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Abstract
Vectors of hierarchical random probability measures are popular tools in Bayesian non-

parametrics. They may be used as priors whenever partial exchangeability is assumed at
the level of either the observations or of some latent variables involved in the model. The
first contribution in this direction can be found in Teh et al. (2006), who introduced the
hierarchical Dirichlet process. Recently, Camerlenghi et al. (2017) have developed a general
distribution theory for hierarchical processes, which includes the derivation of the partition
structure, the posterior distribution and the prediction rules. The present paper is a review
of these theoretical findings for vectors of hierarchies of Pitman–Yor processes.
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1. Introduction

Exchangeability is quite standard an assumption in the Bayesian literature. Recall
that a sequence of observations is exchangeable if the order in which the observations
are recorded is irrelevant and this is tantamount to saying that the distribution of
the sequence is invariant under the group of all finitary permutation. Less formally,
such an assumption corresponds to a notion of homogeneity among all observations
that may not hold true in several applications where data are affected by some
source of heterogeneity. An obvious example emerges when data are generated by
different, though related, such as in clinical trials, multicenter studies, change–point
problems, and so on. In such situations one needs to resort to a more general de-
pendence structure, and partial exchangeability often is a natural fit (see de Finetti
(1938)). Roughly speaking, partial exchangeablity corresponds to assuming that
the whole population splits into a certain number of subpopulations which are ex-
changeable in their own right.
More precisely, assume that X is a Polish space equipped with its Borel σ–field
X . Consider d sequences of observations Xi := (Xi,j)j≥1, for i = 1, . . . , d, de-
fined on some probability space (Ω,F ,P) and taking values in (X,X ). They

are partially exchangeable if and only if (X1, . . . ,Xd)
d
= (π1X1, . . . , πdXd), where

πiXi = (Xi,πi(j))j≥1 and π1, . . . , πd are finite permutations on N. A representa-
tion theorem by B. de Finetti states that the sequences X1, . . . ,Xd are partially
exchangeable if and only if there exists a vector of random probability measures
(p̃1, . . . , p̃d), such that

(X1,j1 , . . . , Xd,jd) | (p̃1, . . . , p̃d)
iid∼ p̃1 × · · · × p̃d (j1, . . . , jd) ∈ Nd

(p̃1, . . . , p̃d) ∼ Qd. (1)
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Having denoted by PX the space of all probability measures on X, which is assumed
to be endowed with the corresponding Borel σ–field PX, then Qd is a probability
law on the space (PdX,P

d
X).

The case where d = 1 corresponds to exchangeability and it has been extensively
studied in the literature, starting from the seminal contribution of Ferguson (1973),
who introduced the Dirichlet process. Subsequently, a wide variety of priors Q1 have
been introduced and investigated to model exchangeable observations, beyond the
Dirichlet process. A popular generalization of the Dirichlet prior is the Pitman–Yor
process (see Perman, Pitman and Yor (1992) and Pitman and Yor (1997)). Ot-
her general and flexible class of priors suited for the exchangeable case have been
obtained by means of suitable transformations of completely random measures and
are surveyed in Lijoi and Prünster (2010). Besides the random partition structure,
posterior distributions and prediction rules induced by these nonparametric priors
have been widely investigated and well understood.
On the other hand, when d ≥ 2, the definition and investigation of Qd in (1) is
still the subject of a lively and fastly evolving literature. Starting from the seminal
contribution of MacEachern (1999, 2000), the construction of dependent random
probability measures has become a popular subject in the Bayesian nonparametric
community. Although this line of research has been pursued by many authors in
Bayesian nonparametrics, the derivation of theoretical properties in such a context
is a hard task.
In the present paper we focus on a special class of dependent random probability
measures, namely hierarchical Pitman–Yor processes. The hierarchical construction
has been first introduced in Teh et al. (2006) for the Dirichlet process case, with
other subsequent contributions in this direction that include Gasthaus and Teh
(2010); Teh and Jordan (2010); Wood et al. (2011) and Nguyen (2016), among ot-
hers. Hierarchical priors have proved to be effective tools in several applied areas,
most notably in topic modeling problems, though the investigation of some of their
most relevant distributional properties has been quite limited so far. Recent works
by Camerlenghi et al. (2017) and Camerlenghi, Lijoi and Prünster (2017a) have
successfully tackled the analytical hurdles related to hierarchical constructions in
a partially exchangeable setting, deriving closed form expressions for the partition
probability functions, the posterior distributions and the prediction rules when the
p̃i’s are suitable transformations of completely random measures. The present pa-
per summarizes the most relevant findings corresponding to the Pitman–Yor process
case. The proofs are not reported here, the interested reader may refer to Camer-
lenghi et al. (2017) for all the technical details and a more extensive treatment of
the subject.

