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Abstract
The main purpose of a single-arm phase II cancer trial of a new regimen is to determine

whether it has sufficient anti-tumor activity against a specific type of tumor to warrant its
further clinical development. Such a research question can be answered under the frame-
work of hypothesis testing. With the advent of targeted therapies that prolong disease
stabilization, cancer patients typically experience stable disease (SD) rather than tumor
shrinkage. It has been shown that patients with SD also achieve clinical benefits. There-
fore, when evaluating the anti-tumor activity of a new treatment, clinicians are interested
not only in overall response rate (complete or partial response(s)), but also in other types
of measurements indicating clinical benefit. Taking two primary efficacy endpoints as an
example, if the new treatment can improve on either endpoint(s), it may be promising for
further evaluation. Therefore, “OR” logical relationship between the two primary efficacy
endpoints is used when specifying the alternative hypothesis. In phase II cancer clinical
trials, two-stage designs rather than single-stage ones are widely used for its possibility
of early termination for futility to protect cancer patients. Motivated by two real cancer
clinical trials, we propose a single-arm two-stage phase II cancer clinical trial design with
two dichotomous alternative primary efficacy endpoints. Because of unknown correlation
between two endpoints at the design stage, minimax rule is used to determine the optimal
design, which minimizes the maximum of the expected sample size among all possible cor-
relations, subject to the type I and II error constraints. Optimal designs for a variety of
design parameters as well as the corresponding operating characteristics are provided.

Key Words: Two-stage optimal design, Phase II cancer trial, optimization, alternative
primary endpoints

1. Introduction

The purpose of a phase IIA trial of a new anticancer drug is to determine whether
the drug has sufficient activity against a specific type of tumor to warrant its further
clinical development (phases IIB and phase III) (Simon, 1989). In terms of efficacy
endpoints, historically, tumor response is an accepted endpoint to assess clinical
benefit in phase II trials. Based on this single endpoint “tumor response”, Gehan
(1961), Fleming (1982), Simon (1989) have proposed two-stage (even multistage)
trial design which allow early termination for futility to protect cancer patients.
In recent years, our paradigm for understanding and treating cancer is changing.
With the advent of targeted therapies that prolong disease stabilization, patients
typically experience stable disease (SD) rather than tumor shrinkage (Mandrekar
et al., 2010). It has been shown that patients with SD also achieve clinical bene-
fit (Shepherd et al., 2005). Take one kinase inhibitor indicated for the treatment
of unresectable hepatocellular carcinoma and advanced renal cell carcinoma, So-
rafenib (NEXAVAR), for example. Clinical studies show that Sorafenib extends

927



progression-free survival (PFS) but the response rate is only 2% (Llovet et al.,
2008). So the overall response rate (CR+PR) as used in Simon’s two-stage design
may not be appropriate to assess the anti-tumor activity of cytostatic drug such as
Sorafenib. Therefore, when evaluating the anti-tumor activity of a new treatment
to a specific type of tumor, clinicians are interested not only in CR+PR (in terms
of tumor shrinkage), but also in other types of measurements indicating clinical
benefit (such as PFS). If the new treatment can improve on either endpoint(s), it
may be promising for further evaluation. Such relationship between endpoints be-
longs to the type of “alternative primary endpoints” (Offen et al., 2007). Very few
studies, if any, have discussed phase II trial designs with “alternative primary end-
points”, although several authors (Bryant and Day, 1995; Thall and Cheng, 2001;
Conaway and Petroni, 1995) have proposed two-stage phase II clinical trial designs
considering both efficacy and toxicity, which belongs to the category of “multiple
co-primary endpoints”. In this article we discuss the development of a single-arm,
two-stage design for phase II cancer clinical trials to answer the research question
of determining whether the new treatment has sufficient anti-tumor activity for fur-
ther evaluation when there are two alternative dichotomous primary endpoints of
efficacy.

2. Method

The research question of an initial rough estimate of the degree of antitumor activity
of the treatment or drug can be answered under the framework of hypothesis testing.
In the context of phase II cancer clinical trials, denote the probabilities of success
for each of the binary efficacy endpoints as π1 and π2, respectively. The research
question then can be translated into the hypotheses as follows:

H0 : π1 ≤ p(0)1 and π2 ≤ p(0)2

HA : π1 ≥ p(A)1 or π2 ≥ p(A)2

where p
(0)
1 and p

(0)
2 are specified values that are believed to be uninteresting or

comparable to the current standard of care, and p
(A)
1 and p

(A)
2 are the targeted

response rate, and p
(0)
1 < p

(A)
1 and p

(0)
2 < p

(A)
2 . In two-stage design settings, let

X1 and X denote the total number of responses at the end of stage 1 and stage
2 for endpoint 1, respectively, while letting Y1 and Y denote the corresponding
quantities for endpoint 2. And (s1, s) and (t1, t) are critical values associated with
the occurrence of endpoint 1 and endpoint 2, respectively.

