals
and evaluate the observed and expected frequency in each of the k intervals using the
following procedure.

Let the k intervals be designated by [ug, uq], (U, Uz, ..., (Ui—1, Uil .., (Ug_1, U], Where
u; is the upper end-point of ith interval, i = 1, 2, ..., k. Note that an observation of the given
sample can be observed in any of the intervals with probability p = 1/k. Then, it follows
that

F(w)=1ip
Also, by the property of the exponential distribution,

Ui t Ui

F(u;) =f 5e_§dt —1-e¢0
0

We solve the two expressions of F(u;) to find the upper end-point of the ith interval, u;:

U
[

ip=1-—e

By algebraic manipulation, it follows that

u;=61n(—) 2)

(1-ip)
Let o; be the observed frequency in the ith interval. Then,
0; = #(wy <x < w) 3)

The expected frequency for the ith interval is

1
e, =nXp; pi=E=0.125,ifk=8
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The goodness of fit statistic is then given by

¥2 = Z" (0; —e)?
i=1 €

which follows a chi-squared distribution with (k — 1 — v) degrees of freedom, where v is
the number of parameters estimated. In our example, we only estimate one parameter 8.
Therefore, v = 1.

4.2 Goodness of Fit Using AIC and BIC Criteria

The likelihood function of exponential distribution is given by:

S A DL L)
L=l_[5€ 9=(§) e’
j=1

In order to apply AIC and BIC [10-12], we find the estimated likelihood functions given
by two estimators 8 and 8 of .

Then, using the likelihood estimator 8,
n _Z}lej

o\t EEN N
L=<:)€ 0 =(j)€n
0 X

Using the new estimator 8,

n
o\t ZmN 1 nz
L= = e 0 =\ = exp _——_—
2] 1—etx 1—etx
t t

Then, AIC and BIC due to the estimator 8 are
AIC = (-2)(InL) + 2v
BIC = (-2) (lnf) + v(ln(n))
Similarly, AIC and BIC due to the estimator 8 are
AIC = (-2)(InL) + 2v
BIC = (=2)(InL) + v(In(n))

The method with the lower of values of AIC and BIC provides the better fit.

5. Real Life Applications with Examples

In order to assess the goodness of fit and compare performance of the two underlying
estimates, we consider two examples (Examples 1 and 2) of real-life data. We evaluate
chi-square goodness of fit and AIC-BIC for the two underlying estimates.
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For both examples we consider 8 intervals (i.e., k = 8) designated by [ug, u4], (U4, uz], ---,
(ug, u7], ..., (uy, ug], where u; is the upper end-point of ith interval, i = 1, 2, ..., 8. Then,
an observation of a given sample of size n = 72 can be observed in any of the intervals

with probability p = % = (0.125, with an expected frequency of each interval n X 0.125 =

72 x 0.125 = 9. Tables (1) and (2) provide observed and expected frequencies for each
examples using equation (2) and (3).

Example 1

This data represents the survival times (in days) of 72 guinea pigs infected with virulent
tubercle bacilli, observed and reported by Bjerkedal [13], and appeared in [5].

12 15] 22 24 24 32 32 33 34 38 38 43
44 48| 52 53 54 54 55 56 57 58 58 59
60 60| 60 60 61 62 63 65 65 67 68 70
70 721 73 75 76 76 81 83 84 85 87 91
95 96 | 98 99| 109 | 110| 121 127 | 129 | 131 | 143 | 146

146 | 175 175| 211 | 233 | 258 | 258 263 | 297 | 341 | 341 | 376
The density histogram in Figure 1 demonstrates that the shape of the distribution of the
data is positive skewed.

Figure 1: Density of survival time of guinea pigs
for datain Example 1

0.008

Density

0.004

0.000

0 100 200 300 400

Survival time

The mean survival time is 99.82 days. We test the null hypothesis that the data come from
an exponential distribution with mean 100.