2. Hierarchical Pitman–Yor processes

For the reader’s convenience, we remind that a Pitman–Yor (PY) process with
parameters σ ∈ (0, 1), ϑ > 0 and base measure P0 is a discrete random probability
measure p̃ ≡

∑
j≥1 π̃jδZj such that

π̃1 = V1, π̃j = Vj

j−1∏
i=1

(1− Vi) for j ≥ 2,

where the (Zj)j≥1’s are i.i.d. random variables taking values in (X,X ), with com-
mon distribution P0, and the Vi’s are independent Beta random variables with
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parameters (ϑ + iσ, 1 − σ). Moreover, the sequences (Vi)i≥1 and (Zi)i≥1 are inde-
pendent. We will write p̃ ∼ PY(σ, ϑ;P0). The Dirichlet process may be recovered
as a limiting case, when σ → 0.

Having recalled the stick–breaking construction of the Pitman–Yor process, we
now introduce hierarchies of Pitman–Yor random probability measures. The main
idea behind the definition of hierarchical priors relies in randomizing the base mea-
sure of each random probability p̃i of the vector (p̃1, . . . , p̃d) in (1). More precisely
we say that Qd in (1) is the distribution of a Hierarchical Pitman–Yor Process
(HPYP) if

p̃i|p̃0
iid∼ PY(σ, ϑ; p̃0) i = 1, . . . , d

p̃0 ∼ PY(σ0, ϑ0;P0)
(2)

being σ, σ0 ∈ (0, 1), ϑ, ϑ0 > 0 and P0 is a non–atomic probability measure on
(X,X ). Note that the randomness of the base measure p̃0 enables dependence
across the different groups of observations. It is worth to underline that the random
probability measures p̃1, . . . , p̃d in (2) are almost surely discrete, since they are PY
processes conditionally on p̃0.
To get some intuition on the dependence structure induced by the hierarchical
construction, one may first look for the correlation structure of the model, which is
described by the following:

Theorem 1. Consider a vector of random probability measures as in (2). Then,
for any A ∈X and i 6= j

corr(p̃i(A), p̃j(A)) =
{

1 +
1− σ
1− σ0

ϑ0 + σ0

ϑ+ 1

}−1
. (3)

We underline that the correlation (3) between different p̃i’s is always positive
and that this formula does not depend on the choice of the set A.
In the what follows we overview the relevant theoretical results concerning the
HPYP, with a particular emphasis on the partition structure (Section 2.1), the
posterior characterization of (p̃1, . . . , p̃d) (Section 2.3) and the distribution of the
number of clusters out a sample of size n for the whole population (Section 2.2).

2.1 Random partition induced by HPYP

Assume to be provided with a sample X(ni) := (Xi,1, . . . , Xi,ni) of size ni for each

population i = 1, . . . , d, and denote by n :=
∑d

i=1 ni the total number of observa-
tions. The discreteness of the different random probability measures in (2) allows
for ties within the same sample and across different samples. Such ties induce a
random partition and one is naturally led to determine its probability distribution,
termed partially exchangeable partition probability function (pEPPF), which have
been derived in Camerlenghi et al. (2017). In order to formalize the notion of
pEPPF, suppose that he d samples

{
X(ni) : i = 1, . . . , d

}
display k distinct values.

Moreover, ni := (ni,1, . . . , ni,k), for i = 1, . . . , d, is the vector of frequency counts
in the i–th sample, namely ni,j ≥ 0 is the number of elements of the i–th sample
that coincide with the j–th distinct among the k that have been overall recorded.
We obviously have that

∑k
j=1 ni,j = ni for any i = 1, . . . , d, and ni,j = 0 means

that the j–th distinct value does not appear in the sample X(ni). Having fixed the
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notation, the pEPPF is defined as follows

Π
(n)
k (n1, . . . ,nd) = E

∫
Xk

k∏
j=1

p̃
n1,j

1 (dxj) · · · p̃
nd,j

d (dxj). (4)