The trial proceeds as follows:

• Accrue n1 patients in stage 1. If X1 ≤ s1 and Y1 ≤ t1, terminate the trial due
to futility;

• Otherwise, accrue additional (n− n1) patients into the second stage.

Recommend the treatment only if {(X1 > s1 or Y1 > t1) and (X > s or Y > t)}.
Then a two-stage design can be specified by a vector of six parameters Q =

(n, n1, s1, t1, s, t). The goal of this study is, given pre-specified (α, β1, β2, β, p
(0)
1 ,

p
(0)
2 , p

(A)
1 , p

(A)
2 ), to search for feasible solutions of Q that satisfy type I/II error

constraints, and then use optimality criteria to find the “optimal” design.
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2.1 Derivation of the power function

The original individual data in a single-stage design with n patients can be collapsed
into 4 response patterns, which can be represented by a 2× 2 table as follows:

Table 1: Response Pattern

Pattern Endpoint 1 Endpoint 2 total obs.

1 Y es Y es n11
2 Y es No n10
3 No Y es n01
4 No No n00

Table 2: Observed Counts

Endpoint 1

Y es No

Endpoint 2 Y es C11 = n11 C01 = n01 Y = n+1

No C10 = n10 C00 = n00
X = n1+ n

Table 3: Probability

Endpoint 1

Y es No

Endpoint 2 Y es π11 π01 π2
No π10 π00

π1

The random quantities in each cell of the 2×2 table (Table 2), (C11, C10, C01, C00),
are distributed as:

(C11, C10, C01, C00) ∼Multinomial(n, (π11, π10, π01, π00))

The joint distribution of (X,Y ) can be calculated via multinomial probability mass
function as:

P (X = x, Y = y) = p(x, y;n, π1, π2, π11)

=
∑

max(0, x+y−n)≤n11≤min(x, y)

(
n

n11, x− n11, y − n11, n− x− y + n11

)
× πn11

11

× (π1 − π11)x−n11 × (π2 − π11)y−n11 × (1− π1 − π2 + π11)
n−x−y+n11

where
max(0, π1 + π2 − 1) ≤ π11 ≤ min(π1, π2),
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and π11 is used to describe the correlation between endpoint 1 and endpoint 2 within
the same individual.

Let

D(s, t;n, π1, π2, π11) = Pr(X ≤ s, Y ≤ t | X ∼ Bin(n, π1), Y ∼ Bin(n, π2), π11)

=
s∑

x=0

t∑
y=0

p(x, y;n, π1, π2, π11),

then the power function for two-stage designs can be written as:

Gt(Q, π11|H) = Pr(Recommend Treatment|Q, π11, H)

=Gt(n1, n, s1, t1, s, t, π11, π1, π2)

=Pr(X1 > s1 or Y1 > t1), (X > s or Y > t))

=Pr((X > s or Y > t))− Pr(X1 ≤ s1, Y1 ≤ t1, (X > s or Y > t))

=1− Pr(X ≤ s, Y ≤ t)− Pr((X > s or Y > t)|X1 ≤ s1, Y1 ≤ t1)Pr(X1 ≤ s1, Y1 ≤ t1)
=1−D(s, t;n, π1, π2, π11)−D(s1, t1;n1, π1, π2, π11)

+

s1∑
i=0

t1∑
j=0

{D(s− i, t− j;n2, π1, π2, π11)× p(i, j;n1, π1, π2, π11)}

2.2 Properties of the power function and the expected total sample size

We have used the method of mathematical induction (MI) to prove the following
properties of the power function Gt(Q, π11|H) and the expected total sample size
E(N |H0,Q, π11):

1. The power function is non-decreasing in π1 given Q, π11, and π2. The same
applies to π2.

2. The power function is non-increasing in t given (n1, n, s1, t1, s).

3. The expected sample size under the null hypothesis, E(N |H0,Q, π11), is non-
increasing in π11 given Q, π1 and π2 .

We have used both simulation and method of mathematical induction to find
that the power function is not monotone in π11 given Q, π1 and π2 .