Table 1 below provides observed and expected frequencies evaluated using equations (2)
and (3) using the MLE estimate § = .
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Table 1: Observed and expected frequencies of survival times of guinea pigs infected
with virulent tubercle bacilli for Example 1 using the MLE 8 = & of 6.

Interval 0; e; (0; —e;)?le;
[0,13.329) 1 9 7.111
[13.329, 28.716) 9 2.778
[28.716, 46.915) 8 9 0.111
[46.915, 69.189) 22 9 18.778
[69.189, 97.905) 15 9 4.000
[97.905, 138.379) 9 0.111
[138.379, 207.568) 9 1.778
[207.568, 00) 9 0.000
Total 72 72 34.667

Then, the observed value of the Chi-square test statistic under the MLE estimate 8 = ¥ is

8 (0; —e;)?
2 4 i
s = — = 34667
Xg Zi:l e;

and the p-value is 0.000005 with d. f.= (8—1—-1) = 6.
It also follows that AIC = 808.8836 and BIC = 811.1603.

e~ tx

For the new estimate § = with ¢ = 0.00051, the observed and expected frequencies

t
evaluated using equations (2) and (3) appear in Table 2 below.

Table 2: Observed and expected frequencies of survival times of guinea pigs infected

—tx

with virulent tubercle bacilli for Example 1 using the new estimate 8 = 1_et of 6.
Interval 0; e; (0; — e;)?le;

[0, 12.995) 1 9 7.111

[12.995, 27.998) 9 2.778

[27.998, 45.741) 8 9 0.111

[45.741, 67.458) 21 9 16.000
[67.458, 95.455) 15 9 4.000
[95.455, 134.916) 9 0.000
[134.916, 202.373) 5 9 1.778
[202.373, o0) 9 0.000
Total 72 72 31.778

1-e~t%

Then, the observed value of the Chi-square test statistic under the new estimate 8 = ;

1S
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8 (0; —e;)?
2 i i
5= ——— =31.778
Xg Zi:l e

and the p-value is 0.00002 with d.f.= (8—1—1) = 6.
It also follows that AIC = 808.9303 and BIC = 811.2069.

Given above analyses, at 5% level of significance we reject the null hypothesis that the
data come from an exponential distribution with mean 100 using the both estimates § and
6. However, the relative efficiency of the proposed estimate & compared to 8 is 105.49%.

It is to be noted that we can search for values of t for selected values of 8 and n, satisfying
the relation in equation (1) in order to compute the percent relative efficiency of the
proposed estimator 6 with respect to 6.

Below we provide R code that was used to search for values of t and computing relative

efficiency of @ with respect to 8, along with other computations aspects for data in Example
1.

n=length(x);

mean=mean(x)#observed value of mean=99.82

theta=100;

nu=1;

for (t in seq(0.00001,.001,.0001)){
a<-(L/t"2)*((1+(2*t*theta/n))"(-n)-(1+(t*theta/n))(-2*n))+((1/t)*(1-(L+t*theta/n)™(-n))-
theta)"2

b<-theta"2/n;

ifelse (a<b,{print(t);print(b/a*100)},print(0))

}

estl=round(mean(x),digits=3);# MLE estimate
est2=round((1-exp(-est1*0.00051))/0.00051,digits=3);#New estimate

#Assessing GOF for using est1;

u=c();

for (i in 1: 7){u[i]=round(-est1*log(1-i*.125),digits=3)}
print(u)

0=C();

o[1]=sum(x<u[1]);

o[2]=sum(x>=u[1] & x<u[2])
o[3]=sum(x>=u[2] & x<u[3])
o[4]=sum(x>=u[3] & x<u[4])
o[5]=sum(x>=u[4] & x<u[5])
o[6]=sum(x>=u[5] & x<u[6])
o[7]=sum(x>=u[6] & x<u[7])
o[8]=sum(x>=u[7])

print(o)

e=rep(1,8)*.125*n;
chi2.1=round(sum((o-e)"2/e), digits=3);
pval.1=pchisq(chi2.1, df=6,nc=0,lower.tail=F)
likel=((1/est1)*n)*(exp(-n))
aicl=-(2*log(likel))+2*nu