In the case of hierarchical processes, the partition structure (4) may be interpreted
in terms of the Chinese Restaurant Franchise (CRF) representation first introduced
in Teh et al. (2006). According to this metaphor, Xi identifies the i–th Chinese
restaurant in a franchise of d restaurants, all sharing the same menu. The samples
X(ni) are the dishes’ labels that have been selected by the ni customers seated in the
i–th restaurant. People seating at the same table eat the same dish, and the same
dish can be served at different tables within the same restaurant or across different
restaurants. Accordingly, ni,j ≥ 0 is the number of customers in restaurant i eating
dish j, for i = 1, . . . , d and j = 1, . . . , k.
The observed dishes’ labels induce a random partition of {1, . . . , n} that is charac-

terized through (4). However, the evaluation of Π
(n)
k is too difficult and, in order

to obtain a tractable expression, one needs to introduce suitable latent variables
T (ni) = (Ti,1, . . . , Ti,ni), for each restaurant i, which represent the tables’ labels
where the people are seated at. The latent tables determine a refinement of the
partition induced by data, whereby the ni,j customers eating dish j in restaurant
i may be partitioned into `i,j ∈ {1, . . . , ni,j} distinct tables, the t–th of which has

qi,j,t customers, for t = 1, . . . , `i,j . Hence we have that ni,j =
∑`i,j

t=1 qi,j,t. We further
introduce the compact notation for the vectors of counts `i := (`i,1, . . . , `i,k) and
qi,j := (qi,j,1, . . . , qi,j,`i,j ), while ` = (`1, . . . , `d) and q denotes the overall tables

frequencies. Finally ¯̀•j =
∑d

i=1 `i,j ,
¯̀
i• =

∑k
j=1 `i,j denote the number of tables

serving dish j and the overall number of tables, respectively, in restaurant i. The
following representation of the pEPPF has been established in Camerlenghi et al.
(2017):

Theorem 2. Let {(Xi,j)j≥1 : i = 1, . . . , d} be partially exchangeable as in (1), with
Qd characterized by

p̃i | p̃0
iid∼ PY(σ, ϑ; p̃0) (i = 1, . . . , d), p̃0 ∼ PY(σ0, ϑ0;P0)

Then

Π
(n)
k (n1, . . . ,nd) =

∑
`

∑
q

C(n1, . . .nd; `, q)

∏k−1
r=1(ϑ0 + rσ0)

(ϑ0 + 1)|`|−1

k∏
j=1

(1− σ0)¯̀•j−1

×
d∏
i=1

∏`i•−1
r=1 (ϑ+ rσ)

(ϑ+ 1)ni−1

k∏
j=1

`i,j∏
t=1

(1− σ)qi,j,t−1

(5)

where (a)n = Γ(a + n)/Γ(a) denotes the ascending factorial, with the convention
(a)−1 ≡ 1, and we have set

C(n1, . . .nd; `, q) :=
d∏
i=1

k∏
j=1

1

`i,j !

(
ni,j

qi,j,1, . . . , qi,j,`i,j

)
.

As one may easily realize, the introduction of latent tables allows to get rid
of the two sums in (5) as well as the related coefficient C(n1, . . .nd; `, q), hence
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obtaining an expression of the pEPPF that may be more easily implemented (see
e.g. Camerlenghi, Lijoi and Prünster (2017a)). More specifically, we would like to
emphasize that the augmented version of the pEPPF given by∏k−1

r=1(ϑ0 + rσ0)

(ϑ0 + 1)|`|−1

k∏
j=1

(1− σ0)¯̀•j−1

d∏
i=1

∏`i•−1
r=1 (ϑ+ rσ)

(ϑ+ 1)ni−1

k∏
j=1

`i,j∏
t=1

(1− σ)qi,j,t−1

describes the partition structure induced by the tables and dishes, while (5) corre-
sponds to its marginalization over all the possible configurations of tables.

2.2 Distribution of the number of clusters

Having derived the partition structure of hierarchical Pitman–Yor processes, one is
naturally led to determine the distribution of Kn, namely the random number of
distinct values out of n partially exchangeable observations. In order to do this, let
us define:

i) the number of distinct values K ′i,ni
in T (ni) = (Ti,1, . . . , Ti,ni) for any i =

1, . . . , d;

ii) K0,t, the number of distinct values out of t exchangeable observations gene-
rated from p̃0.

