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Abstract
Temporal gene expression data are of particular interest to researchers as they contain rich infor-

mation in characterization of gene functions and have been widely used in biomedical studies and
cancer early detection. In contrast to the rich literature on how to estimate the gene expressions
over the time under a given condition, few researchers consider identifying the different effects of
multiple conditions on the gene expression profiles. Besides its intrinsic effect, a gene has various
expression patterns under different biological conditions and these conditions result in the varia-
tion of gene expression variance. In this paper, we will investigate the effects of conditions to the
gene expressions and then classify the conditions according to the variational variance functions of
gene expressions. We propose a non-linear regression model with log-normal distribution to char-
acterize the variance functions of genes under the given conditions. Then, based on the parameter
estimates, a chi-square test is proposed to test the equality of variance functions for different con-
ditions. Furthermore, the Mahalanobis distance is used for the classification of conditions. The
proposed methods are applied to the dataset of 18 genes in P. aeruginosa expressed in 24 biological
conditions. The simulation studies show that our methods are well performed for the classification
of conditions for the temporal gene expressions.

Key Words: Temporal gene expressions, log-normal distribution, Mahalanobis distance, variance
analysis, Wald statistic.

1. Introduction

The high throughput gene expression techniques, such as, oligonucleotide and DNA mi-
croarray, serial analysis gene expression (SAGE), etc, make it possible now to quickly
generate huge amount of time series data on gene expression under various conditions
(Bjarnason et al. (2003); Cho et al. (1998); Spellman et al. (1998); Yuan and Lin (2007);
Zhu et al. (2007)). A general goal common to many of these time course experiments is
to collect gene expression time series in multiple biological conditions such as different
cancer tumor types or different treatments, identify genes that exhibit different temporal
expression profiles across multiple biological conditions. These data usually have several
main features: containing large scale of data set, having many genes, being measured over
many time levels, involving multiple conditions.

In the data analysis of temporal gene expressions, most literature focuses on detecting
temporally differentially expressed genes between two experiment conditions. Hong and
Li (2006) identified genes with different time-course expression profile using functional
hierarchical models. Yuan and Kendziorski (2006) proposed a hidden Markov modeling
(HMM) method to efficiently distinguish differentially expressed genes at each time point
and classify genes based on their temporal expression patterns. This method can be used
not only to compare two or more biological conditions over the short and long time series,
but also to pinpoint the genes that have different expression profiles across conditions. Fang
et al. (2012) proposed the non-linear regression model vis spline method to characterize
the relative change rate of genes to classify the gene expressions.
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Besides its intrinsic effect, a gene has various expression patterns under different bio-
logical conditions and these conditions result in the variation of gene expression variance.
In fact, it is the dispersions of gene expressions not their expectations that reflect the effects
of biological conditions because under different conditions, the mean functions of gene ex-
pressions do not have a big change but the variance functions may differ from each other
tremendously. For example, for a contrast experiment with a control group and a treatment
group, the gene profiles for two groups may have a similar expression but have totally dif-
ferent variations. The genes in the control group have a small dispersion but the variances
of genes in treatment group could vary largely. However, to our knowledge, there is no
discussion about the classification of biological conditions.

The goal of this article is to investigate the influence of conditions to the gene ex-
pressions and then classify the conditions according to the variance analysis of data from
temporal gene expressions. The interest is the dispersion function over time for all genes
together under a given condition and then compare the differences among all dispersion
functions obtained under all conditions. We need to estimate the variance function under
each condition. Afterward we assess whether two conditions have a similar effect to genes
by testing the similarity of two variance functions, and conduct the classification to all
conditions by using the obtained estimators of variance functions.

Toward these end, we need first to estimate the variance functions. In fact, the variance
function estimation plays an important role in many contexts. Excepts their own interest,
variance function estimates are needed to construct confidence intervals/bands for the mean
function and compute weighted least squares estimates of the mean function. Relative to
mean function estimation, the literature on variance function estimation is sparse. The ex-
isting methods include kernel, polynomial and wavelet procedure. Müller and Stadtüller
(1987, 1993) considered difference based kernel estimators of the variance function. Hall
and Carroll (1989) proposed kernel estimators of the variance function based on the squared
residuals from a rate optimal estimator of the mean function. Ruppert et al. (1997) and Fan
and Yao (1998) used local polynomial smoothing of the squared residuals from an optimal
estimators of the mean function. Moreover, Brown and Livine (2007) established asymp-
totic normality for a class of difference-based kernel estimators of variance function and
Wang et al. (2008) derived the minimax rate of convergence. More recently, Cai and Wang
(2008) considered a wavelet thresholding approach to adaptive variance function estimation
in heteroscedastic nonparametric regression. However, the shortcoming in the aforemen-
tioned methods is that the variance function is estimated locally and there is no explicit
global expression for estimator of the variance function over the time and thus it is very
difficult to make the comparison for obtained estimators. Therefore in current paper we
will develop an order-dependent thresholding approach to estimate the variance function in
parametric regression model and give a global form of estimator for the variance function.
Further by choosing the common order-dependent threshold knots for all estimators of the
variance functions, we can compare whether two variance functions have a similar behavior
and make the classification to all variance functions.

