
Statistical Calculations Through Rational Arithmetic And Conversions

Timothy Hall∗

Abstract

When making analytical calculations with floating point real numbers it is commonly the case that

even the most basic operations, such as arithmetic and conversions, produce only approximate re-

sults. The cumulative effect from such incremental approximations may quickly become problemat-

ical, producing final results that significantly differ from the exact (correct) results. However, when

making those same analytical calculations with rational numbers, the results are necessarily exact

(correct) at every stage of the calculation. Only when the result need be converted to a floating

point real number representation may the calculation error become non-zero. This eliminates the

effect of intermediate calculation error, so that the implementing analyst may concentrate on input

data error and precision management issues. In particular, to facilitate simulations and theoretical

input data possibilities, irrational numbers may be symbolically represented in the calculations and

in intermediate results until a controlled approximation is needed.

This paper presents an analytical framework for making error free statistical calculations using

rational arithmetic and conversion operations. Several example calculations are provided to demon-

strate how final result error is eliminated in all cases, and explicitly controlled when a floating point

real number representation is needed.

Key Words: Rational Arithmetic, Exact Algorithms, Floating Point Calculations

1. Introduction

When making analytical calculations with floating point real numbers (regardless of pa-

rameter specifics, including the numerical base) it is commonly the case that even the most

basic operations, such as arithmetic and conversions, produce only approximate results

(with respect to the precision in which the operands are expressed). The cumulative ef-

fect from such incremental approximations may quickly become problematical. However,

when making those same analytical calculations with rational numbers, the results are exact

(regardless of precision concerns, which are actually moot until the results are converted

to floating point real numbers). This eliminates the contribution of calculation error in

the results, so that the implementing analyst may concentrate on data error and precision

management issues. In particular, irrational numbers may be asymptotically approximated

by rational numbers, so that the final approximation is within the required precision when

converted to a floating point real number. In intermediate calculations, irrational numbers

may be kept as symbolic values until a precise approximation is needed.

1.1 Preliminaries

Definition 1 The Greatest Common Divisor gcd of two non-zero integers u and v is the

largest positive integer d such that u
d and v

d are both non-zero integers.

Definition 2 Two non-zero integers u and v are Relatively Prime (symbolized u ⊥ v) if

gcd (u, v) = 1.

Definition 3 The Reduced Form, r
(

u
v

)

, of the ratio of two non-zero integers u and v, is u′

v′

where u′

v′ =
u
v and u′ ⊥ v′.

∗PQI Consulting, P. O. Box 425616, Cambridge, MA, USA 02142-0012 – info@pqic.com

876

Definition 4 A Rational Number is the ratio of two non-zero numbers u and u′. Note that

in this context, we have

1. 0
u′ is not a rational number regardless of denominator, and

2. −u
u′ and u

−u′ represent two different rational numbers (whose values are equal

as real numbers).

Definition 5 A rational number u
u′ is said to be Rectified if u′ > 0. The unitary operator

that converts a rational number into a rectified rational number is called Rectification.

These definitions apply to all rational numbers regardless of the base in which u and u′ are

expressed.

Definition 6 A b-Rational Number is a rational number u
u′ where u and u′ are expressed

as integers base b > 1. A 10-rational number is identical to a rational number.

Definition 7 A Reduced Rational is a rational number u
u′ in reduced form, i.e., r

(

u
u′

)

= u
u′ .

Definition 8 A b-Reduced Rational is a reduced rational where u and u′ are relatively

prime as base b > 1 non-zero integers. A 10-reduced rational is identical to a reduced

rational.

Definition 9 A (Reduced) Standard Rational is a (reduced) rational u
u′ where sgn (u) +

sgn (u′) ≥ 0.

Definition 10 A (Reduced) b-Standard Rational is a (reduced) standard rational u
u′ where

u and u′ are expressed as integers base b > 1. A (reduced) 10-standard rational is identical

to a (reduced) standard rational.

Throughout the remainder of this memorandum, any reference to integers will be con-

sidered relative to base 10 unless specifically stated otherwise.

Claim 11 If u and v are non-zero integers, and d = gcd (u, v), then r
(

u
v

)

=
u
d
v
d

.

Proof. Clearly u
v =

u
d
v
d

. Suppose u
d and v

d are not relatively prime. Then there is a prime

s ≥ 2 such that
u

d
= u′s and

v

d
= v′s

for non-zero integers u′ and v′. This means ds > d > 0 is a common divisor of u and v –

a contradiction.

Corollary 12 Every rational number u
u′ has a unique reduced form r

(

u
u′

)

.

Proof. Suppose
v

v′
= r

(u

u′

)

=
w

w′

are two reduced forms of u
u′ . Then

vw′

v′
= w

means v′ is a divisor of w′ (since v′ is not a divisor of v by definition). So w′ = kv′ for

some integer k, which means

w =
v (kv′)

v′
= kv

so that w and w′ have k as a common factor – a contradiction.

877

Claim 13 If u and v are non-zero integers, then gcd (u, v) = gcd (v, u).

Proof. We have
v

gcd(u,v)
u

gcd(u,v)

=
1

r
(

u
v

) = r
(v

u

)

=

v
gcd(v,u)

u
gcd(v,u)

so that

gcd (u, v) = gcd (v, u)

Claim 14 If u, u′, v, and v′ are non-zero integers, and u ⊥ u′ and v ⊥ v′, then r
(

uv
u′v′

)

=
r
(

u
v′

)

r
(

v
u′

)

.