These quantities may be explained in terms of the Chinese restaurant franchise
metaphor, indeed K ′i,ni

represents the number of distinct tables in restaurant i,
while K0,t is the number of distinct dishes in the overall franchise. Camerlenghi et
al. (2017) have derived the distribution of Kn:

Theorem 3. Assume that Kn is the number of distinct values out of d partially
exchangeable samples {X(ni) : i = 1, . . . , d} governed by a vector of hierarchical

Pitman–Yor processes, i.e. p̃i|p̃0
iid∼ PY(σ, ϑ; p̃0) and p̃0 ∼ PY(σ0, ϑ0;P0). Then, for

any k = 1 . . . , n one has

P[Kn = k] =
n∑
t=k

P[K0,t = k]P
[ d∑
i=1

K ′i,ni
= t
]
. (6)

In the sequel we denote by C (n, k;σ) the generalized factorial coefficient, which
is defined as

(σt)n =

n∑
k=1

C (n, k;σ)(t)k.

See also Charalambides (2005). Since we are working with Pitman–Yor processes,
the expression in (6) may also be expressed as

P[KN = k] =
N∑
t=k

∏k−1
r=1(ϑ0 + rσ0)

(ϑ0 + 1)t−1

C (t, k;σ0)

σk0

×
∑

{(ζ1,...,ζd)∈∆d,t}

d∏
i=1

∏ζi−1
r=1 (ϑ+ rσ)

(ϑ+ 1)ni−1

C (ni, ζi;σ)

σζi

where ∆d,t = {(r1, . . . , rd) : ri ≥ 1,
∑d

i=1 ri = t}. In addition, from the represen-
tation (6), one may immediately deduce that

Kn
d
= K0,K′1,n1

+...+K′d,nd
,
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whose validity is useful to understand the asymptotic behavior of Kn. In particular
Camerlenghi et al. (2017) have proven the following asymptotic result for Kn:

Theorem 4. Suppose Kn is the number of distinct values in the d partially ex-
changeable samples {X(ni) : i = 1, . . . , d} governed by a vector of hierarchical
Pitman–Yor processes. Furthermore, let n1 = · · · = nd = n/d. Then

lim
n→+∞

Kn

nσ σ0
= Z

almost surely, where Z is some positive random variable.

2.3 Posterior characterization of the HPYP

To conclude our theoretical analysis of hierarchical Pitman–Yor processes, we focus
on the posterior distribution of (p̃1, . . . , p̃d) given the observations X and the latent
tables T of the whole franchise. Such a characterization has been first derived in
Camerlenghi et al. (2017) and no results were available before that. We underline
the importance of such a characterization, indeed it allows to make inference on
non–linear functionals of the hierarchical random probability measures.
To fix the notation, we set ki := # {j : ni,j ≥ 1} and we agree on the fact that
the Dirichlet distribution having parameters (ni,1 − `i,1σ, . . . , ni,k − `i,kσ, ϑ + kiσ)
is defined on the ki–dimensional simplex, after the removal of the parameters with
ni,j = 0. Below we report the posterior characterization proved by Camerlenghi et
al. (2017).

Theorem 5. The posterior distribution of p̃0, conditional on (X,T ), equals the
distribution of the random probability measure

k∑
j=1

WjδX∗j +Wk+1 p̃0,k (7)

where (W1, . . . ,Wk) is a k–variate Dirichlet random vector with parameters (¯̀•1 −
σ0, . . . , ¯̀•k − σ0, ϑ0 + kσ0), Wk+1 = 1 −

∑k
i=1Wi and p̃0,k ∼ PY(σ0, ϑ0 + kσ0;P0).

Moreover, the posterior distribution of each p̃i, conditional on (p̃0,X,T ), equals the
distribution of the random probability measure

k∑
j=1

Wi,j δX∗j +Wi,k+1 p̃i,k (8)

where (Wi,1, . . . ,Wi,k) is a k–variate Dirichlet random vector with parameters (ni,1−
`i,1σ, . . . , ni,k − `i,kσ, ϑ + kiσ), Wi,k+1 = 1 −

∑k
j=1Wi,j and p̃i,k | p̃0

ind∼ PY(σ, ϑ +
kiσ; p̃0).

The posterior representations (7)–(8) resemble the ones derived by Pitman
(1996) for the exchangeable case and feature the quasi–conjugacy property of the
Pitman–Yor process.