The rest of this paper is organized as follows. The method for estimation of variance
function is proposed in Section 2. In Section 3, the statistic to test the equality of variance
functions for two biological conditions is derived and the simulation studies are conducted
in Section 4. The proposed strategy is illustrated with a data set of 18 genes in P. Aeruginosa
expressed in 24 conditions in Section 5 and the concluding remarks are given in Section 6.
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2. Estimation of Variance Function

Let Yi(t) be the value of the i-th gene curve at time t and write

Yi(t) = µY (t) + ϵi(t) (1)

where ϵi(t) is the random noise with zero mean and variance σ2(t). Also, let Y i(ti) =
(Yi(ti1), ..., Yi(tipi))

T be the vector of pi observations for gene i and ti = (ti1, ..., tipi)
T

be the corresponding vector of times at which these measurements are made for genes i =
1, 2, ..., g. Also, it is assumed that the expected value of Y i(ti) is µY (ti) = (µY (ti1), ...,
µY (tipi))

T and covariance matrix is ΣY with (r, s) entry σrs = cov(Yi(tr), Yi(ts)) for
(r, s = 1, 2, ..., pi)

To estimate the variance function of this model, we define

Xi(t) = (Yi(t)− µY (t))
2 (2)

and
Xi(ti) = (Xi(ti1), Xi(ti2), ..., Xi(tipi))

T (3)

Furthermore, we need to determine a reasonable distribution for Xi(ti). The reasonable
assumption is to consider that Xi(tij) for j = 1, ..., pi, and i = 1, ..., g relatively follows
the chi-square distribution. In this situation we are dealing with multivariate data sets, we
should therefore consider the Wishart distribution which is a multivariate distribution and
it is a well-known distribution for interpreting the covariance matrices. However, it is not
easy to find the estimation of covariance matrix under this assumption when we are dealing
with a high-dimensional data set. On the other hand, the known results indicate that the log-
normal distribution offers a good approximation for the chi-square distribution (see Jouini
et al. 2011). Also, the logarithm of the log-normal random variable has a normal distribu-
tion. As a result, this fact can convince us to use the log-normal distribution for estimating
the variance function. Therefore, Xi(ti) can be considered as multivariate random variable
with log-normal distribution. That is, if set W i(ti) ≡ [Wi(ti1), Wi(ti2), ..., Wi(tipi)]

T =
[log(Xi(ti1)), log(Xi(ti2)), ..., log(Xi(tipi))]

T , then W i(ti) has a multivariate normal
distribution. Let E(W i(ti)) = µW (ti) = [µW (ti1), ..., µW (tipi)]

T and ΣWi is d11 · · · d1pi
...

. . .
...

dpi1 · · · dpipi


Then the density function of multivariate random variable Xi(ti) is

fXi(x) =
1

(2π)pi/2|ΣWi |1/2
∏pi

r=1 xr
exp

[
−1

2
(logx− µWi(ti))

TΣ−1
Wi

(logx− µWi(ti))

]
,

0 < xr < ∞, r = 1, ..., pi

where logx = [log x1, · · · , log xpi ]T is a pi-component vector. Moreover, the mean of
Xi(ti) is µX(ti) = [µX(ti1), · · · , µX(tipi)]

T where µX(tir) = exp(µW (tir)+
1
2drr), r =

1, ..., pi (see Kotz et al. 2004) and the covariance matrix is

ΣX =

 σ′
11 · · · σ′

1pi
...

. . .
...

σ′
pi1

· · · σ′
pipi


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where σ′
rs =

[
exp[(µW (tir) + µW (tis)) +

drr+dss
2 ]

]
× [exp(drs)− 1] , r, s = 1, ..., pi.