Proof. Since u ⊥ u′ and v ⊥ v′, if uv and u′v′ have a common prime factor s ≥ 2, then

s must divide u and v′ or divide u′ and v (otherwise there is a contradiction). This means

1 =
r
(

uv
u′v′

)

r
(

u
v′

)

r
(

v
u′

)

Claim 15 If u, u′, v, and v′ are non-zero integers, and u ⊥ u′ and v ⊥ v′, then gcd (uv, u′v′) =
gcd (u, v′) gcd (u′, v).

Proof. By Claim 11, we have

uv
gcd(uv,u′v′)

u′v′

gcd(uv,u′v′)

= r
(uv

u′v′

)

= r
(u

v′

)

r
(v

u′

)

=

(

u
gcd(u,v′)

v′

gcd(u,v′)

)(

v
gcd(u′,v)

u′

gcd(u′,v)

)

=

uv
gcd(u,v′) gcd(u′,v)

u′v′

gcd(u,v′) gcd(u′,v)

so that

gcd
(

uv, u′v′
)

= gcd
(

u, v′
)

gcd
(

u′, v
)

Algorithm 16 If u
u′ and v

v′ are non-zero reduced rationals, then

r
((u

u′

)(v

v′

))

=

(

u
gcd(u,v′)

)(

v
gcd(u′,v)

)

(

u′

gcd(u′,v)

)(

v′

gcd(u,v′)

)

Proof. By Claim 15, we have

r
((u

u′

)(v

v′

))

= r
(uv

u′v′

)

=

uv
gcd(uv,u′v′)

u′v′

gcd(uv,u′v′)

878

=

uv
gcd(u,v′) gcd(u′,v)

u′v′

gcd(u,v′) gcd(u′,v)

=

(

u
gcd(u,v′)

)(

v
gcd(u′,v)

)

(

u′

gcd(u′,v)

)(

v′

gcd(u,v′)

)

Algorithm 17 If u
u′ and v

v′ are non-zero reduced rationals, then

r

(

(

u
u′

)

(

v
v′

)

)

=

(

u
gcd(u,v)

)(

v′

gcd(u′,v′)

)

(

u′

gcd(u′,v′)

)(

v
gcd(u,v)

)

Proof. By Claim 15, we have

r

(

(

u
u′

)

(

v
v′

)

)

= r

(

uv′

u′v

)

=

uv′

gcd(uv′,u′v)

u′v
gcd(uv′,u′v)

=

uv
gcd(u,v) gcd(u′,v′)

u′v′

gcd(u,v) gcd(u′,v′)

=

(

u
gcd(u,v)

)(

v′

gcd(u′,v′)

)

(

u′

gcd(u′,v′)

)(

v
gcd(u,v)

)

Claim 18 If u and v are non-zero integers, then gcd (u, v) = gcd (v, u− qv), for any

integer q ≥ 1.

Proof. (=⇒) Let d = gcd (u, v), and suppose s is the greatest common divisor of v

and u− qv for an integer q. Then v = k1s and u− qv = k2s, for some integers k1, k2 ≥ 2,

which means

u = qv + k2s = (qk1 + k2) s

v = k1s

so that s is a common divisor of u and v. Hence, s ≤ d. However, d is a common divisor

of u and v, so that u = k3d and v = k4d, for some integers k3, k4 ≥ 2, which means

u− qv = (k3 − qk4) d

v = k4d

so that d is a common divisor of v and u− qv for an integer q. Hence, d ≤ s.

Therefore, s = d.

(⇐=) Let d = gcd (v, u− qv) for some integer q, and suppose s is the greatest com-

mon divisor of u and v. Then u = k1s and v = k2s, for some integers k1, k2 ≥ 2, which

means

u− qv = (k1 − qk2) s

879

v = k2s

so that s is a common divisor of v and u − qv for an integer q. Hence, s ≤ d. However, d

is a common divisor of v and u− qv for an integer q, so that v = k3d and u − qv = k4d,

which means

u = qv + k4d = (qk3 + k4) d

v = k3d

so that d is a common divisor of u and v. Hence, d ≤ s.

Therefore, s = d.

Claim 19 If u and v are non-zero even integers, then gcd (u, v) = 2 gcd
(

u
2 ,

v
2

)

.

Proof. Let d = gcd (u, v) ≥ 2. Then u = k1d and v = k2d for some integers

k1, k2 ≥ 1. Since u and v are even, then u
2 = k1

d
2 and v

2 = k2
d
2 . Hence, d

2 is a divisor of u
2

and v
2 . So d

2 ≤ gcd
(

u
2 ,

v
2

)

. However, gcd
(

u
2 ,

v
2

)

is a common divisor of u
2 and v

2 , so that

2 gcd
(

u
2 ,

v
2

)

is a common divisor of u and v, which means 2 gcd
(

u
2 ,

v
2

)

≤ d. Therefore,

d = 2gcd
(

u
2 ,

v
2

)

.

Claim 20 If u is an even non-zero integer and v is a non-zero integer, then gcd (u, v) =
gcd

(

u
2 , v
)

.

