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Abstract
Many statistical methods for analyzing genetic data assume Hardy-Weinberg Equilibrium (HWE),

such as those used in genome wide association studies. Therefore, to use such methods, one must
check whether the HWE assumption is valid. For a case-control study, researchers have recognized
that Hardy Weinberg proportions will be distorted if the marker being tested happens to be associ-
ated with the disease. To alleviate this problem, it is typical that HWE tests are carried out only on
controls. This raises the following question: do controls as a whole provide a good representation
of the population? One may justify this by further assuming that the disease is rare. However, many
diseases being studied are in fact common, and the rare disease assumption is often conveniently
forgotten. Even if the disease is indeed rare, is it then justifiable to test for HWE in the controls? In
this study, we attempt to answer the above questions. Deriving bias when using controls to estimate
the population, we demonstrate that the rare disease assumption alone is not sufficient to justify
the use of controls as representatives of the population. We additionally investigate whether it is
bona fide to perform HWE testing on controls only even if the disease being studied is rare. The
results from our study are striking; the Type I error can be severely inflated regardless of whether
the disease being investigated is rare or common.

Key Words: Hardy-Weinberg equilibrium, case-control study, rare disease assumption, genome-
wide association studies

1. Introduction

Genome-wide Association Studies (GWAS) are frequently performed to look for genetic
variants that are associated with an array of common diseases. In such studies, with hun-
dreds of thousands, or even millions, of Single Nucleotide Polymorphisms (SNPs) being
generated, the first step of data analysis is often testing for Hardy-Weinberg Equilibrium
(HWE) for each of the SNPs (Wittke-Thompson et al. 2005; Yu et al. 2010). This is usually
framed as a quality control step to help identify possible errors that could have occurred,
including systematic genotyping ones (Gomes et al. 1999; Hosking et al. 2004; Salanti et
al. 2005; Moonesighe et al. 2010). Those that do not pass the HWE tests will be elim-
inated before moving on to the next step, as they are deemed to have violated the HWE
assumption and are likely to be caused by errors (McCarthy et al. 2008). To vigorously
detect all possible errors, multiple testing procedures are typically not fully implemented,
leading to the rejection of a large proportion of the SNPs in some studies (Healey et al.
2000; The Welcome Trust Case Control Consortium 2007; Phillips et al. 2008; Wang and
Shete 2010).

In a case-control study setting, it is known that if a locus is indeed associated with the
disease of interest, then HWE will be distorted in the cases (Nielsen et al. 1999). There-
fore, researchers use controls only, believing that controls are similar to the population in
terms of their genetic makeup, which implicitly assumes the disease is rare (Salanti et al.
2005). However, the rare disease assumption itself is one that is often overlooked or merely
forgotten and taken for granted.
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Even if it has been made sure that the disease is indeed rare, relying on this assumption
still raises several concerns. The first question: are the controls actually similar to the
general population? For studying maternal and imprinting effect, it was argued that the rare
disease assumption is necessary, but not sufficient for the premise that controls have similar
genetic makeup to the general population (Yang and Lin 2013). This issue was also touched
upon in a simulation study devised to investigate HWE testing (Brems 2015). Additionally,
what makes the use of controls only under the premise of the rare disease assumption most
ironic of all, is the fact that most diseases studied today are in fact common. If the controls
are not a good representation of the population, then more variants than necessary may
be thrown out since the measure of HWE will be distorted (Wang and Shete 2010). This
results in a loss of information that is in fact entirely avoidable if one is made aware of the
potential risk using controls only poses when testing for HWE.

In this paper, we address two major issues. Firstly, we investigate if the rare disease
assumption itself is sufficient to justify the use of controls only as surrogate for a random
sample of the population in the context of HWE testing. We look at the bias incurred
when estimating the population genotype frequencies based on the controls. Secondly, we
explore whether there is inflated Type I error when using controls only for testing for HWE,
regardless of whether the disease of interest is common or rare, and if so, how bad it can
be.

2. Methods

2.1 Genotype Distribution of the General Population

Consider a SNP with alleles a and A, whose frequencies are pa and 1 − pa, respectively,
with a being the minor allele and thus pa is referred to as the Minor Allele Frequency
(MAF). Assuming that the SNP is from a population under HWE, then the probabilities of
the three genotypes, AA,Aa, and aa, in the population are defined as,

pAA = (1− pa)2,

pAa = 2pa(1− pa), (1)

paa = p2a.