To find the variance function σ2(t) it is enough to compute E[(Y i(t)− µ(t))2] =
E[Xi(t)]. In other words, σ2

Y (t) = E[Xi(t)] = µX(t). Since MLEs of parameters have
invariant properties, finding the maximum likelihood estimator for σ2

Y (t) = µX(t) is equiv-
alent to finding the ML estimators for µW (t) and ΣW . Before giving the ML estimator for
µW (t) and ΣW we consider following assumptions:

(A1) µW (t) is approximated by using a linear combination of a set of truncated power
basis functions. Given a sequence of K interior knots 0 < τ1 < τ2 < . . . < τK < τ
where τ is the end time of observations. The regression basis functions of order Q are
1, t, t2, . . . , tQ, (t−τ)Q+, . . . , (t−τK)Q+ and we can determine µW (t) = BT (t)β,
where B(t) is the vector of q(= 1 +Q+K) basis functions:

B(t) =
(
1, t, t2, . . . , tQ, (t− τ1)

Q
+, . . . , (t− τK)Q+

)T

(A2) We assume ΣWi = σ2Gi(β, α)Ri(ρ)Gi(β, α) where

Ri(ρ) =


1 ρ|ti1−ti2| ... ρ|ti1−tipi |

ρ|ti2−ti1| 1 · · · ρ|ti2−tipi |

...
...

. . .
...

ρ|tipi−ti1| ρ|tipi−ti2| · · · 1


and

Gi(β, α) =


exp(12αB

T (t1)β) 0 · · · 0

0 exp(12αB
T (t2)β · · · 0

...
...

. . .
...

0 · · · 0 exp(12αB
T (tpi)β)


Specially, when observing times are equally spaced then Ri(ρ) is expressed as fol-
lows

Ri(ρ∗) =


1 ρ∗ · · · ρ∗pi−1

ρ∗ 1 · · · ρ∗pi−2

...
...

. . .
...

ρ∗pi−1 ρ∗ · · · 1


where ρ∗ = ρ|ti2−ti1|. In particular, when difference between any two adjacent times
is one then ρ = ρ∗.

(A3) µY (t) can be considered as the average expression of g gene profiles. There ex-
ist many approaches in the literature that can be used to recover the mean curve
µY (t), including kernel, local polynomial, smoothing splines, regression splines and
wavelet-based methods among others. We can choose one of existing methods to
estimate the function µY (t), denote by µ̂Y (t) the estimator of µY (t). Here, µY (t) is
estimated by fitting local lines in one dimensional based on the pooled data from all
gene expressions, which minimizes

g∑
i=1

p∑
r=1

K

(
tir − t

h

)
(yir − α0t − α1t(t− tir))

2

with respect to α0t and α1t where K and h are kernel and bandwidth, respectively.
The local estimator of µY (t) is given by µ̂Y (t) = α̂0t.
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Now let wobs = (w1(t1),w2(t2), ...,wg(tg))
T be the observed data from the matrix of

the random variables W obs = (W 1(t1),W 2(t2), ...,W g(tg)). Based on the previous
assumptions the likelihood function for the parameters θ = (β, α, σ, ρ) is

L(θ|wobs) = L(β, α, σ2, ρ|wobs)

=

g∏
i=1

[
(2π)−

p
2 |ΣWi |−1/2 exp

{
−1

2
(wi −BTβ)TΣ−1

Wi
(wi −BTβ)

}]
(4)

In general, the gene expression profiles are recorded simultaneously with the equal number
of equally spaced observed times. Therefore we can assume that pi = p and the all gene
expression profiles share the common observing time points t = (t1, t2, ..., tp) for i =
1, ..., g. In this situation, we have that ΣWi = ΣW = σ2G(β, α)R(ρ)G(β, α) where

R(ρ) =


1 ρ · · · ρp−1

ρ 1 · · · ρp−2

...
...

. . .
...

ρp−1 ρ · · · 1


B = (B(t1, ),B(t2), ...,B(tp)) and G(β, α) = diag(exp(12αB

T (t1)β, ..., exp(
1
2αB

T (tp)β).
Thus, the likelihood (4) can be simplified as:

L(θ|wobs)

= (2πσ2)−
gp
2

g∏
i=1

|GRG|−1/2 exp

{
g∑

i=1

− 1

2σ2
(wi −BTβ)TG−1R−1G−1(wi −BTβ)

}

= (2πσ2)−
gp
2 |G|−g|R|−g/2 exp

{
g∑

i=1

− 1

2σ2
(wi −BTβ)TG−1R−1G−1(wi −BTβ)

}

and the log likelihood function of parameter θ = (β, σ2, α, ρ) is

l(θ|wobs) = log[L (θ|wobs)] = −gp

2
log(2πσ2)

− g log |G| − g

2
log(|R|)− 1

2σ2

g∑
j=1

(wi −BTβ)TG−1R−1G−1(wi −BTβ)

(5)

From the log likelihood function, the maximum likelihood estimator θ̂ = (β̂, σ̂2, α̂, ρ̂)
is defined by

θ̂ = arg max
θ∈Θ

l(θ|wobs)

and based on the normal equations for parameters (β, σ2, α, ρ), the algorithm for the com-
putation of MLEs of parameters (β, σ2, α, ρ) and the derivation for expected information
matrix of MLEs are given in Appendix.

