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Abstract 

 Recently, considerable attention has been paid to the misuse of statistical testing 

outcomes, particularly p-values. I envision three stages to rectify this problem: 

conceptualization (providing a clear, unequivocal exposition of proper procedures), 

personalization (making this procedure accessible to the general non-statistician 

statistics-using public in a readily understandable form), and implementation (effecting 

the adoption of the second stage among the vast statistics-using public). The 

conceptualization (first) stage was partially addressed in 2016 by a policy statement 

from the American Statistical Association posing the process in traditional statistical 

terms. This paper attempts to start the personalization (second) stage with the goal of 

stimulating debate on the issue. Five components are proposed and discussed: Use 

terms to make the statistical discovery process meaningful to non-statistician statistics-

users, concentrate on the effect of an experiment rather than a test, view a test result as 

a measure of belief in the effect, provide joint difference/equivalence tests, and provide 

a scaled ranking of beliefs relating p-values to practical real-life interpretations. The 

components are shown in a practical example. A template to help users to follow proper 

statistical discovery procedures is proposed. 
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The Goal 

 

 Recently, considerable attention has been paid to the misuse of statistical testing 
outcomes, particularly p-values. I envision three stages to rectifying this problem: 
conceptualization (providing a clear, unequivocal exposition of proper procedures), 
personalization (making this procedure accessible to the general non-statistician 
statistics-using public in a readily understandable form), and implementation (effecting 
the adoption of the second stage among the vast statistics-using public). The 
conceptualization (first) stage was partially addressed in 2016 by a policy statement 
from the American Statistical Association posing the process in traditional statistical 
terms. Additional conceptualization is expected to develop at and from the October 
2017 Symposium on Statistical Inference in Bethesda, MD.  
 This paper is an attempt to start the personalization (second) stage with the goal of 
stimulating debate on the issue and does not presume to provide new methodology. 
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An Example 

 
 Let me open with an example. To treat a fractured ankle, medical standard of care 
mandates pinning (implanting braces on fractured bones) by device 1. An investigator 
compares pinning device 1 with treatment by a new cheaper and more easily installed 
pinning device 2 in a randomized controlled trial with 30 patients treated by each device. 
The measure of success used for comparison is the distance—measured in inches—
covered in a triple hop on the injured leg four months after repair (the longer the hop, 
the better the healing). The investigator hopes the new pinning device is superior, so 
chooses a difference test rather than an equivalence test. He submits H0: µ1 = µ2 and 
H1: µ1 ≠ µ2. Sample means and standard deviations were m1 = 33, s1 = 4; m2 = 35, s2 = 
6. A two-sample t test yields p = 0.134 with confidence intervals CI1 32-34 and CI2 33-
37 (rounded for clinical interpretation; values to 4 decimal places were used in 
calculations). H0 cannot be rejected by the p < 0.05 rule, so the statistical conclusion is 
indeterminate. Statistical orthodoxy says there is no evidence to prefer one over the 
other. Since there is no evidence to change the current standard of care, the real life 
consequence defaults to a “use standard of care treatment 1” decision. What is wrong 
here? 
 