2.2 Genotype Distribution of Cases

Suppose that the SNP is associated with a disease being studied and that having one or two
copies of the minor allele will lead to increased risks of being affected by the disease (i.e.
becoming a case). These increased risks are above the baseline level when there are no
copies of the minor allele, and can be formally defined in terms of the following relative
risks:

RR1 =
P (case | Aa)
P (case | AA)

and RR2 =
P (case | aa)
P (case | AA)

.

Then, using the Bayes Rule, the distribution of the three genotypes in the population
of cases can be derived in terms of the genotype distribution in the general population,
pAA, pAa, paa, and the two relative risks, RR1, RR2. That is,
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pAA|case ≡ P (AA | case) =
pAA

pAA + pAa ×RR1 + paa ×RR2
,

pAa|case ≡ P (Aa | case) =
pAa ×RR1

pAA + pAa ×RR1 + paa ×RR2
, (2)

paa|case ≡ P (aa | case) =
paa ×RR2

pAA + pAa ×RR1 + paa ×RR2
.

These probabilities have been derived many times previously in the literature, includ-
ing the reproduction in Brems (2015). It is easily seen that the genotype distribution for
the cases as defined in the set of equations in (2) is different from that of the general pop-
ulation as defined in (1). We let C = pAA + pAa × RR1 + paa × RR2. In order for the
three corresponding probabilities to be similar, we need to have C ≈ 1, RR1/C ≈ 1, and
RR2/C ≈ 1. These requirements lead to the conclusion that both RR1 ≈ 1 and RR2 ≈ 1.
As such, for a SNP that is associated with the disease, these requirements cannot be sat-
isfied. In other words, the cases are not similar to the general population in their genetic
makeup. Hence, it has been correctly concluded by researchers that using cases for testing
HWE will lead to inflated Type I error.

2.3 Genotype Distribution of Controls

Similarly, one can derive the distribution of the three genotypes within the population of
controls, noting that the population prevalence of the disease is also needed to completely
specify them:

pAA|cntr ≡ P (AA | control) =
pAA − pAA|case × κ

1− κ
,

pAa|cntr ≡ P (Aa | control) =
pAa − pAa|case × κ

1− κ
, (3)

paa|cntr ≡ P (aa | control) =
paa − paa|case × κ

1− κ
,

where κ ≡ P (case) is the population disease prevalence, that is, the probability that a
randomly chosen individual from the general population is affected by the disease.

One can easily see that the three control probabilities in (3) also differ from their cor-
responding population probabilities in (1). In order for the two distributions to be approxi-
mately the same, we would require that

pAA − pAA|case × κ ≈ (1− κ)× pAA,

pAa − pAa|case × κ ≈ (1− κ)× pAa,

paa − paa|case × κ ≈ (1− κ)× paa.

Simple algebraic manipulations show that these conditions are equivalent to requiring that
the genotype distribution for the cases be approximately the same as the genotype distri-
bution for the general population. As such, regardless of whether the disease is rare or
common, the genotype distribution of the controls will not be similar to the distribution of
the general population as long as the SNP is associated with the disease with an appreciable
effect size.
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2.4 The Controls Being Representative of the Population Fallacy

To see that the commonly-held notion that controls can be used as representation of the
general population is in fact a fallacy, we rewrite the genotype distribution of the controls
using a different representation:

P (AA | control) = [p(control | AA)pAA]/(1− κ),

P (Aa | control) = [p(control | Aa)pAa]/(1− κ),
P (aa | control) = [p(control | aa)paa]/(1− κ).

In order for these probabilities to be close to their population counterparts, it is required
that

P (control | Genotype) ≈ 1− κ,
where Genotype can be AA, Aa, or aa. If a disease is rare, then 1− κ ≈ 1, which implies
that P (control | Genotype) would all have to be close to 1. Clearly, this is not possible if
the disease is Mendelian. For example, for a recessive disorder with complete penetrance,
P (control | aa) = 0, which is not close to 1. In general, as long as the SNP is associated
with the disease with an appreciable effect size, the requirements stated above cannot be
satisfied. Thus, the assumption of rare disease has no bearing on whether the distribution
of the control and that of the general population are similar.