Finally, based on invariant properties of MLEs we can obtain the MLE of σ2
Y (t) =

(σ2
Y (t1), ..., σ

2
Y (tp))

T as follows

σ̂2
Y (t) = µ̂X(t) = (exp(µ̂W (t1) + d̂11/2), · · · , exp(µ̂W (tp) + d̂pp/2))

T (6)

where µ̂W (tr) is the rth element of µ̂W (t) = BT (t)β̂ and d̂rr is the rth diagonal element
of

Σ̂W = σ̂2G(β̂, α̂)R(ρ̂)G(β̂, α̂) (7)
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Further, from (6) and (7), and note that the diagonal elements of ΣW do not depend on the
parameter ρ, the MLE σ̂2

Y (t) can be written as

σ̂2
Y (t) = exp{BT (t)β̂ +

σ̂2

2
exp(α̂BT (t)β̂)}. (8)

3. Model-Based Test for Equality of Variance Functions of Two Conditions

In this section we are going to construct an asymptotic test for the equality of variance
functions for two conditions using Wald statistics and Fisher information matrix. The hy-
pothesis which we are interested in is

H0 : σ
2
Yr
(t) = σ2

Ys
(t) vs. H1 : σ

2
Yr
(t) ̸= σ2

Ys
(t) (9)

for all t. From equation (8), the variance function σ2
Y (t) is the function of the parameters

β, α, σ2. Since the common set of truncated power basis function B(t) is chosen for all
gene expressions, each gene expression curve can be written as

σ2
Yr
(t) = exp{BT (t)βr +

σ2
r

2
exp(αrB

T (t)βr)}. (10)

for r = 1, 2, ..., p.
Therefore, from (10) the hypotheses (9) are equivalent to the following:

H0 : (βr, σ
2
r , αr) = (βs, σ

2
s , αs) vs. H1 : (βr, σ

2
r , αr) ̸= (βs, σ

2
s , αs).

The above hypothesis can be tested by using the Wald type statistic:

χ2
rs = (θ̂∗r − θ̂∗s)

T M̂−1
rs (θ̂∗r − θ̂∗s) (11)

where (θ̂∗r − θ̂∗s) = (β̂r − β̂s, σ̂
2
r − σ̂2

s, α̂r − α̂s)
T and

Mrs = Mrs(θ
∗
r , θ

∗
s) = cov(θ̂∗r − θ̂∗s)

= cov(θ̂∗r) + cov(θ̂∗s) = I−1(θ∗r) + I−1(θ∗s)

=

(
C−1

r +C−1
s 0

0 D−1
r +D−1

s

)
with

C−1
r +C−1

s =

[
g

σ2
r

BT
r G

−1(αr)R
−1(ρr)G

−1(αr)Br

]−1

+

[
g

σ2
s

BT
s G

−1(αs)R
−1(ρs)G

−1(αs)Bs

]−1

D−1
r +D−1

s =

 g(p−1)(1−ρ2r)
(1−ρ2r)

2 −gρr tr(Ξr+ΞrKp)
4(1−ρ2r)

−gρr tr(Ξr+ΞrKp)
4(1−ρ2r)

g tr(ΞrΞr+R−1ΞrR−1Ξr)
4

−1

+

 g(p−1)(1−ρ2s)
(1−ρ2s)

2 −gρs tr(Ξs+ΞsKp)
4(1−ρ2s)

−gρs tr(Ξs+ΞsKp)
4(1−ρ2s)

g tr(ΞsΞs+R−1ΞsR−1Ξs)
4

−1

and M̂rs = M(θ̂∗r , θ̂
∗
s). Furthermore, the derivation of expressions for Cr,Cs, Dr and Ds

is given in Appendix. Also, under the null hypothesis H0 : (βr, σ
2
r , αr) = (βs, σ

2
s , αs),

χ2
rs asymptotically has chi-square distribution with NB + 3 degree of freedoms (NB is

number of bases in the model).
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4. Simulation Studies

To check the accuracy of ML estimator for estimates µ(t) introduced in second section,
simulation studies were designed. To demonstrate the performance of MLE for the pa-
rameters β, α, σ2, and ρ in the proposed model, random samples are generated from
multivariate normal random variables with the following three different mean functions:

Model 1 : µW (t) = cos(4πt)− 2

(
t− 1

2

)2

+ 1

Model 2 : µW (t) = sin(4πt)− 2

(
t− 3

4

)2

+ 1

Model 3 : µW (t) = sin(2πt)− cos(2πt)

and covariance matrix ΣW = σ2GRG with

G = diag[exp(
1

2
αµW (t1)), ..., exp(

1

2
αµW (tp))]

and

R =


1 ρ . . . ρp−1

ρ 1 . . . ρp−2

...
...

. . .
...