The above property 1 makes it possible to use hypothesis testing on simple
null and alternative hypotheses as a reasonable substitute for hypothesis testing
on composite null and alternative hypotheses. Therefore, the design parameters
Q = (n, n1, s1, t1, s, t) may be determined by solving:

min
Q

max
π11

E(N |Q, π11, H0 : π1 = p
(0)
1 , π2 = p

(0)
2 ), (1)

subject to

max
π11

G(Q, π11|H0 : π1 = p
(0)
1 , π2 = p

(0)
2 ) ≤ α, (2a)

min
π11

G(Q, π11|HA1 : π1 = p
(A)
1 , π2 = p

(0)
2 ) > 1− β1, (2b)

min
π11

G(Q, π11|HA2 : π1 = p
(0)
1 , π2 = p

(A)
2 ) > 1− β2, (2c)

min
π11

G(Q, π11|HA3 : π1 = p
(A)
1 , π2 = p

(A)
2 ) > 1− β. (2d)

930



If β1 = β2 = β, then (2d) is included in (2b) or (2c).
We found that more than one, actually many, feasible solutions share the same

minimum expected sample size of N under the null hypothesis because of discrete-
ness of the underlying bivariate binomial distribution and the small difference in
the value of E(N | H0) between feasible solutions sharing the same (n, n1, s1, t1).
So the optimality criteria for the optimal design now is:

• Minimum E(N |H0);

• Maximum type I error(closer to nominal level) since there are three type II
errors and the directions of the magnitude of them are not the same in most
time.

2.3 Searching Algorithm

Due to the introduction of the correlation parameter π11 into the bivariate joint dis-
tribution, the time cost in optimization and exhaustive searching in the nested loops
of n→ n1 → s1 → t1 → s→ t has increased dramatically. Theorems in Bryant and
Day (1995) have inspired us to adopt a pre-screening strategy via starting search-
ing assuming the two alternative primary efficacy endpoints are independent. Find
those feasible solutions satisfying type I/II error constraints under this independence
assumption, and sort them by the optimality criteria (which is, minimum expected
sample size under H0 and maximum type I error rate closer to the nominal level)
under the independence assumption. And then, among the top 5% of the sorted
feasible solutions, relax the independence assumption, do computation-intensive cal-
culations of real maximized type I/II error rates allowing π11 to assume any values
in its defined range, and search and locate the optimal design after applying the
optimality criteria.

3. Results

The following table is part of the found optimal designs for a variety of design

parameters with p
(0)
1 ≤ p

(0)
2 . The operating characteristics for each of the optimal

two-stage sequential design (including the maximized type I error rate, minimized
powers and the minimized value of maximum possible expected sample size under
the null hypothesis in the defined range of π11) are presented as well. The following
notations are used in these tables

G0(Q, π11) = G(Q, π11|H0 : π1 = p
(0)
1 , π2 = p

(0)
2 ),

G1(Q, π11) = G(Q, π11|HA1 : π1 = p
(A)
1 , π2 = p

(0)
2 ),

G2(Q, π11) = G(Q, π11|HA2 : π1 = p
(0)
1 , π2 = p

(A)
2 ),

G3(Q, π11) = G(Q, π11|HA3 : π1 = p
(A)
1 , π2 = p

(A)
2 ).
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4. Discussion

In this paper, we propose a two-stage optimal design for a single-arm phase II can-
cer clinical trial with two alternative binary primary efficacy endpoints under a
variety of parameter settings. Since the two alternative primary efficacy endpoints
within a patient are correlated, the inclusion of the nuisance correlation parameter
has made the joint distribution and the power function more complicated for the
study design. Sill et al. (2012) has mentioned the necessity of considering the case
with two alternative primary efficacy endpoints although they used different ter-
minology. They only considered three relatively extreme cases for the correlation
parameter: independent, partially and fully dependent. This paper, however, has
considered all possible values of this correlation parameter since we may not have
much information about this nuisance correlation parameter at the design stage
and we want to be conservative. The searching results show that the correlation
parameter π11 may assume different values to achieve the maximized type I error
rate, minimized powers, the minimum of the maximized value among all possible
expected sample sizes under the null hypothesis. Due to the time cost of thorough
searching in the defined range of π11, we only did the computation-intensive cal-
culations of real maximized type I and II error rates among the top 5% of sorted
feasible solutions from independence assumption, so the resulting designs we got
may not be global optimal, but close to as shown in Bryant and Day (1995). The
optimal two-stage designs and the corresponding operating characteristics in this
study can be referenced when planning a phase II cancer clinical trial with two
binary alternative primary efficacy endpoints. Statistical inference procedures for
this two-stage optimal design are under development.
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