2.5 Bias of Genotype Probability Estimators

We can ascertain the expected degree of deviation when using controls to estimate the
genotype frequencies of a population in HWE by calculating the biases and relative biases.
For example, the bias for estimating the frequency of aa is,

Biasaa = E

[
naa|cntr

ncntr

]
− paa = paa|cntr − paa,

where ncntr is the number of controls in the sample while naa|cntr is the number of controls
having the aa genotype. Clearly, the bias is not zero based on the formulas (1) and (3)
presented above for the population and control frequencies, respectively, and therefore the
estimator is biased. Further, the degree of bias is not dependent on the sample size; thus, the
frequency estimator is not consistent. Since paa can be quite small, especially for variants
with a small MAF, we will consider the absolute relative bias as defined in the following:

RAbiasaa =
|paa|cntr − paa|

paa
.

Calculating the biases and absolute relative biases for the other two genotypes can be car-
ried out similarly.

2.6 Chi-square tests for HWE

We performed multiple Chi-square tests for HWE to ascertain the potential inflation of
type I error. The underlying general population is assumed to be under HWE; therefore, a
rejection of the null hypothesis H0 (the SNP marker is in HWE) is treated as committing a
type I error. Our first two tests (T1 and T2) are for data from the cases. As well documented
in the literature, it is expected that a HWE test based on the cases will lead to an inflation of
the type I error rate. As such, these two tests are used merely as a confirmatory investigation
for completeness. The last two tests (T3 and T4) are for data from the controls. This setting
is the focus of our study, as we are interested in addressing the question that we have raised:
is it justifiable to test for HWE using the controls?
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T1. Data are generated under the genotype distribution for cases. Chi-square test will be
performed assuming that the expected counts for the three genotypes are those from
the general population.

T2. Data are generated under the genotype distribution for cases. Chi-square test will be
performed assuming that the expected counts for the three genotypes are estimated
from the data under H0.

T3. Data are generated under the genotype distribution for controls. Chi-square test will
be performed assuming that the expected counts for the three genotypes are those
from the general population.

T4. Data are generated under the genotype distribution for controls. Chi-square test will
be performed assuming that the expected counts for the three genotypes are estimated
from the data under H0.

When the population MAF of a SNP marker is known, then T3 will be appropriate. In
many real data studies, however, population frequencies are usually unknown and will be
estimated from the data. In such cases, T4 is the typical one performed in the first step
of a GWAS. We also note that the asymptotic Chi-square distribution for T1 and T3 has 2
degrees of freedom since the known probabilities are used, whereas that for T2 and T4 has
1 degree of freedom as the probabilities are estimated based on the sample being tested.

3. Results

3.1 Assessment of Bias

To illustrate that controls may not be representative of the general population in terms of the
genetic makeup, we compute the relative bias of using the genotype probabilities computed
from the controls as estimates of the corresponding population frequencies. Plotted in
Figure 1 is the absolute relative bias when using an estimator based on the controls only,
naa|cntr/ncntr for paa in the general population, where ncntr and naa|cntr are as defined
in 2.5. We consider a recessive disease model in which only those with two copies of the
minor allele have an elevated risk over the baseline; that is, RR1 = 1 and RR2 > 1. The
relative bias is computed over a range of minor allele frequencies, MAF = 0.1, 0.2, 0.3,
0.4, and 0.5. We study two values for RR2, which are set to be 2 and 3. Furthermore, we
entertain two disease prevalence, 0.15 and 0.05, with the latter representing a rare disease
scenario. As we can see from the figure, regardless of the combination of the parameters,
using controls to estimate the general population will result in bias. The degree of relative
bias does depend on the underlying setting. First, for a disease with a larger effect size
(RR2 = 3), the relative bias is larger than the corresponding counterpart with a smaller
effect size (RR2 = 2). Second, a more common disease (κ = 0.15) will also lead to
greater relative bias compared to a rare disease (κ = 0.05). Finally, as the minor allele
frequency gets larger toward a more common SNP, the relative bias decreases.