Proof. Let d = gcd (u, v) ≥ 2. Then u = k1d and v = k2d for some integers

k1, k2 ≥ 1. Since u is even, then u
2 = k1

2 d and v = k2d mean d is a divisor of u
2 and v. So

d ≤ gcd
(

u
2 , v
)

. However, s = gcd
(

u
2 , v
)

is a common divisor of u
2 and v, so that u

2 = k3s

and v = k4s for some integers k3, k4 ≥ 2, i.e., u = (2k3) s and v = k4s, so that s is a

common divisor of u and v. Hence, s ≤ d. Therefore, s = d.

Definition 21 The Least Common Multiple lcm of two non-zero integers u and v is the

smallest positive integer d such that d
u and d

v are both non-zero integers.

Claim 22 For non-zero integers u and v, we have lcm (u, v) = uv
gcd(u,v) .

Proof. Let

u =
∏

ik∈{i1,i2,...,in}

p
uk

ik
and v =

∏

jr∈{j1,j2,...,jm}

pvrjr

be the prime factorizations of u and v, respectively, for n-many prime numbers pik with

integer uk ≥ 0 and m-many prime numbers pjr with integer vr ≥ 0.

Now let

A = {i1, i2, . . . , in} ∪ {j1, j2, . . . , jm}

B = {i1, i2, . . . , in} ∩ {j1, j2, . . . , jm}

Then

uv =

(

∏

is∈B

pus+vs
is

)





∏

ik∈A, jr /∈B

p
uk

ik
p0jr









∏

ik /∈B, jr∈A

p0ikp
vr
jr





and

gcd (u, v) =
∏

is∈B

p
min{us,vs}
is

880

so that

uv

gcd (u, v)
=

(

∏

is∈B

p
max{us,vs}
is

)





∏

ik∈A, jr /∈B

p
uk

ik
p0jr









∏

ik /∈B, jr∈A

p0ikp
vr
jr



 = lcm (u, v)

Corollary 23 If u ⊥ v, then lcm (u, v) = uv.

Proof. When u ⊥ v, we have gcd (u, v) = 1.

Claim 24 If u, u′, v, and v′ are non-zero integers, then r
(

u
u′ ±

v
v′

)

= r

(

v′

gcd(u′,v′)
u± u′

gcd(u′,v′)
v

u′v′

gcd(u′,v′)

)

.

Proof. Let d = lcm (u′, v′) > 0. Then d
u′ and d

v′ are non-zero integers, and from Claim

22, we have

u

u′
±

v

v′
=

d
u′u±

d
v′ v

d
=

v′

gcd(u′,v′)u±
u′

gcd(u′,v′)v

u′v′

gcd(u′,v′)

Note that u′v′

gcd(u′,v′) may be calculated as
(

u′

gcd(u′,v′)

)

v′ or as u′
(

v′

gcd(u′,v′)

)

depending

on which formulation uses the most convenient1 integers.

Corollary 25 If u, u′, v, and v′ are non-zero integers, and u ⊥ u′ and v ⊥ v′, then

r
(u

u′
±

v

v′

)

=

v′

gcd(u′,v′)u±
u′

gcd(u′,v′)v

u′v′

gcd(u′,v′)

Proof. Suppose p > 1 is a common prime factor of u′v′

gcd(u′,v′) and v′

gcd(u′,v′)u±
u′

gcd(u′,v′)v.

Then p must be a prime factor of either u′ or v′ but not both (for otherwise it would be part

of the gcd (u′, v′)). Without loss of generality, say p is a prime factor of u′, which means

p is not a prime factor of v′. We have that v′

p gcd(u′,v′)u ±
u′

p gcd(u′,v′)v is an integer, and

since p is a prime factor of u′, then u′

p gcd(u′,v′)v is an integer, so that v′

p gcd(u′,v′)u is also an

integer. However, p is not a prime factor of v′, so p must be a prime factor of u; this is a

contradiction since u ⊥ u′. The same approach applies if p is a prime factor of v′ and not

of u′.

Corollary 26 If u, u′, v, and v′ are non-zero integers, and u′ ⊥ v′, then r
(

u
u′ ±

v
v′

)

=

r
(

uv′±u′v
u′v′

)

.

Proof. We have gcd (u′, v′) = 1, which means

u

u′
±

v

v′
=

u′v′

u′ u±
u′v′

v′ v

u′v′
=

uv′ ± u′v

u′v′

Corollary 27 If u, u′, v, and v′ are non-zero integers, and u ⊥ u′ and v ⊥ v′ and u′ ⊥ v′,

then r
(

u
u′ ±

v
v′

)

= uv′±u′v
u′v′ .

1The smallest integers in absolute value should be used.

881

Proof. Suppose u′v′ and uv′ + u′v had a common prime factor p > 1. Since u′ ⊥ v′,

then either p is a prime factor of u′ or v′ but not both. Without loss of generality, say p is a

prime factor of u′, which means p is not a prime factor of v′. Now uv′

p + u′v
p is an integer.

Since p is a factor of u′, then uv′

p must also be an integer. However, since u ⊥ u′, then p

must be a prime factor of v′; this is a contradiction. The same approach applies if p is a

prime factor of v′ and not of u′.

These results may be summarized in the following theorem.