1078



JSM 2017 - IMS

bicl1=-2*log(likel)+nu*log(n)

# Assessing GOF for using est2;

u=c();

for (i in 1: 7){u[i]=round(-est2*log(1-i*.125),digits=3)}
print(u)

0=c();

o[1]=sum(x<u[1]);

o[2]=sum(x>=u[1] & x<u[2])
o[3]=sum(x>=u[2] & x<u[3])
o[4]=sum(x>=u[3] & x<u[4])
o[5]=sum(x>=u[4] & x<u[5])
o[6]=sum(x>=u[5] & x<u[6])
o[7]=sum(x>=u[6] & x<u[7])
o[8]=sum(x>=u[7])

print(o)

chi2.2=round(sum((o-e)"2/e), digits=3);
pval.2=pchisq(chi2.2, df=6,nc=0,lower.tail=F)
like2=((1/est2)n)* exp((-n*estl/est2))
aic2=-(2*log(like2))+2*nu
bic2=-2*log(like2)+nu*log(n)

print(c(chi2.1, pval.1, chi2.2, pval.2,qchisq(0.05, df=6,nc=0,lower.tail=F)))

print(c(aicl, bicl))
print(c(aic2, bic2))

Example 2

The data set reported by Efron [14] and also appeared in [5] represent the survival times
of a group of patients suffering from Head and Neck cancer disease and treated using a
combination of radiotherapy and chemotherapy (RT+CT).

122 | 23.6 | 23.7] 259 32 37141354738 | 5546 | 584 | 63.5
68.46 | 783 | 745 | 814 84 92 94 110 112 | 119 ] 127
130 | 133 ] 140 | 146 | 155] 159 173 179 194 | 195 ] 209
249 | 281 | 319 | 339 ] 432 | 469 | 519 633 725 | 817 | 1776

The density histogram in Figure 2 demonstrates that the shape of the distribution of the

data is positive skewed.
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Figure 2: Density of survival time of patients with head and neck
cancer for data in Example 2

Density
0.000 0.001 0.002 0.003

il I e SN _
[ [ [ |
0 500 1000 1500
Survival time

The mean survival time is 223.477. We test the null hypothesis that the data come from
an exponential distribution with mean 223.

Table 3 below provides observed and expected frequencies evaluated using equations (2)
and (3) using the MLE estimate § = .

Table 3: Observed and expected frequencies of survival times of patients suffering from
Head and Neck cancer treated with a combination of radiotherapy and chemotherapy
(RT+CT) for Example 2 using the MLE 8 = & of exponential parameter 6.

Interval 0; e; (0; — e))?le;
[0, 29.841) 4 5.5 0.409
[29.841, 64.290) 7 5.5 0.409
[64.290, 105.035) 7 5.5 0.409
[105.035, 154.902) 8 5.5 1.136
[154.902, 219.193) 7 5.5 0.409
[219.193, 309.805) 2 5.5 2.227
[309.805, 464.707) 3 5.5 1.136
[464.707, o) 6 5.5 0.045
Total 44 44 6.182

Then, the observed value of the Chi-square test statistic under the MLE estimate 8 = ¥ is
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8 (0; —e;)?
2 l L
XB 21‘:1 €

and the p-value is 0. 40311 withd.f.= (8—1—-1) = 6.

It also follows that AIC = 566.0191 and BIC = 567.8033.

e~ tx

For the new estimate § = with ¢ = 0.00041, the observed and expected frequencies

t
evaluated using equations (2) and (3) appear in Table 4 below.

Table 4: Observed and expected frequencies of survival times of patients suffering from

Head and Neck cancer treated with a combination of radiotherapy and chemotherapy
1-e7 X

(RT+CT) for Example 2 using the new estimate § = of exponential parameter 8.