3.2 Simulation Study

We considered four sets of genetic models: recessive, dominant, multiplicative, and ad-
ditive. These four types of models differ in their relative risks with one or two copies of
the minor alleles — recessive: RR1 = 1, RR2 > 1; dominant: RR1 = RR2 > 1; mul-
tiplicative: RR2 = RR2

1; and additive: RR1 = (1 + RR2)/2. Under each type of the
models, multiple scenarios are considered; full details of the parameter values are given in

1044



Table 1: Simulation models and settings∗

Model Parameter Setting κ pa RR1 RR2

Recessive R1 0.15 0.3 1 1.4
R2 0.05 0.1 1 4
R3 0.15 0.1 1 2

Dominant D1 0.15 0.3 1.4 1.4
D2 0.15 0.1 2 2
D3 0.15 0.3 2 2

Multiplicative M1 0.15 0.1 1.8 3.2
M2 0.15 0.1 1.6 2.6
M3 0.15 0.3 1.8 3.2

Additive A1 0.15 0.3 1.1 1.2
A2 0.05 0.1 2 3
A3 0.15 0.1 2 3

∗For each of the four types of models, κ denotes the population prevalence; pa is the minor allele frequency;
RR1 and RR2 are the relative risks with one or two copies of the minor alleles, respectively, over the baseline
disease risk of having no copy of the minor allele. Note that dominant and multiplicative models are unlikely
to be associated with a rare disease and therefore κ = 0.05 was not investigated for these two models.

Table 1, which include the MAF values as well as the population disease prevalence, κ. In
particular, we considered two disease prevalence, κ = 0.15 and κ = 0.05 to simulate the
situation of a common and rare disease, respectively, for the appropriate models. We also
vary the MAF at two levels, 0.1 and 0.3, although not all combinations of κ and MAF are
considered. For each setting under a model, we simulated data for 10000 cases and 10000
controls according to the distributions of probabilities provided in equation sets (2) and (3),
respectively. Tests T1 and T2 were then applied to the case data, while tests T3 and T4
were applied to the control data. This process was repeated for 10000 simulated data sets.

Figure 2 shows the QQ plots of the quantiles of the p-values (over 10000 simulated data
sets) against the quantiles of the uniform(0,1) distribution, in the − log10 scale. Since the
data were all simulated under the null hypothesis (H0 : HWE), the p-values are expected
to follow a uniform distribution when tests T3 and T4 are used, if it is indeed justifiable
to use the controls to test for HWE. Although understanding the consequences of using
the controls is the focus, we also study the results when cases are tested (i.e. T1 and T2
are used) as a comparison. The four plots presented in Figure 2 are the results when the
tests are applied to data simulated under the recessive model R1 (see Table 1 for the details
of the parameter settings). As expected, the results from T1 and T2 (tests using the cases;
Figure 2 (a) and (b)) have severely inflated type I error, as both curves are far above the 95%
confidence bands (portrayed by the pair of dashed lines). Although the inflation of type I
error is not as severe when testing using the controls (Figure 2 (c) and (d)), the inflation is
clearly seen from the curves as well. These results evidently indicate that testing for HWE
using controls will also lead to inflation of type I error, casting great doubts on the common
practice in the scientific community.

The inflation of type I error when testing using the controls is also clearly seen for the
other two recessive models, R2 and R3; their parameter settings are given in Table 1. As
shown in the first segments of Figure 3, if the use of controls is justifiable, one would expect
only 5% of the p-values to be smaller than 0.05 (or equivalently, greater than 1.3 in the
− log10 scale), but this is exceeded by a large margin, regardless of whether the expected
are computed based on population genotype frequencies (Figure 3(a)) or estimated from
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Figure 1: Absolute relative bias when using the genotype frequency from the controls, with
naa|cntr/ncntr as an estimator of the population probability paa, where ncntr is the sample
size of controls and naa|cntr is the number of controls with the aa genotype. The results
shown are from a recessive model; the four lines are distinguished as follows, dashed red:
RR2 = 2, κ = 0.15; solid red: RR2 = 2, κ = 0.05; dashed blue: RR2 = 3, κ = 0.15;
solid blue: RR2 = 3, κ = 0.05.

the controls assuming HWE, the common practice (Figure 3(b)) . These observations also
apply to the dominant and multiplicative models (second and third segments of Figure 3,
where their specific parameter settings are also given in Table 1.