Theorem 28 If u
u′ and v

v′ are reduced rationals, then

1. r
(

u
u′ ±

v
v′

)

=
v′

gcd(u′,v′)
u± u′

gcd(u′,v′)
v

u′v′

gcd(u′,v′)

2. r
((

u
u′

) (

v
v′

))

=

(

u

gcd(u,v′)

)(

v

gcd(u′,v)

)

(

u′

gcd(u′,v)

)(

v′

gcd(u,v′)

)

3. r

(

(u

u′
)

(v

v′
)

)

=

(

u
gcd(u,v)

)

(

v′

gcd(u′,v′)

)

(

u′

gcd(u′,v′)

)

(

v
gcd(u,v)

)

and, in addition, if u ⊥ v′ and u′ ⊥ v, then

2. r
((

u
u′

) (

v
v′

))

= uv
u′v′

and, in addition, if u′ ⊥ v′, then

1. r
(

u
u′ ±

v
v′

)

= uv′±u′v
u′v′

3. r

(

(u

u′
)

(v

v′
)

)

=

(

u
gcd(u,v)

)

v′

u′

(

v
gcd(u,v)

)

and, in addition, if u ⊥ v, then

3. r

(

(u

u′
)

(v

v′
)

)

=
u

(

v′

gcd(u′,v′)

)

(

u′

gcd(u′,v′)

)

v

and, in addition, if u′ ⊥ v′ and u ⊥ v, then

3. r

(

(u

u′
)

(v

v′
)

)

= uv′

u′v

2. Rational Numbers As A Superset Of Floating Point Numbers

In general, and except for extreme analytical circumstances, every floating point number

(for a particular choice of base and number of digits) may be expressed as either a non-zero

rational number or as 0; however, not every rational number may be expressed as a floating

point number (regardless of base, number of digits, or any other consideration). In this

respect, the rational numbers may be viewed as a superset of the floating point numbers.

Theorem 29 states this relationship in precise terms. The following preliminary devel-

opment is in support of that theorem.

882

Given an N digit floating point real number x in normal form with sign bit s, base

b > 1, n digit exponent p such that N − 1 ≥ n ≥ 1 and 0 ≤ p ≤ bn − 1, offset bn−1 − 1,

and (N − n− 1) digit mantissa m ≥ 0, we have

x = (−1)s bp−bn−1+1
(

1 +
m

bN−n−1

)

Note this means

1− bn−1 ≤ p− bn−1 + 1 ≤ bn−1 (b− 1)

and

0 ≤ m ≤ bN−n−1 − 1

For example, the IEEE-754 64-bit base 2 (binary) floating point real number x in nor-

mal form has N = 64, b = 2, n = 11, k = 210 − 1 = 1023, and N − n − 1 = 52, so

that

x = (−1)s 2p−1023
(

1 +
m

252

)

Since p ≥ 0, m ≥ 0, and N − n− 1 ≥ 0, then N + bn−1 − n− 2 ≥ 0, and

x = r

(

(−1)s bp
(

bN−n−1 +m
)

bN+bn−1−n−2

)

is the reduced rational value of x. Therefore, every N digit floating point real number x in

normal form has a reduced rational value.

Theorem 29 Every positive reduced rational number u
u′ may be expressed as an exact

{N, b, n} floating point real number if N < bn−1 and u′ = bw for some integer w us-

ing p = bn−1 +
⌊

logb
u
u′

⌋

− 1 − q and m = bN−n−1
(

ubq−⌊logb
u

u′
⌋−w − 1

)

, where

w +
⌊

logb
u
u′

⌋

≤ q ≤ bn−1 +
⌊

logb
u
u′

⌋

− 1; otherwise, for N < bn−1 the floating

point real number is an approximation using p = bn−1 +
⌊

logb
u
u′

⌋

− 1 − q and m =

bN−n−1

(

u

⌊

b
q−⌊logb u

u′
⌋

u′

⌋

− 1

)

or m = bN−n−1

(

u

⌈

b
q−⌊logb u

u′
⌋

u′

⌉

− 1

)

, where q =

max

{

q ≤ bn−1 +
⌊

logb
u
u′

⌋

− 1 : u

⌈

b
q−⌊logb u

u′
⌋

u′

⌉

< bn + 1

}

minimizes the absolute er-

ror.

Proof. Given {N, b, n}, let

s =
1

2

∣

∣

∣sgn
(u

u′

)

− 1
∣

∣

∣ = 0

and

p = bn−1 +
⌊

logb
u

u′

⌋

− 1− q

Note that

1 ≤ u, u′ ≤ bN − 1

means

b−N <
u

u′
≤ bN − 1

so that

−bn−1 < −N < p− bn−1 + 1 < N < bn−1

883

Also let

m = bN−n−1
(u

u′
bq−⌊logb

u

u′
⌋ − 1

)

Then m is an integer if and only if u′ is of the form bw, for some integer w ≤ q −
⌊

logb
u
u′

⌋

. In this case, we have

m = bN−n−1
(

ubq−⌊logb
u

u′
⌋−w − 1

)

is an integer, and we have

(−1)s bp−bn−1+1
(

1 +
m

bN−n−1

)

= b
bn−1+⌊logb u

u′ ⌋−1−q−bn−1+1



1 +
b
N−n−1

(

ub
q−⌊logb u

u′ ⌋−w − 1
)

bN−n−1



 = ub
−w =

u

u′

Otherwise, using

m = bN−n−1

(

u

⌊

bq−⌊logb
u

u′
⌋

u′

⌋

− 1

)

or m = bN−n−1

(

u

⌈

bq−⌊logb
u

u′
⌋

u′

⌉

− 1

)

then the absolute difference between

b
⌊logb u

u′ ⌋−q









1 +

b
N−n−1

(

u

⌊

b
q−⌊logb u

u′ ⌋
u′

⌋

− 1

)

bN−n−1









and b
⌊logb u

u′ ⌋−q









1 +

b
N−n−1

(

u

⌈

b
q−⌊logb u

u′ ⌋
u′

⌉

− 1

)

bN−n−1









is given by

ub⌊logb
u

u′
⌋−q

and by choosing q as large as possible, namely

max

{

q ≤ bn−1 +
⌊

logb
u

u′

⌋

− 1 : u

⌈

bq−⌊logb
u

u′
⌋

u′

⌉

< bn + 1

}

then this absolute error is minimized.