The problems  

  
 Recently there has been extensive criticism of p-values, even to the point of urging 
that they not be used (Trafimow and Marks 2015). However, an abandonment of p-
values follows faulty logic similar to saying that a misused tool should be abandoned 
rather than being used only correctly. The controversy became so intense that the 
American Statistical Association was motivated to publish an official policy statement in 
this regard (Wasserstein and Lazar 2016), a helpful first stage in addressing the misuse 
of statistical inference.  
 Non-statistician users of statistical methods (and even some statisticians) often 
misinterpret the statistical discovery process in the following ways: 
 Rigid adherence to misunderstood concepts. Users find it difficult to accept 
corrective statistical explanations because of their rigid adherence to previously 
ingrained concepts. If we try to explain the correct logic of the statistical discovery 
process, non-statisticians often nod politely, then return to the definitions and statistical 
procedures they’ve been taught.  
 Neglecting descriptive statistics. Users present descriptive statistics only as support 
for a statistical test rather than as primary evidence. In the statement of the example 
above, the difference between average hop distances for the two treatments is not even 
mentioned, although it is the primary outcome of the experiment. 
 Test result as indicator of efficacy. Too often, the test’s resulting p-value is taken as 
evaluating the experiment’s outcome, whereas the test is designed to give evidence on 
whether or not the experiment’s outcome is compatible with the experiment’s model. In 
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the example, the investigator focuses on the p-value as the outcome of the experiment. 
This faulty logic interprets the experiment’s outcome as detectability rather than effect.  
 One-sided test of efficacy. Users employ a test that gives a one-sided decision—a 
defined outcome is unlikely to be compatible with a hypothesis of no difference versus 
the decision is indeterminate. When indeterminate, there is no evidence of effect, but 
this does not constitute evidence of no effect. In the example, in the absence of test 
evidence, the orthopedist must revert to standard of care and use the more costly and 
difficult-to-install surgical device. 
 Inflexible use of p-value. The cut-point on making a statistical discovery decision 
(using the p-value) is an almost universally accepted, firmly fixed, originally arbitrary 
value of 0.05. This results in a test outcome of p = 0.049 to be taken as “golden” but of p 
= 0.051 taken to show the experiment’s outcome to be useless. In the example, the p is 
large enough not to be an issue, but we have all seen cases in which the rigid p-value 
cut point would be an issue.  
 The general issue of rigid employment of the Neyman-Pearson hypothesis testing 
logic to fit all applications has been addressed repeatedly, most thoroughly by Hurlbert 
& Lombardi (2009). The solutions suggested below are not new; what is new is the 
purpose, the framework in which these suggestions are posed, and the fabric woven 
from their combination. 
 
Some Possible Solutions 

 
 Re: Rigid misconceptualization. Statisticians have tried again and again to explain 
these problems to users and how testing should be done properly, but the erroneous 
thinking has been so ingrained in the non-statistician user that explanations are little 
heeded. We need a rework of the basic definitions to jog the user out of scientific 
lethargy. We should retell the story of statistical discovery with new names for concepts 
so that users will see the story afresh in proper connotation and not revert to their 
ingrained misunderstanding. Equally important, these new names should be intuitively 
meaningful to users. 
 The measurement or rate or rank whose value is the issue of the experiment might 
be called the experimental effect, a term long used by statisticians. We must be led to 
ask first in a study what is the experimental effect and only then to ask about the ability 
to detect this effect. 
 Dealing with formal hypotheses has long been an anathema to non-statistician 
users, especially since the null hypothesis they are testing is usually opposite from the 
practical hypothesis they think likely. To shake users’ thinking from erroneous patterns, 
we could rename hypotheses as interpretations and hypothesis testing as evidence 

testing. Thus we would be testing for evidence of an interpretation that the experimental 
effect is or is not important. This makes intuitive sense to the non-statistician 
investigator.  
 The concept of significance of a test result, too often confused with the non-technical 
concept of practical significance, is a statement of belief in the effect, not a measure of 
the effect itself, and might better be thought of as detectability.   
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 The p-value could be accurately defined as the rate under a specified statistical 
model at which repeated samples drawn from the same population would show an 
effect at least as large as the observed one when that effect was absent. “Model”, 
obscure to many non-statisticians, includes at least the null and alternate hypotheses; 
sample size; and the assumptions of form of data distribution in the population being 
sampled, data independence, and data identicality. p is not an indicator of lack of effect, 
discussed in some detail below, but rather is a measure of doubt in the observed level 
of effect. To remove it from previous rigid concepts, we could rename p as the 
proportion of doubt in the observed effect. Similarly, the measure of doubt in observing 
the absence of an effect that is present could be denoted the proportion of doubt in a 
non-effect. For abbreviated reference, these could be named the proportion of positive 

doubt, or PPD, and the proportion of negative doubt, or PND. 
 Using these terms, we are able to explain the statistical discovery process in a way 
meaningful to the investigator and conveying the process simply:  

  We estimate the experimental effect and assess its practical importance. Then 
we evaluate how strongly we may believe in this practical importance by 
evidence testing, augmented by consideration of sample size and sample 
characteristics. The believability in the experimental benefit’s detectability is 
indicated by the proportion of positive doubt in an observed effect (PPD) and the 
proportion of negative doubt (PND). 