ρp−1 ρ . . . 1


We consider 25 equally spaced time points between 0 and 1. Meanwhile, ρ = 0.965, α = 2,
and σ2 = 0.2. Let w be the matrix of random numbers

w =


w11 w12 . . . w1p

... . . . . . .
...

...
...

...
...

wg1 wg2 . . . wgp

 = (w1, · · · ,wg)
T

with p = 25 and g = 20, 40 and 60. The first thing we are interested in finding is the dif-
ference between the sample mean and real mean. The sample mean of w is w̄ = 1

g1
Tw =

(w̄1, w̄2, . . . , w̄p) where

w̄r =
1

g

g∑
i=1

wir, r = 1, 2, ..., p.

Figures 1-3 demonstrate the difference between true mean function µW (t) and sample
mean w̄. From Section 2 we considered using BT (t)β to approximate the true mean func-
tion µW (t), where B(t) = (1, t, t2, t3, t4, t5, (t− 0.25)5+, (t− 0.5)5+, (t− 0.75)5+)

T

and β is the vector of unknown parameters. Since we know W ∼ MVN(µW (t),ΣW ), it
is possible to use the introduced normal equations to estimate β, σ2, α and ρ. However, it
is not likely to derive the closed forms for the estimators of these four parameters from the
normal equations. we use the iterative algorithm to solve the maximum likelihood equa-
tions for the parameters β, σ2, α and ρ. The details for the iterative algorithm are given in
the appendix.

The results for the estimates of parameters are given in the following table.
Model Estimate for Estimate Estimate Estimate

β = (β1, β2, β3, β4, β5, β6, β7, β8, β9) for σ2 for α for ρ
1 1.4, 1.5, -64.5, -0.1084, 1553, -2297.4, 4391.5, -4161.5, 4.0395 0.2086 1.9990 0.9679
2 0.09, -.50, 285.03, -2390, 6688, -6285.2, 7181, 258.191, -9.12 0.1906 1.9092 0.9630
3 -0.987, 5.591, 30.517, -96.533 41.186, 34.004, -53.88, -62.99, -26.88 0.2130 2.0863 0.9665

Table 1: The estimates of parameters β, σ2, α and ρ for three models
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Figure 1: Comparison between real means, estimated means, and sample means for model 1,
model 2 and model 3, respectively
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From simulation results given in Table 1, the estimates for σ2, α and ρ are very close to the
true values of the parameters, which demonstrates that the proposed method performs well
in the estimation of model parameters. Furthermore, as Figures 1-3 show, the estimated
mean function and the true mean function are close to each other. Moreover, compar-
ing with the sample mean, the estimated mean is much closer to the true mean and more
smooth. Therefore the proposed procedure has a good performance to estimate the mean
function in the model.

Next, to evaluate the power of the chi-square test in equation (10), a constant number a
is added to the original mean function in each model. As a result, the second mean function
for each model is defined as follows:

Model 1 : µW (t, a) = cos(4πt)− 2

(
t− 1

2

)2

+ 1 + a

Model 2 : µW (t, a) = sin(4πt)− 2

(
t− 3

4

)2

+ 1 + a

Model 3 : µW (t, a) = sin(2πt)− cos(2πx) + a

where a ∈ {0, 0.05, 0.1, 0.15, 0.2}. The L2 distance between µW (t) and µW (t, a) is
(
∫ 1
0 (µW (t) − µW (t, a))2dt)

1
2 = a. The results given in Tables 2-4 present the empirical

levels and powers when the nominal level is 0.05 for the given models (Number of repli-
cations is 10000). As results show, the chi-square test χ2 in equation (10) maintains the
nominal level (α = 0.05) well although it is a little aggressive for small sample size (g=20)
and is powerful enough to test the similarity of variance functions in the gene expression
data.

L2 distance of mean functions Power with 20 samples Power with 40 samples Power with 60 samples
0.00 0.1060 0.0501 0.0453
0.05 0.1450 0.1202 0.1590
0.10 0.3010 0.4001 0.5730
0.15 0.6160 0.8603 0.9971
0.20 0.9060 0.9961 1.0000

Table 2: The power analysis of chi-square test χ2 (model 1)

L2 distance of mean functions Power with 20 samples Power with 40 samples Power with 60 samples
0.00 0.0840 0.0450 0.0482
0.05 0.1560 0.1620 0.1932
0.10 0.3230 0.4320 0.7450
0.15 0.5786 0.8331 0.9861
0.20 0.9170 0.9561 0.9980

Table 3: The power analysis of chi-square test χ2 (model 2)

L2 distance of mean functions Power with 20 samples Power with 40 samples Power with 60 samples
0.00 0.0870 0.0470 0.0491
0.05 0.1210 0.1630 0.2230
0.10 0.3320 0.4210 0.5620
0.15 0.5950 0.8600 0.9500
0.20 0.8540 0.9510 0.9900

Table 4: The power analysis of chi-square test χ2 (model 3)

5. An Application to the Temporal Gene Expressions in P. Aeruginosa

We now consider the analysis of the data set of 18 genes in P. aeruginosa expressed in 24
conditions (see Table 5). For each condition, each gene was measured every 30 minutes for
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Figure 2: Estimates of µY (t) for conditions 1, 3, 17, and 21 with sample mean (dash line)
and estimated spline curve(solid line).