Note that every negative reduced rational number may be expressed as the negative of

the floating point real number found in Theorem 29 for its absolute value.
For example, the (IEEE-754 64-bit) base 2 floating point representation of the (IEEE-

754 64-bit) base 10 floating point real number 34.77821 may be approximated as

(34.77821)
10

> (−1)0 21028−1023

(

1 +
(1011000111001110001100010101000011011010111000111)

2

252

)

(34.77821)
10

< (−1)
0
21028−1023

(

1 +
(1011000111001110001100010101000011011010111001000)

2

252

)

yet

(34.77821)10 =
(1101010001000100111101)2

(11000011010100000)2

exactly (as a reduced and rectified non-zero rational number).

884

3. Representation Of Irrational Numbers

While it may be optimal to utilize rational arithmetic and conversion operators as doc-

umented in this memorandum, et seq., and to implement all statistical calculation appli-

cations strictly with rational arithmetic and conversion operators (with appropriate exten-

sions), there will inevitably be analytical contexts where irrational numbers must be in-

cluded in a calculation. These contexts may be as straightforward as an intermediate addi-

tion/multiplication of an irrational number to a rational number, or as specific as an infinite

series of rational numbers asymptotic to the irrational number, to name only a few such

possibilities. In all cases, a formal system of arithmetic operators must be defined that take

as their operands a combination of rational and irrational numbers, and that provides for

separate accounting of each type of term. In this manner, any error encountered by using

rational terms to approximate the irrational terms at any intermediate point in a calcula-

tion may be bounded by absolute or relative amounts at the discretion of the implementing

analyst.

4. Operators

In addition to the usual arithmetic binary operations of addition, subtraction, multiplica-

tion, and division, rational arithmetic also includes several unitary operators that involve

negation, rectification, reduction, rationalization, and conversions between representative

forms of the operand.

All arithmetic operations take place with base b calculations, even if the operands and

resulting forms may be given in/converted to a different base. When b > 10, the uppercase

letters A− Z shall be used to designate the place values for 10− 35, and lowercase letters

a− z for place values for 36 − 61. When b > 36, additional non-ASCII characters would

be needed to uniquely name each such base b number.

4.1 Rectification

The unitary operator Rectification takes a non-zero rational number and returns either a

positive rational number or a negative rational number with positive denominator according

to the results of Table X. This operation does not affect 0. All calculations take place in

context with base b arithmetic.

x Arg1 Result

u
u′

{

u
u′ , u′ > 0
−u
−u′ , u′ < 0

0 0

Given the non-zero rational number u
v , the following algorithm returns the rectified

value of u
v , namely x

(

u
v

)

.

1. If v > 0, then return u
v ; otherwise continue.

2. If v < 0, then return −u
−v ; otherwise return NaN

NaN .

Note that u 6= 0 in this algorithm since u
v must be a non-zero rational number.

885

4.2 Reduction

The unitary operator Reduction takes a non-zero base b rational number u
u′ and returns the

reduced rational number r
(

u
u′

)

which is equal to the operand as a real number accord-

ing to the definition of a reduced rational number. This operation does not affect 0. All

calculations take place in context with base b arithmetic.

Given a non-zero base b rational number u
u′ and a precision p, the following algorithm

calculated the reduced rational number of u
u′ , namely r

(

u
u′

)

.

1. Determine the signs2 of u and v; call these values sgnu and sgnv.

2. Convert |u| from base b to decimal; call this value ux.

3. Convert |v| from base b to decimal; call this value vx.

4. Calculate the greatest common divisor k of ux and vx.

5. Convert ux
k from decimal to base b; call this value uu.

6. Convert vx
k from decimal to base b; call this value vv.

7. Return
sgnu×uu
sgnv×vv .

4.3 Negation

The unitary operator Negation takes a non-zero rational number u
u′ and returns the rectified

form of the negative of the rational number u
u′ , namely n

(

u
u′

)

. This operation does not

affect 0. Note that integer negation is performed with respect to 0, and not with respect to

b. All calculations take place in context with base b arithmetic.

x Arg1 Result

u
u′

{ −u
u′ , u′ > 0
u

−u′ , u′ < 0

0 0

The following algorithm implements this operator.

1. If u′ > 0, then return −u
u′ ; otherwise continue.

2. If u′ < 0, then return u
−u′ ; otherwise continue.

3. Otherwise return 0.

4.4 Addition/Subtraction

Given two non-zero rational numbers u
u′ and v

v′ , base b > 1, and precision p, the follow-

ing algorithm calculates the reduced and rectified arithmetic sum of u
u′ and v

v′ , namely

r
(

x
(

u
u′ +

v
v′

))

. All calculations take place in context with base b arithmetic.

2Note that the operand does not need to be rectified.