 
 Re: Neglecting descriptive statistics. The key information in an experiment is in the 
value of the experimental effect itself, not how strongly we can believe in its 
detectability. We need to focus on presenting the experimental effect—after all, that’s 
why we undertook the experiment. We should not be shy about expressing an informed 
and experienced judgment of effect importance. As noted by Gelman (2013):  
“Epidemiologists and applied scientists in general have knowledge of the sizes of 
plausible effects and biases.” 
 We need to establish a cut point differentiating the effect’s importance from its 
unimportance. This value is often denoted . An estimate of effect less than  would be 
an amount that could have arisen from any number of causes unrelated to the purpose 
of the experiment and obscuring any result too small to be of importance. To borrow a 
term from engineering applications, values less than  may arise from “machine error”.  
 In our fractured ankle example, a hop distance less than half the length of a foot (6 
inches) may be due to differences in shoes, floor finish, subject motivation on that day, 
etc. We take = 6 in. In the example, m1 = 33, s1 = 4; m2 = 35, s2 = 6, all in inches. 
Since the difference in hop distance is only 2 inches, considerably less than , we judge 
that it is not clinically important. 
 Only after we have made this practical judgment, may we ask: How strongly may we 
believe in this practical judgment? 
 
 Re: Test result as indicator of efficacy. After our attention to the experimental effect 
value per se as the indicator of efficacy, we proceed to evidence testing.  
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 A number of suggestions on novel ways to do evidence testing have been made, 
mostly providing some improvement but still imperfect. For example, Poole (1987) 
proposed using the p-value graphed on the odds ratio, Rosenthal & Rubin (1994) 
proposed a “counternull” statistic (a multiple of the effect size) combined with the p-
value, Schweder & Hjort (2002) proposed confidence distributions in place of 
confidence intervals, Bender et al (2005) proposed confidence curves in place of 
confidence intervals (closely related to Poole’s p-value graphs), Killeen (2005) proposed 
effect replication in place of significance testing, Demidenko (2016) proposed a “D-
value” method using standard deviations in place of standard errors, and Noguchi 
(2016) proposed using “range-preserving” confidence intervals. 
 However, I suggest that the smallest variation on current practice will have the 
greatest likelihood of successfully reëducating statistics users and gaining their 
compliance. This smallest variation would be to leave historical and legitimate methods 
in place but to induce their proper use by requiring the use of new terms that invoke the 
right interpretations. With the new terms and revised explanation of statistical discovery, 
we will not find it difficult to maintain awareness that evidence testing provides only 
guidance in how strongly to believe in the putative efficacy.  
 From the example, we have decided that 2 inches is not a practically important 
difference. A t test on the difference in means from two independent samples yields the 
proportion of positive doubt in the effect, the PPD, of 0.134, too large a doubt to believe 
that 2 inches is evidence of a true difference. So we fail to detect a difference; we have 
no evidence regarding our outcome. 
 
 Re: One-sided test of efficacy. The study failed to show evidence of a difference. Is 
that the end of the story? No. We can now ask, is there evidence that there is no 
difference, i.e. can we test the data to learn if our decision of no difference is 
believable? Yes. We can make an equivalence test on the difference on means from the 
two samples and estimate the proportion of negative doubt, or PND.  
 Schuirmann (1987) introduced the two one-sided tests (TOST) for equivalence, but 
not a joint difference-and-equivalence test. Tryon (2001) and Tryon and Lewis (2008) 
proposed a joint difference and equivalence test for a two-sample t test, although their 
method relies on confidence intervals, yielding no indication of strength of difference or 
equivalence, and uses two confidence intervals on the respective means rather than 
one confidence interval on the difference between means. In this paper, I treat only the 
two-sample t test case, as the purpose is to codify a simpler approach to inference, not 
address methodology.  
 I propose that a joint difference and equivalence test be used routinely. In that case, 
there would exist four possible outcomes. Let us denote by  the true but known 
difference in means, estimated by d. The null hypothesis would be H0:  ≤  or  ≥ , 
and the alternate hypothesis would be H1:  <  < . If we denote by L and U the lower 
and upper bounds of the confidence interval on , the four outcomes would be as 
follows. 
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(1) [L<, U<0] or [L>0, U>] corresponding to evidence of difference and no evidence 
of equivalence. 
(2) [L(,0), U(0,)] corresponding to evidence of equivalence and no evidence of 
difference. 
(3) [L<, U>0] or [L<0, U>] corresponding to indeterminacy, i.e. no evidence of 
equivalence or difference. 
(4) [L,U(,0)] or [L,U(0,)] corresponding to the degenerate case in which statistical 
variability is much smaller, i.e. measurement precision much larger, than the practical 
considerations giving rise to . 
 