3. Concluding remarks

In the present paper we have summarized the results proved by Camerlenghi et al.
(2017) for hierarchical Pitman–Yor random probability measures, which are useful
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dependent nonparametric priors to model partially exchangeable data. The theore-
tical results presented in Section 2 concern the partition structure (Section 2.1), the
distribution of the number of distinct values out of n partially exchangeable observa-
tions (Section 2.2) and the posterior characterization of the hierarchical Pitman–Yor
process (Section 2.3). All the proofs are based on the representation of the p̃i’s as
suitable transformations of completely random measures. We further underline that
similar results, with respect to those presented here, hold true when the p̃i’s are
hierarchical normalized completely random measure: we refer to Camerlenghi et al.
(2017) for all the details and proofs.
Our theoretical findings are of paramount importance to devise suitable sampling
schemes in many applied problems. See, e.g., Camerlenghi, Lijoi and Prünster
(2017a) for applications of these results to prediction in species sampling problems.
Even if the interest towards hierarchical priors first arose in a partially exchangeable
framework, one may employ hierarchical processes to model the a priori opinion in
presence of exchangeable data: refer to Camerlenghi, Lijoi and Prünster (2017b)
for theoretical investigations and noteworthy applications.

Acknowledgements

A. Lijoi and I. Prünster are partially supported by the European Research Council
(ERC), StG ”N-BNP” 306406 and by MIUR, PRIN Project 2015SNS29B.

References

Camerlenghi, F., Lijoi, A., Orbanz, P. and Prünster, I. (2017). Distribution theory for
hierarchical processes. Submitted.

Camerlenghi, F., Lijoi, A. and Prünster, I. (2017a). Bayesian prediction with multiple–sample
information. J. Multivariate Anal., 156, 18–28.

Camerlenghi, F., Lijoi, A. and Prünster, I. (2017b). Bayesian nonparametric inference beyond
the Gibbs–type framework. Submitted.

Charalambides, C.A. (2005). Combinatorial methods in discrete distributions. Hoboken, NJ:
Wiley.

de Finetti, B. (1938). Sur la condition d’equivalence partielle. Actualités scentiques et industriel-
les, 5–18.

Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1,
209–230.

Gasthaus, J. and Teh, Y.W. (2010). Improvements to the sequence memoizer. Advances in
Neuronal Information Processing Systems 23.

Lijoi, A. and Prünster, I. (2010). Models beyond the Dirichlet process. In Bayesian Nonpara-
metrics, pp. 80–136. Cambridge University Press, Cambridge.

MacEachern, S.N. (1999). Dependent nonparametric processes. In ASA Proceedings of the SBSS.
Alexandria: American Statistical Association, 50-55.

MacEachern, S.N. (2000). Dependent Dirichlet processes. Technical Report. Department of Sta-
tistics, Ohio State University.

Nguyen, X. (2016). Borrowing strength in hierarchical Bayes: convergence of the Dirichlet base
measure. Bernoulli 22, 1535–1571.

Perman, M., Pitman, J. and Yor, M. (1992). Size–biased sampling of Poisson point processes
and excursions. Probab. Theory Related Fields 92, 21–39.

Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. In Statistics,
Probability and Game Theory (T.S. Ferguson, L.S. Shapley and J.B. MacQueen, Eds.). IMS
Lecture Notes Monogr. Ser., Vol. 30. IMS, Hayward, 245–267.

Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from
a stable subordinator. Ann. Probab. 25, 855–900.

Regazzini, E., Lijoi, A. and Prünster, I. (2003). Distributional results for means of normalized
random measures with independent increments. Ann. Statist. 31, 560–585.

859



Teh, Y.W., Jordan, M.I., Beal, M.J. and Blei, D.M. (2006). Hierarchical Dirichlet processes.
J. Amer. Statist. Assoc. 101, 1566–1581.

Teh, Y.W. and Jordan, M.I. (2010). Hierarchical Bayesian nonparametric models with applica-
tions. In Bayesian Nonparametrics, pp. 158-207, Cambridge Univ. Press, Cambridge.

Wood, F., Gasthaus, J., Archambeau, C., James, L.F. and Teh, Y.W. (2011). The sequence
memoizer. Communications ACM 54, 91–98.

860


	Introduction
	Hierarchical Pitman–Yor processes
	Random partition induced by HPYP
	Distribution of the number of clusters
	Posterior characterization of the HPYP

	Concluding remarks