Interval 0; e; (0; — €;)?le;
[0, 28.515) 4 5.5 0.409
[28.515, 61.433) 6 5.5 0.045
[61.433, 100.367) 8 5.5 1.136
[100.367, 148.018) 8 5.5 1.136
[148.018, 209.451) 7 5.5 0.409
[209.451, 296.036) 2 5.5 2.227
[296.036, 444.054) 3 5.5 1.136
[444.054, o) 6 55 0.045
Total 44 44 6.545

—tx

Then, the observed value of the Chi-square test statistic under the new estimate =

1S

8 (O' — e.)z

2 2 i

£ = ——— =6.545
X'g Zi=1 e;

and the p-value is 0.36498 withd.f.= (8—1—1) = 6.

It also follows that AIC = 566.1115 and BIC = 567.8957.

Given above analyses, at 5% level of significance there is a strong evidence that the data
come from an exponential distribution with mean 223 using the both estimates 6 and 6.
However, the relative efficiency of the proposed estimate & compared to 8 is 108.7%.

6. Relative Efficiency of the New Estimator

In this section, we investigate relative efficiency of the proposed estimator 8 compared to
0 for given values of t, @ and n using R code.

We consider various values of the parameter 8 fixed at 0.5, 2.5, 5, 10, 15, 20, 25, 30, 50,
100, arbitrarily and sample size at 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 and 100. For each
combination of 8 and n, we consider values of t between a and b with an increment of
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0.0001, notationally expressed as t € [a, b, @ 0.0001], where a = 0.0001 and values of b
are evaluated using the search so as to satisfy (1) and are reported along with the relative
efficiency for a given combination of 8 and n in the Table 5.

Table 5: Relative efficiency of proposed estimate compared to the maximum likelihood
estimate for varying sample size and t

0 n Range of t in the search Range of relative efficiency (re)
5 0.0001 <t <2.1600 100.01 < re < 164.85
10 0.0001 <t <1.2320 100.00 < re < 135.59
0.50 15 0.0001 <t <0.8789 100.01 < re < 124.59
20 0.0001 <t <0.6862 100.01 <re <118.79
25 0.0001 <t <0.5637 100.00 < re < 115.21
30 0.0001 <t <0.4786 100.00 < re < 112.78
35 0.0001 <t <0.4159 100.01 <re<111.02
40 0.0001 <t <0.3679 100.00 < re < 109.68
45 0.0001 <t <0.3298 100.00 < re < 108.64
50 0.0001 <t <0.2989 100.00 < re < 107.80
100 0.0002 <t <0.1544 100.00 < re < 103.95
2.5 5 0.0001 <t < 0.4330 100.06 < re < 164.85
10 0.0001 <t <0.2464 100.00 < re < 135.59
15 0.0001 <t <0.1757 100.04 < re < 124.59
20 0.0001 <t <0.1372 100.02 <re <118.79
25 0.0001 <t <0.1127 100.02 <re <115.21
30 0.0001 <t <0.0957 100.01 <re <112.78
35 0.0001 <t <0.0831 100.04 < re <111.02
40 0.0001 <t <0.0735 100.04 < re <109.68
45 0.0001 <t <0.0659 100.03 < re < 108.64
50 0.0001 <t <0.0597 100.04 < re < 107.80
100 0.0001 <t <0.0308 100.04 < re < 103.95
5 5 0.0001 <t <0.2166 100.01 <re < 164.85
10 0.0001 <t <0.1232 100.00 < re < 135.59
15 0.0001 <t <0.0877 100.11 < re < 124.59
20 0.0001 <t <0.0686 100.02 < re < 118.79
25 0.0001 <t <0.0563 100.06 <re <115.21
30 0.0001 <t <0.0478 100.05 <re <112.78
35 0.0001 <t <0.0415 100.09 < re < 111.02
40 0.0001 <t <0.0367 100.08 < re < 109.68
45 0.0001 <t <0.0329 100.08 < re < 108.64
50 0.0001 <t <0.0298 100.09 < re < 107.80
100 0.0001 <t <0.0154 100.04 < re < 103.95
10 5 0.0001 <t <0.1083 100.01 < re < 164.85
10 0.0001 <t <0.0616 100.00 < re < 135.59
15 0.0001 <t <0.0439 100.07 < re < 124.59
20 0.0001 <t <0.0343 100.02 < re < 118.79
25 0.0001 <t <0.0281 100.14 <re <115.21
30 0.0001 <t <0.0239 100.05 <re <112.78
35 0.0001 <t <0.0207 100.18 <re < 111.02
40 0.0001 <t <0.0183 100.17 < re < 109.68
45 0.0001 <t <0.0164 100.17 < re < 108.64
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50 0.0001 <t <0.0149 100.09 < re < 107.80
100 0.0001 <t <0.0077 100.04 < re < 103.95