886

± Arg1 Arg2 Result

Addition

u
u′ 0 u

u′

u
u′

v
v′ r

(

u
u′ +

v
v′

)

0 u
u′

u
u′

0 0 0

Subtraction

u
u′ 0 u

u′

u
u′

v
v′ r

(

u
u′ + n

(

v
v′

))

0 u
u′ n

(

u
u′

)

0 0 0

The following algorithm implements this operator.

1. Rectify u
u′ ; call this rational number R.

2. Convert the numerator of R from base b to decimal; call this value ux.

3. Convert the denominator of R from base b to decimal; call this value upx.

4. Rectify v
v′ ; call this rational number (the new value of) R.

5. Convert the numerator of R from base b to decimal; call this value vx.

6. Convert the denominator of R from base b to decimal; call this value vpx.

7. Calculate the greatest common divisor of |upx| and |vpx|; call this value k.

8. Reduce
ux×vpx

k
+ vx×upx

k
upx×vpx

k

base 10; call this rational number (the new value of) R.

9. Convert the numerator of R from decimal to base b; call this value uxx.

10. Convert the denominator of R from decimal to base b; call this value vxx.

11. Rectify uxx
vxx , and return the results.

Note that subtraction is simply addition of the first rational number with the negation

of the second rational number.

4.5 Multiplication

Given two non-zero rational numbers u
u′ and v

v′ , base b > 1, and precision p, the follow-

ing algorithm calculates the reduced and rectified arithmetic product of u
u′ and v

v′ , namely

r
(

x
(

u
u′ ×

v
v′

))

. All calculations take place in context with base b arithmetic.

∗ Arg1 Arg2 Result

Multiplication

u
u′ 0 0

u
u′

v
v′ r

((

u
u′

) (

v
v′

))

0 u
u′ 0

0 0 0

The following algorithm implements this operator.

887

1. Convert the u from base b to decimal; call this value ux.

2. Convert the u′ from base b to decimal; call this value upx.

3. Convert the v from base b to decimal; call this value vx.

4. Convert the v′ from base b to decimal; call this value vpx.

5. Calculate the greatest common divisor of |ux| and |vpx|; call this value k.

6. Calculate the greatest common divisor of |upx| and |vx|; call this value r.

7. Reduce
ux
k
× vx

r
upx

r
× vpx

k

base 10; call this rational number (the new value of) R.

8. Convert the numerator of R from decimal to base b; call this value uxx.

9. Convert the denominator of R from decimal to base b; call this value vxx.

10. Rectify uxx
vxx , and return the results.

4.6 Division

Given two non-zero rational numbers u
u′ and v

v′ , base b > 1, and precision [, the follow-

ing algorithm calculates the reduced and rectified arithmetic quotient (ratio) of u
u′ and v

v′ ,

namely r
(

x
(

u
u′ ×

v
v′

))

. All calculations take place in context with base b arithmetic.

÷ Arg1 Arg2 Result

Division

u
u′ 0 NaN

u
u′

v
v′ r

(

(u

u′
)

(v

v′
)

)

0 u
u′ 0

0 0 NaN

The following algorithm implements this operator.

1. Convert the u from base b to decimal; call this value ux.

2. Convert the u′ from base b to decimal; call this value upx.

3. Convert the v from base b to decimal; call this value vx.

4. Convert the v′ from base b to decimal; call this value vpx.

5. Calculate the greatest common divisor of |ux| and |vpx|; call this value k.

6. Calculate the greatest common divisor of |upx| and |vx|; call this value r.

7. Reduce
ux
k
× vpx

r
upx

r
× vx

k

base 10; call this rational number (the new value of) R.

8. Convert the numerator of R from decimal to base b; call this value uxx.

9. Convert the denominator of R from decimal to base b; call this value vxx.

10. Rectify uxx
vxx , and return the results.

888

4.7 b-Float

Given two base b integers u = (±un−1un−2 · · · u1u0)b and v = (vm−1vm−2 · · · v1v0)b,
the following algorithm calculates the base b positive floating point representation of u

v to

p digits. It is understood that uk<0 = 0, and all calculations take place in context with base

b arithmetic.3

1. Determine the sign4 of u; call this value sgn.

2. Calculate the decimal value of |u|; call this value ux.

3. Calculate the decimal value of v; call this value vx.

4. Partition ux into an array of values uu.

5. Set x = 0, w = 0, and k = 1.

6. Set N = uu [n− k].

7. Calculate q =
⌊

N
v

⌋

and r = N − qv.

8. If q = 0, then increment k by 1 and set 10N + un−k to be the new value of N , then

skip to Step 3; otherwise, continue.

9. Set x+ q10n−k to be the new value of x and increment w by 1.

10. If w = p, then skip to Step 12; otherwise, continue.

11. Increment k by 1, set N = 10r + un−k, and skip to Step 3.

12. Convert sgn× x from decimal to base b, and return this result.

4.8 b-Floor

Use the quotient and remainder process to find the floor function (in all cases where the

operand may be positive or negative). All calculations take place in context with base b

arithmetic.

Given the non-zero rational number u
v , base b > 1, and precision p, the following

algorithm calculates the floor function of u
v , namely f

(

u
v

)

.

1. Determine the sign5 of u; call this value sgn (which may be positive, negative, or

zero).

2. Calculate the quotient q and remainder r of u
v .

3. If sgn < 0, then ...

(a) If the quotient q is 0, then return −q; otherwise continue.