Finally, for additive model A1 (Table 1), the inflation of type I error is still clearly
seen when the expected genotype frequencies in the Chi-square test are calculated using
the population probabilities, that is, when either T1 or T3 are applied (Figure 4 (a) and (c)).
When the expected frequencies are estimated based on the cases, then there is still a hint of
type I error inflation (Figure 4 (b)). However, when the expected frequencies are estimated
using the controls, then the QQ plot curve is almost entirely within the 95% confidence
band. The above observations applied to the other two additive models considered (last
segment of Figure 3).

Overall, we observed that the inflation of type I error is more severe when the expected
genotype frequencies are calculated from the population parameters than when estimated
from the observed data, for all models and parameter settings by comparing between the
top and bottom panels of Figure 3.
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(a) T1 (b) T2

(c) T3 (d) T4

Figure 2: QQ plots of− log10 (p-value) of the observed vs. the expected. The area bounded
by the red and blue dashed curves around the grey diagonal line represent a 95% confidence
band. A curve above the band indicates inflated Type I error. The results shown are from
data simulated under a recessive model, setting R1 in Table 1: RR2 = 1.4, κ = 0.15, pa =
0.3. Note that the peculiar feature in (b) is due to the limits on the number of significant
digits.
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(a) T3

(b) T4

Figure 3: Boxplots of − log10 of the observed p-values over 10000 simulated data sets.
The boxplots are arranged in four triplets, with each triplet representing the three specific
parameter settings for each of the four types of models described in Table 1. The top plot (a)
displays results from the T3 test and the bottom (b) from the T4 test. For the two boxplots
(other than the additive tests) where the proportion of − log10 (p-value) > 1.3 (i.e. p-value
< 0.05) is less than 25% (solid line above the upper end of the box), the percentages are
indicated above the corresponding boxplots. As one can see from these two percentages,
they are both at 20%, indicating type I error is also severely inflated. The solid black line
across all boxplots marks 1.3 in the − log10 scale.
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(a) T1 (b) T2

(c) T3 (d) T4

Figure 4: QQ plots of − log10 (p-value) of the observed vs. the expected. The area
bounded by the red and blue dashed curves around the grey diagonal line represent a
95% confidence band. A curve above the band indicates inflated Type I error. The re-
sults shown are from data simulated under an additive model, setting A1 in Table 1:
RR1 = 1.1, RR2 = 1.2, κ = 0.15, pa = 0.3.
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4. Discussion

It has been a long tradition that Hardy-Weinberg Equilibrium is carried out on controls
in a GWAS with a case-control design as a quality control step to detect genotyping and
other errors. However, whether this practice is a bona fide one has not been sufficiently
investigated. Specifically, the reason for its appropriateness is rarely discussed, and if any,
the assumption of rare disease is typically cited (Wang and Shete 2010). As such, its
validity has not been seriously challenged in general. Although Brems (2015) discussed
potential problems of HWE testing when using controls, the study therein was limited in
scope as he only considered the setting in which the expected frequencies were taken to be
from the general population, which deviates from usual practical usage. Further, bias was
never discussed, thus he did not weigh in on the notion that controls as a whole are not a
good representation of the population.

In this article, a much more comprehensive study was carried out. We used theoret-
ical analysis on the bias when using genotype estimators based on controls for a general
population in HWE to show that the assertion of controls being “similar” to the general
population in terms of genetic makeup is in fact a myth rather than the truth, even if the dis-
ease is indeed rare. In fact, the bias and relative bias are only dependent on the population
allele frequencies and the relative risks, not directly on the disease prevalence. Although
the relative bias is seen to have a larger magnitude for a common disease than that for a
rare disease, the bias is obviously apparent for a rare disease as well.

Armed with the evidence that controls may not truly represent the general population,
we carried out a simulation study to investigate the degree of inflated type I error when
controls are used to test for HWE. Using a variety of disease models and parameter settings,
we show that, other than the additive model, there is typically severe inflation of type I
error, regardless of whether known population frequencies or estimated frequencies based
on controls are used as the expected in the Chi-square test. It is seen that the inflation of
type I error may be smaller for a rare disease than a common disease, but for the former,
even HWE testing in the disease-free controls can still lead to severe inflation of type I
error.
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