21 hours and has 43 observations. Without lost of generality we can rescale time points as
t/43 assume 0 ≤ t ≤ 1. Three interior knots, 0 < 0.25 < 0.5 < 0.75 < 1, are selected
and the basis functions B(t) is:

B(t) =
(
1, t, t2, t3, t4, (t− 0.25)4+, (t− 0.5)4+, (t− 0.75)4+

)
.

As discussed in Section 2, to estimate the mean function and variance function for each con-
dition, we have to find Wi(tj) = log(Yi(ti) − µY (tj))

2 for i = 1, 2, ...18; j = 1, 2, ....43.
For the assumed reason, the kernel smoothing method (see equation (3)) is first used to
estimate the mean function for each condition. Figure 4 shows the sample means with esti-
mated means using kernel smoothing for four different conditions. We then found the ML
estimates of β = (β1, . . . , β8)

T , σ2, α and ρ using the iterative algorithm which is ex-
plained in Appendix. Figure 5 shows a comparison between µW (t) = B(t)β and sample
mean of Wi(tj) for four selected conditions. Also, Figure 6 demonstrates the estimated
square root σ(t) of variance function (σ2(t), which is obtained based on equation (10)) for
same conditions as Figure 4.

Moreover, based on the chi square test which is defined in previous section, we found
that when the significance level is 0.05, there is no significant difference among variances
of conditions 1, 3, 6, 8, 9, 11, 12, 13, 14, 15, 19 and 22. Also, variances under conditions
4, 7 ,and 17 are same. Figure 7 indicates the classification tree for 24 conditions based on
minimum Mahalanobis distance.

6. Concluding Remarks

In this paper, a non-linear regression model with multivariate log normal distribution is
derived to estimate the variance functions in the high dimensional data. In addition, chi
square test is proposed to classify the curves of variance functions and the proposed method
is applied to study the influence of biological conditions on temporal gene expressions. The
simulation studies show that the proposed statistic test maintains the nominal levels and has
the powerful advantage.

The proposed estimation of variance function in this paper is based on B-splines, by
which the curve of variance function can be represented by finite number of parameters and

795



Code Name Protein Ratio Remarks

A6 PA5283
Probable transcriptional
regulator

99.68 %
48 % similar to putative
transcriptional regulator
(Bacillus subtilis)

B3
PA2975
(rluC)

Ribosomal large
subunit pseudouridine
synthase C

99.68 %
Transcription, RNA
processing &degradation

B4 PA4991 Hypothetical protein 100 % Unknown

B5 PA5237
Conserved hypothetical
protein

100 %
87 % similar to hypothetical
yigC gene product of E. coli

C4
PA0287
(gpuP)

3-guanidinopropionate
transport protein

100 % Transport of small molecules

D1
PA3115
(fimV)

Motility protein FimV 100 %
Membrane proteins;
Motility & Attachment

D2
PA3879
(narL)

Two-component response
regulator NarL

99.67 %
74 % similar to E.coli
NarL protein

D3 PA0894 Hypothetical protein 99.02 % Unknown

E5 PA1875
Probable outer membrane
protein precursor

100 %
41 % similar to alkaline
pro-tease secretion
protein AprF

E6 PA0573 Hypothetical protein 100 % Unknown
F2 PA3902 Hypothetical protein 100 % Unknown

F3 PA3212
Probable ATP-binding
component of ABC transporter

100 %

65 % similar to putative
amino acid abc transporter,
ATP-binding protein
(Helicobacter pylori J99)

F5
PA2997
(nqrC)

Na+translocating NADH:
ubiquinone oxidoreductase
subunit Nrq3

100 % Energy metabolism

G2
PA0649
(trpG)

Anthranilate synthase
component II

100 %

Energy metabolism;
Biosynthesis of co-factors,
prosthetic groups & carriers;
Amino acid biosynthesis
& metabolism

G5 PA1748
Probable enoyl-CoA
hydratase/isomerase

98.2 %

61 % similar to putative
enoyl-coA hydratase
EchA3
(Mycobacterium tuberculosis)

G6 PA3771
Probable transcriptional
regulator

99.22 %
54 % similar to a region of
putative regulatory protein
(Streptomyces coelicolor)

H3 PA1841 Hypothetical protein 100 %
43 % similar to hypothetical
yeaK gene product of (E. coli)

σ70 σ70 σ factor As a control

Table 5: 18 genes in P. aeruginosa expression

796



Figure 3: Estimates of µW (t) for conditions 1, 3, 17, and 21. In these four figures blue
dashed line, red lines and solid lines denote the smoothing B(t)β, the sample mean and
the 95% confidence upper limit and lower limit for µW (t), respectively.