(b) If the quotient q is non-zero, then return −q − 1.

4. If sgn = 0, then return 0.

5. If sgn > 0, then return q.

3The floor function used in the b-Float operator ⌊· · · ⌋ acts the same way regardless of base b > 1. In

particular, if u =
(

un−1un−2 · · ·un−k.un−(k+1) · · ·u1u0

)

b
is a base b floating point real number of length

n, where 0 ≤ uj < b, and where the fractional part begins between un−k and un−k−1 (thereby having least

significant digit value b
n−k), then ⌊u⌋ = (un−1un−2 · · ·un−k)b regardless of b.

4Note that the operand does need to be rectified.
5Note that the operand does need to be rectified; the subtraction in Step 3b is made in base b arithmetic.

889

4.9 b-Ceiling

Use the quotient and remainder process to find the ceiling function (in all cases where the

operand may be positive or negative). All calculations take place in context with base b

arithmetic.

Given the non-zero rational number u
v , base b > 1, and precision p, the following

algorithm calculates the ceiling function of u
v , namely c

(

u
v

)

.

1. Determine the sign6 of u; call this value sgn (which may be positive, negative, or

zero).

2. Calculate the quotient q and remainder r of u
v .

3. If sgn > 0, then ...

(a) If the quotient q is 0, then return q; otherwise continue.

(b) If the quotient q is non-zero, then return q + 1.

4. If sgn = 0, then return 0.

5. If sgn > 0, then return −q.

4.10 (b, v)-Quantization

The following claim justifies the analytical basis for the quantization operator.

Claim 30 Given the non-zero rectified rational number u
u′ and a non-zero integer v′, such

that 2uv′ < −u′ or 2uv′ ≥ u′, then
⌊ u

u′
v′+ 1

2⌋
v′ is the closest rational number with denomi-

nator v′ to u
u′ in absolute value, and the difference is

∣

∣

∣

∣

u′⌊ u

u′
v′+ 1

2⌋−uv′

u′v′

∣

∣

∣

∣

. For −u′ ≤ 2uv′ <

u′, then 0 is the closest number to u
u′ in absolute value.

Proof. Given u′, v′ 6= 0, for every u 6= 0 we have

−1 <

⌊

u

u′
v′ +

1

2

⌋

−

(

u

u′
v′ +

1

2

)

≤ 0

which means

−
1

2v′
<

1

v′

⌊

u

u′
v′ +

1

2

⌋

−
u

u′
≤

1

2v′

Therefore,
⌊ u

u′
v′+ 1

2⌋
v′ is within 1

2v′ of u
u′ . However, for integer q 6= 0, this means

2q − 1

2v′
<

1

v′

(⌊

u

u′
v′ +

1

2

⌋

+ q

)

−
u

u′
≤

2q + 1

2v′

For 1
v′

(⌊

u
u′ v

′ + 1
2

⌋

+ q
)

to be closer to u
u′ than is

⌊ u

u′
v′+ 1

2⌋
v′ , we have that 2q− 1 > −1

or q > 0, and 2q + 1 < 1 or q < 0, must occur at the same time; this is a contradiction.

Furthermore,
⌊

u
u′ v

′ + 1
2

⌋

= 0 if and only if −1
2 ≤

u
u′ v

′ < 1
2 , which means −u′ ≤

2uv′ < u′ since u′ > 0, i.e., since u
u′ is rectified.

6Note that the operand does need to be rectified; the addition in Step 3b is made in base b arithmetic.

890

Hence, for 2uv′ < −u′ or 2uv′ ≥ u′,

v0 =

⌊

u

u′
v′ +

1

2

⌋

provides the closest rational number v0
v′ with denominator v′ to u

u′ in absolute value; other-

wise, 0 provides the closest number to u
u′ in absolute value.

Corollary 31 If v′ = u′ in Claim 30, then u
v′ is the closest rational number with denomi-

nator v′ to u
u′ in absolute value.

Proof. We have v′ = u′ means either 2uv′ > v′ = u′ or 2uv′ < v′ = u′ (since |u| ≥ 1
and v′ = u′ > 0, i.e., u

u′ is rectified). Therefore, the numerator of the closest rational

number with denominator v′ to u
u′ in absolute value is non-zero.

In particular, we have
⌊

u

u′
v′ +

1

2

⌋

=

⌊

u+
1

2

⌋

= u

regardless of the sign of u.

Definition 32 0 is the closest number to 0 in absolute value, and there is no rational num-

ber closest to 0 in absolute value.

Remark 33 These definitions are consistent with Claim 30 in the sense that
⌊

0
u′ v

′ + 1
2

⌋

=
0 for all u′, v′ 6= 0, and if there were a rational number v

v′ closest to 0 in absolute value,

then v
2v′ would be closer, i.e.,

∣

∣

v
2v′ − 0

∣

∣ <
∣

∣

v
v′ − 0

∣

∣, which is a contradiction.

For example, the closest rational number with denominator 18 to 362
9201 is

⌊

362
9201 (18) +

1
2

⌋

=
1. This is confirmed by

0.039344 ≈

∣

∣

∣

∣

0

18
−

362

9201

∣

∣

∣

∣

>

∣

∣

∣

∣

1

18
−

362

9201

∣

∣

∣

∣

≈ 0.016212

0.071768 ≈

∣

∣

∣

∣

2

18
−

362

9201

∣

∣

∣

∣

>

∣

∣

∣

∣

1

18
−

362

9201

∣

∣

∣

∣

≈ 0.016212

The rectified and reduced form of 1
18 is 1

18 , and the difference is

∣

∣

∣

∣

(9201)⌊ 362
9201

(18)+ 1
2⌋−(362)(18)

(9201)(18)

∣

∣

∣

∣

≈

0.016212.