15 5 0.0001 <t <0.0722 100.01 < re < 164.85
10 0.0001 <t <0.0410 100.13 < re < 135.59
15 0.0001 <t <0.0292 10022 < re < 124.59
20 0.0001 <t <0.0228 100.18 < re < 118.79
25 0.0001 <t <0.0187 100.23 <re <115.21
30 0.0001 <t <0.0159 100.14 <re <112.78
35 0.0001 <t <0.0138 100.18 <re <111.02
40 0.0001 <t <0.0122 100.17 < re < 109.68
45 0.0001 <t <0.0109 100.26 < re < 108.64
50 0.0001 <t <0.0099 100.18 < re <107.79
100 0.0001 <t <0.0051 100.14 < re < 103.95

20 5 0.0001 <t <0.0541 100.10 < re < 164.85
10 0.0001 <t <0.0308 100.00 < re < 135.59
15 0.0001 <t <0.0219 10022 < re < 124.59
20 0.0001 <t <0.0171 100.18 <re <118.79
25 0.0001 <t <0.0140 10031 <re <115.21
30 0.0001 <t <0.0119 100.23 <re <112.78
35 0.0001 <t <0.0103 10035 <re <111.02
40 0.0001 <t <0.0091 100.35 < re < 109.68
45 0.0001 <t <0.0082 100.17 < re < 108.64
50 0.0001 <t <0.0074 100.27 <re <107.79
100 0.0001 <t <0.0038 100.23 < re < 103.95

25 5 0.0001 <t <0.0433 100.06 < re < 164.85
10 0.0001 <t <0.0246 100.13 < re < 135.59
15 0.0001 <t <0.0175 100.30 < re < 124.59
20 0.0001 <t <0.0137 100.10 <re <118.79
25 0.0001 <t <0.0112 100.31 <re <115.21
30 0.0001 <t <0.0095 10031 <re <112.78
35 0.0001 <t <0.0083 100.09 <re <111.02
40 0.0001 <t <0.0073 100.26 < re < 109.68
45 0.0001 <t <0.0065 100.44 < re < 108.64
50 0.0001 <t <0.0059 100.36 < re < 107.80
100 0.0001 <t <0.0030 100.42 < re < 103.95

30 5 0.0001 < t < 0.0361 100.01 <re < 164.85
10 0.0001 < t < 0.0205 100.13 < re < 135.59
15 0.0001 < t <0.0146 100.22 < re < 124.59
20 0.0001 <t <0.0114 100.18 <re <118.79
25 0.0001 < t < 0.0093 100.48 <re <115.21
30 0.0001 < t < 0.0079 100.40 < re < 112.78
35 0.0001 < t < 0.0069 100.18 <re < 111.02
40 0.0001 < t < 0.0061 100.17 < re < 109.68
45 0.0001 < t < 0.0054 100.53 < re < 108.64
50 0.0001 < t < 0.0049 100.45 < re <107.79
100 0.0001 < t < 0.0025 100.42 < re < 103.95

50 5 0.0001 <t <0.0216 10027 < re < 164.85
10 0.0001 <t <0.0123 100.13 < re < 135.58
15 0.0001 <t <0.0087 100.67 < re < 124.59
20