Figure 4: Estimated standard deviation function σ̂(t) for conditions 1, 3, 17, 21

797



Figure 5: Classification chart based on minimum Mahalanobis distance(T1=[1, 3, 6, 8, 9,
11, 12, 13, 14, 15, 19, 22] and T17=[4, 7, 17])

then the curves can be compared by testing the equality of the corresponding parameters.
The method suggested in this paper can be applied to the gene expression data with time
varying covariates. In the future study, the structured nonparametric methods may be useful
to estimate the time-dependent variance functions. Since the trajectory of temporal gene
expression can be considered as a random element in Hilbert space, the corresponding
statistical inferences in Hilbert space should be developed to analyze the temporal gene
expression data.
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Appendix

In this appendix, we give the derivation of the likelihood normal equations for parameters
θ = (β, α, σ, ρ). At first we note the facts that

G−1 = diag(exp(−1

2
αµ(t1), ..., exp(−

1

2
αµ(tp))),

|R| = (1− ρ2)p−1

and
R−1 =

1

1− ρ2
[Ip + ρ2Kp − ρ(Hp +HT

p )]

where Kp = diag(0,1p−2, 0) (1p−2 = (1, . . . , 1)1×(p−2)) and

Hp =

(
0 0

Ip−1 0

)
p×p

,
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Now, from the log likelihood function (5) and after tedious calculation, the likelihood nor-
mal equations for parameters β, σ2, α and ρ are given as follows:

1

σ2

g∑
j=1

[
BG−1R−1G−1(W i −BTβ) + αBEiG

−1R−1G−1(W i −BTβ)
]
− gαB1 = 0

g∑
j=1

[
p

σ2
− 1

σ4
(W i −BTβ)TG−1R−1G−1(W i −BTβ)

]
= 0

g∑
j=1

[
(p− 1)ρ(1− ρ2)− ρ

σ2
(W i −BTβ)TG−1(Ip +Kp)G

−1(W i −BTβ)

+
1 + ρ2

σ2
(W i −BTβ)TG−1HpG

−1(W i −BTβ)

]
= 0

g∑
j=1

[
1TΞ1− 1

σ2
1TΞEiG

−1R−1G−1(W i −BTβ)

]
= 0

where

1 = (1, 1, ..., 1)Tp×1

B = (B(t1), ...,B(tp)),

Ξ = diag(BTβ) = diag(BT (t1)β, ...,B
T (tp)β),

Ei = diag(W i)−Ξ = diag(W i(t1)−BT (t1)β, ...,W i(tp)−BT (tp)β)

and therefore from these normal equations, the maximum likelihood estimates for the pa-
rameters β, σ2, ρ and α can be iteratively computed. Now let θ(k) = (β(k), σ2(k), ρ(k), α(k))
be the vector of estimated parameters at the kth iteration. Then the estimates of parameters
at the (k + 1)th iteration are

β(k+1) =
[
g1TΞ(β(k))E(β(k))G−1(β(k), α(k))R−1(ρ(k))G−1(β(k), α(k))BT

]−1

[
g∑

i=1

1TΞ(β(k))E(β(k))G−1(β(k), α(k))R−1(ρ(k))G−1(β(k), α(k))W i − gσ2(k)1TΞ(β(k))

]

σ(k+1) =
[
tr{Ξ(β(k))}

]−1
tr

{
G−1(β(k), α(k))R−1(ρ(k))G−1(β(k), α(k))A(β(k))Ξ(β(k))

}
1− ρ2(k+1) = tr

{
G−1(β(k), α(k))(Ip +Kp)G

−1(β(k), α(k))A(β(k))
}
/[(p− 1)σ(k)]

−(1 + ρ2(k)) tr
{
G−1(β(k), α(k))HpG

−1(β(k), α(k))A(β(k))
}
/[ρ(k)(p− 1)σ2(k)]

α(k+1) =

[
gσ2(k)B1−

g∑
i=1

BEi(β
(k))G−1(β(k), α(k))R−1(ρ(k))G−1(β(k), α(k))(W i −Bβ(k))

]−1

[
gBG−1(β(k), α(k))R−1(ρ(k))G−1(β(k), α(k))(W̄ −Bβ(k))