As another example, the closest rational number with denominator−75 to 177
381 is

⌊

177
381 (−75) +

1
2

⌋

=
−35. This is confirmed by

0.011234 ≈

∣

∣

∣

∣

−34

−75
−

177

381

∣

∣

∣

∣

>

∣

∣

∣

∣

−35

−75
−

177

381

∣

∣

∣

∣

≈ 0.0020997

0.015433 ≈

∣

∣

∣

∣

−36

−75
−

177

381

∣

∣

∣

∣

>

∣

∣

∣

∣

−35

−75
−

177

381

∣

∣

∣

∣

≈ 0.0020997

The rectified and reduced form of −35
−75 is 7

15 , and the difference is

∣

∣

∣

∣

(381)⌊ 177381
(−75)+ 1

2⌋−(177)(−75)

(381)(−75)

∣

∣

∣

∣

≈

0.0020997.

Given a reduced rational number u
u′ and a non-zero integer v′, the ternary operator

(b, v) -Quantization q calculates the non-zero base b integer v and returns the base b rational

number v
v′ that is closest to u

u′ , or returns 0 when the operand is 0. Note that r
(

v
v′

)

is also

just as close to u
u′ as is v

v′ , even though the denominator of r
(

v
v′

)

may not be equal to v′.

In the following table, all additions and multiplications are performed relative to base b

arithmetic.

891

q Arg1 Arg2 Result

u
u′ v′ 6= u′

{

v
v′ , |u′v − uv′| ≤ |u′ (v + 1)− uv′|

v+1
v′ , |u′v − uv′| > |u′ (v + 1)− uv′|

u
u′ v′ = u′ u

u′

0 v′ 0

0 0 NaN

The following algorithm implements this operator.

1. Reduce v
u′ ; call this value R.

2. Reduce the product of R with u; call this (the new value of) R.

3. Reduce the sum of r with 1
2 ; call this (the new value of) R.

4. Calculate the floor function of R; call this value k.

5. Return k
v .

4.11 b-Rationalization

Given a b-Float number x, the unitary operator b-Rationalization returns the reduced and

rectified base b rational number u
u′ that has the same value as x. The following algorithm

calculates the values of u and u′. All calculations take place in context with base b arith-

metic.

The following algorithm implements this operator.

1. Let n be the smallest positive integer such that xbn is an integer.7

2. Return the reduced value of x×bn

bn .

Note that the return value is automatically rectified by the algorithm.

4.12 (b, q)-Fix

Given two base b positive integers u and v, and a precision level q, the binary operator

(b, q)-Fix returns the base b rational number w
bq whose value is closest (in absolute value to

q digits precision) to u
v . All calculations take place in context with base b arithmetic.

The following algorithm implements this operator.

1. Calculate the base b floating point value x of u
v to precision q.

2. Determine the number of base b digits needed to represent the result in Step 1; call

this value n.

3. Return the reduced value of x×bn

bn .

Note that the return value is automatically rectified by the algorithm.

7Such an integer always exists: (a) if x is an integer, then n = 0, and (b) if x is not an integer, then xb
n is

never an integer for any n < 0; hence, n is bounded below by 0.

892

5. Greatest Common Divisor Calculation

The following algorithm calculates the greatest common divisor, and by inference, the least

common multiple (see Claim 22).

Algorithm 34 (Stein Binary Method[1]) Given positive integers u and v, the following

steps calculate gcd (u, v).

1. Set C = 0.

2. Continue to divide u and v by 2 until one of them is odd. Record the number of such

divisions as C .

(a) By Claim 19, we have gcd (u, v) = 2C gcd
(

u
2C

, v
2C

)

, for integer C ≥ 0.

3. Set u←− u
2C

and v ←− v
2C

.

4. If u is odd, then set t = −v and s = u; otherwise set t = u and s = v.

5. Continue to divide t by 2 until it is odd.

(a) By Claim 20, we have gcd (u, v) = gcd
(

u
2R

, v
)

for any integer R ≥ 0.

(b) At this point both t and s are odd.

6. If t > 0, then set u←− t; otherwise set v ←− −t.

(a) If t > 0, then u > v (when repeated from Step 8), so that |t| is set in place of

max (u, v).

(b) Before a repeat from Step 8, |t|may be set in place of either max (u, v) or min (u, v).

7. Set t←− u− v.

(a) By Claim 18, gcd
(

u
2R

, v
)

= gcd
(

v, u
2R
− v
)

(where q = 1 in this case).

(b) Since |u− v| < max (u, v), when repeated from Step 8, the new value of t is neces-

sarily less than either u or v, even if no divisions by 2 occur in Step 5, so that the

next application of Steps 6-7 will strictly reduce the value of t (and therefore either

u or v). In this respect, t converges to 0 in finitely many steps (see Step 8).

8. If t 6= 0, repeat from Step 5; otherwise return 2Cu.

REFERENCES

1 Stein, J., Computational problems associated with Racah algebra, Journal of Computational Physics, 1:3
(February 1967), pp. 397-405.

893