1083




JSM 2017 - IMS

25 0.0001 <t <0.0068 100.50 < re <118.79
30 0.0001 <t <0.0056 10031 <re <115.21
35 0.0001 <t <0.0047 100.74 <re <112.78
40 0.0001 <t <0.0041 100.53 <re <111.02
45 0.0001 <t <0.0036 100.70 < re < 109.68
50 0.0001 <t <0.0032 100.88 < re < 108.64
100 0.0001 <t <0.0029 100.80 < re <107.79
0.0001 <t <0.0015 100.42 < re <103.94

100 5 0.0001 <t <0.0108 10027 <re < 164.84
10 0.0001 <t <0.0061 100.79 < re < 135.58
15 0.0001 <t <0.0043 101.43 < re < 124.59
20 0.0001 <t <0.0034 100.50 < re <118.79
25 0.0001 <t <0.0028 10031 <re <115.20
30 0.0001 <t <0.0023 101.59 <re <112.76
35 0.0001 <t <0.0020 101.39 <re <111.02
40 0.0001 <t <0.0018 100.70 < re < 109.68
45 0.0001 <t <0.0016 100.88 < re < 108.64
50 0.0001 <t <0.0014 101.67 < re <107.78
100 0.0001 <t <0.0007 101.28 < re < 103.94

7. Results and Discussion

We write program in R to search for values of t and the relative efficiency of the proposed
estimator of exponential parameter (mean) as compared to the MLE estimator. It appears
that the values of t for the example data model remain positive for relative efficiency to be
more than 100% for the proposed estimator compared to the MLE estimator. In the search
of values of t, we restrict ourselves to positive values of t nearing to 0 for relative
efficiency more than 100% for the proposed estimator. Theoretically, since the proposed
estimate is unbiased as t = 0, we wish to achieve efficiency as well as nearing unbiased
estimate by choosing values of t nearing 0. For example, when 8 = 0.5 and the sample
size n = 5, the relative efficiency of the proposed estimate ranges from 100.01 to 164.85
when t ranges from 0.0001 to 2.16 with an increment of 0.0001. This means that the by

—tx

choosing a value of t = 2.16 in the estimator § = 1 , the relative efficiency of the

estimator can be increased approximately 167% compared to the estimate § = ¥ when § =
0.5. However, when 8 = 0.5 and the sample size n = 10, the relative efficiency ranges
from 100.00 to 135.59 when t ranges from 0.0001 to 1.232 with an increment of 0.0001.
From the reported results, it appears that for a fixed parameter, lower sample size provides
better efficiency for the proposed estimate, which makes sense because as sample size gets
larger, the values of MSE (é ) and V(é) both get smaller so as to lead to the equally efficient

estimates @ and 6. It also follows that relative efficiency of the proposed estimate is not
sensitive to the values of the parameter 6, rather it is sensitive to the sample size and the
values of t.

8. Concluding Remarks

—tx

We proposed a new estimate, § = , t # 0, for estimating the unknown exponential

parameter 6 using mgf. Some properties of the new estimator such as Expected value, Bias,
MSE, Variance and RE have been studied. As t — 0, the new estimator is unbiased, and
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MSE and Variance are identical to the variance of the MLE. By searching values of ¢t
nearing 0, we can have the higher relative efficiency of the proposed estimate 8 compared
to the ML estimate, & = ¥ . The new estimator has been justified using two real-life
examples, where the new estimate 6 and the competitor estimate @ = X provide
approximately similar fit, but the new estimate provide higher efficiency in the estimation
of the parameter. In a broader search of relative efficiency, with varying values of the
parameter 8, sample size n and t, it appears that the proposed estimator has much higher
relative efficiency as compared to the MLE for smaller sample size. We write program in
R to search for the range of t and range of relative efficiency (RE) of the proposed estimate
as compared to MLE, which will provide a guide to implement the new method. Given
facts of the study and success in real-life application of the proposed estimate, we could
conclude that the proposed new estimate is more efficient than usual MLE for values of ¢
nearing 0, and therefore, we recommend the new method of estimation for fitting
exponential model to survival time data and the estimation of exponential parameter.
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