]

where

W =
1

g

g∑
i=1

W i, E =
1

g

g∑
i=1

Ei, A(β) =
1

g

g∑
i=1

(W i −BTβ)(W i −BTβ)T

Now to obtain the test statistic for assessing the similarity of two gene conditions,
we need to derive the expected information matrix for the estimates β̂. Since β̂ is ML
estimator of β it is asymptotically distributed as multivariate normal distribution and its
variance is equal to Crammer Rao lower bound (Casella and Berger, 2001). Meanwhile,

799



σ̂2, α̂ and ρ̂ have same property as β̂. Moreover, after the complicated derivation, the
expected information matrix for the estimators θ̂ = (β̂, σ̂2, ρ̂, α̂) has the following form,

I(θ) =

(
C 0
0 A

)
where C = g

σ2B
TG−1R−1G−1B and

A =


g(p−1)(1−ρ2)

(1−ρ2)2
− gρ(p−1)

2σ2(1−ρ2)
−gρ tr(Ξ+ΞKp)

4(1−ρ2)

− nρ(p−1)
2σ2(1−ρ2)

gp
2σ4

g
2σ2 tr(Ξ)

−gρ tr(Ξ+ΞKp)
4(1−ρ2)

g
2σ2 tr(Ξ) g tr(ΞΞ+R−1ΞR−1Ξ)

4


Furthermore, from the above expression of information matrix, the ML estimator β̂ is
asymptotically independent of the ML estimators σ̂2, α̂ and ρ̂.

REFERENCES

Bjarnason, J., Southward, C. M. and Surette, M. G. (2003). Genomic profling of iron-responsive genes in
salmonella enterica serovar typhimurium by high-throughput screening of a random promoter library.
Journal of Bacteriology, 185, 4973-4982.

Brown, L. D. and Levine, M. (2007). Variance estimation in nonparametric regression via the difference
sequence method. The Annals of Statistics, 35, 2219-2232.

Cai, T. and Wang, L. (2008). Adaptive variance function estimation in heteroscedastic nonparametric regres-
sion. The Annals of Statistics, 36, 2025-2054.

Casella, G. and Berger, R. L. (2001). Statistical Inference. Duxbury Press, 2nd edition.
Cho, R. J., Campbell, M. J., Winzeler, E. A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T. G.,

Gabrielian, A. E., Landsman, D., Lockhart, D. J. and Davis, R. W. (1998). A genome-wide transcriptional
analysis of the mitotic cell cycle. Molecular cell, 2, 65-73.

Fan, J. and Yao, Q. (1998). Effcient estimation of conditional variance functions in stochastic regression.
Biometrika, 85, 645-660.

Fang, H., Deng, D., Tian, G., Shen, L., Duan, K. and Song, J. (2012). Analysis for temporal gene expressions
under multiple biological conditions. Statistics in Biosciences, 4, 282-299.

Hall, P. and Carroll, R. J. (1989). Variance function estimation in regression: The effect of estimating the mean.
Journal of the Royal Statistical Society. Series B (Methodological), 51, 3-14.

Hong, F. and Li, H. (2006). Functional hierarchical models for identifying genes with different time-course
expression profles. Biometrics, 62, 534-544.

Jouini, W., Le Guennec, D., Moy, C. and Palicot, J. (2011). Log-normal approximation of chi-square distribu-
tions for signal processing. In General Assembly and Scientific Symposium, pages 14. IEEE.

Kotz, S., Balakrishnan, N. and Johnson, N. L. (2004). Continuous Multivariate Distributions, Models and
Applications. John Wiley & Sons.

Mller, H. G. and Stadtmller, U. (1987). Estimation of heteroscedasticity in regression analysis. The Annals of
Statistics, 15, 610-625.

Mller, H. G. and Stadtmller, U. (1993). On variance function estimation with quadratic forms. Journal of
Statistical Planning and Inference, 35, 213-231.

Ruppert, D., Wand, M. P., Holst, U. and HSJER, O. (1997). Local polynomial variance-function estimation.
Technometrics, 39, 262-273.

Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer,V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. and
Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces
cerevisiae by microarray hybridization. Molecular biology of the cell, 9, 3273-3297.

Wang, L., Brown, L. D., Cai, T. and Levine, M. (2008). Effect of mean on variance function estimation in
nonparametric regression. The Annals of Statistics, 36, 646-664.

Yuan, Y. and Kendziorski, C. (2006). Hidden markov models for microarray time course data in multiple
biological conditions. Journal of the American Statistical Association, 101, 1323-1332.

Yuan, M. and Lin, Y. (2007). Model selection and estimation in the gaussian graphical model. Biometrika, 94,
19-35.

Zhu, H., Tang, Y., Ivanciu, L., Centola, M., Lupu, C., Taylor, F. B. and Lupu, F. (2007). Temporal dynamics of
gene expression in the lung in a baboon model of e. coli sepsis. BMC Genomics, 8, p58.

800