In the example, m1 = 33, s1 = 4; m2 = 35, s2 = 6. The difference between means is d 
= 2, its df = 58, its standard deviation sd = 5.0990, and its standard error SEd = 1.3166. 
A confidence interval on   is 4.6354 to 0.6354. The t statistics for H0 are 3.0381 and 
6.0763, yielding probability levels 0.0018 and < 0.0001. So the proportion of negative 
doubt (PND) would be reported as 0.002. At an  = 0.05 level, H0 is rejected in favor of 
H1, showing evidence of equivalence. From a clinical decision standpoint, we can have 
reasonable belief in our decision that device 2 is not inferior in benefit to device 1 and 
the 2-inch improvement suggests that it could be slightly better. Equivalence mandates 
not that we default to device 1, but rather that we choose the device on a basis 
unrelated to subject performance. In this example, we would change clinical practice by 
choosing device 2 based on ease of surgical installation and cost.  

 
 Re: Inflexible use of p-value. Investigators using a difference test often find a 
proportion positive doubt (p-value) of, perhaps, 0.08 and say that, while there is “no 
statistical significance”, there is a “trend”. What they intend is that they did not satisfy 
the arbitrary requirement of PPD < 0.05, but they still believe there is practical evidence 
of a difference. We should not require that they “weasel word” their result, nor should 
we deny them further attention to a promising outcome. 
 Some attention has been given to the need for a more flexible relation of PPD to 
practical interpretation. Hurlbert and Lombardi (2009) note this need and Gelman & 
Robert (2014) recommend adjusting the significance level to the scenario. Boos and 
Stephanski (2011) note the use of *, **, and sometimes even *** to denote ordered 
categories of p-values but do not attach them to interpretive wording. 
 The most easily usable guide would be to scale the evidence levels as sort of a 
Likert scale with non-statistical descriptors that can be interpreted by anyone. Such a 
scale was hinted at by Goodman (1999) and proposed by Bland (2000). I propose such 
a scheme, shown as Table 1. This scheme is a little more liberal than those of Bland 
and Goodman because I base my values upon my experience. 
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Table 1. 
 

Range of  
Doubt Level  

How Strongly to Believe  
in an Effect  

< 0.005 Very Strongly 
0.005 to < 0.05 Strongly 
0.05 to < 0.10 Moderately 
0.10 to < 0.20 Weakly 

≥ 0.20 Not at All 
 
 Using the scale in Table 1, the decision maker in the example would conclude that 
the PND = 0.002 is very strong evidence in favor of the clinical decision of no difference 
between the modes of treatment. 
 However, we also note that PPD = 0.134 would provide weak evidence for the 2-inch 
improvement by device 2. Thus there is very strong evidence that device 2 is not inferior 
to device 1 and weak evidence that it may be even better. 
 
A Guide for the User 
 
 If we provide a sequence of steps to follow, it will guide and continually remind the 
user of the proper statistical discovery process. A possible guide appears as Table 2, 
exemplified for the broken ankle example as Table 3. As many columns could appear to 
the right as there are statistical questions to be addressed. 
 
 

Table 2.  
 

Issue to be Addressed   
Indicator of Benefit   
Value of Indicator   
Practical Interpretation   
Test on Indicator   
Proportion Positive Doubt    
Proportion Negative Doubt   
Consider sampling   
Evidence Shown   
Belief in Interpretation   
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Table 3 
 

Issue to be Addressed Compare devices 
Indicator of Benefit Mean difference in hop distance 
Value of Indicator 2 in. 
Practical Interpretation Device 2 not worse, maybe slightly better 
Test on Indicator t test 
Proportion Positive Doubt 0.134 
Proportion Negative Doubt 0.002 
Consider sampling Sample size moderate; data approx. normal & IID 
Evidence Shown Device 2 not worse, may be slightly better 
Belief in Interpretation Very strong in noninferiority, weak in better 

 
 
Conclusion 

 

To make statistical discovery easier to work with, to shake the research public from 
misconceptions, to fill gaps in the discovery process, and to reduce loss of research 
findings due to arbitrariness: We redefine terms to be meaningful to users; we focus on 
descriptors that are the purpose of the study; we interpret test results as believability, 
not efficacy; we use joint difference and equivalence testing; and we allow flexible 
measures of believability. 
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