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Abstract

Regression estimates of the Multiple Regression suffer from the exaggeration of the
contribution of the extreme observation(s) as well as the outlier(s). Unlike the traditional
fitting procedure of multiple regression based on the least squares estimates, it uses least
deviation method for minimizing the total sum of errors. It also suggests some new
measures of Coefficient of Determination.

Key Words: Absolute Deviation, Fit by Regression, Intercept, Outlier, Relative
Coefficient of Determination.

1. Introduction

Existing regression including Simple Linear Regression, Multiple Regression, etc use
Least Square Method for estimating regression parameters. Unfortunately, the least square
estimates of regression parameters leave the presence of extreme observations and/or
outliers exaggerated that mislead a researcher or analyst with significant (or insignificant)
value of the parameters with insignificant (or significant) effects. So, one dimensional
distances should be used instead of squared distances for estimating regression parameters.
But, the one-dimensional distances of the data from the fitted regression line makes the
total sum of errors zero which does not help the mathematicians to differentiate with
respect to the parameters to calculate least deviation estimate of regression parameters.
This is due to the fact that sum of positive deviations (positive errors) of the dependent
variable apart from the fitted regression line nullifies the negative deviations (negative
errors). As a result, statisticians used least square deviations not only to make the deviations
apart from the fitted regression line positive but also to make the sum of squares of errors
differentiable with respect to parameters so that a class of normal equations are accessible
that result least square estimates. So, there was no way of using the one-dimensional naive
difference between observed values of the dependent variable and its expected or fitted
values.

Fortunately, one dimensional transformed differences of the aforesaid values might be used
for the sake of having the regression estimates free from exaggeration by the presence
extreme observation and/or outlier(s). For estimating the regression parameters, if we
retransform the normal equations for fitting the regression line, we should get a fitted
regression line along with least deviation regression estimates that overcome the problem
for the presence or extreme as well as outlier(s). Shamsi et al (2017) proposed Least
Deviation Approach for Simple Linear Regression. We have observed that Least Deviation
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Estimators performs better than those by Ordinary Least Square Estimators for simple
linear regression.

Attempt has been made here to find a proper transformation of the one-dimensional
concern difference so that we can smoothly estimate the multiple regression parameters.
Using the proper transformation of the one-dimensional distance from the fitted regression
line we have estimated regression parameters and checked whether the estimators follow
the BLUE properties. The performance and the limiting behavior of the parameters have
also been observed under simulations.
2. Estimation Methods for Multiple Regression Model
Shamsi et al (2016) suggested that for the simple linear regression model
y=pF+ px+ ¢

where the intercept [, and the slope B, are unknown constant known as regression
coefficients and ¢ is a random error component, the Least Deviation Estimators are

,_(0-70)

B = —=
[1-2(7)]
and

Bo= 7 — Bi%.

It was also observed that the relative fit to the error as

Fit y -y
FBR = _ ZWMeAthod vl
Error  Y|Y—YMethod!

is less for Ordinary Least Deviation Method compared to Ordinary Least Square Method
for the above case. That is

Fit _ 2y -y Fit Yy -y
FBROLD — OLD y(iLP Yy > FBROLS — OLS  _ y(iLf y.
Errororp  Xly—Yorpl Errorors  Xly—Yorsl

We want to study the Least Deviation regression estimators and their performance for
multiple regression.

Let the simple linear regression model is

Yy = Bot+ Bix1+ Boxs te (2.1)
where the intercept B, and the slopes $;, S,are unknown constant known as regression
coefficientsand & is a random error component. The errors are assumed to have mean zero

and unknown variance o2. Here the errors are uncorrelated. There is a Normal probability
distribution for y at each possible value for x such that

E(lx) = Bo + B1x1 + B2x;
and
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Vylx) =V(Bo + Pix1 + Boxz + €) = 0%

Although the mean of y is a linear function of x that is the conditional mean of y depends
on all x, but the conditional variance of y does not depend on any x. Responses y are
uncorrelated since the errors € are uncorrelated. Moreover, the independent variables are
mutually independent.

Since the parameters B; are unknown, they should be estimated using sample data. Suppose
that we have ntuples of data, say (y1, %11, %21), V2, X12, X22), -, (U, X115, X25,) Obtained
from a controlled experimental design or from an observational study or from existing
historical records. Least Square method estimates B; so that the sum of squares of
differences between the observations y; and the straight line is minimum. From equation
2.1 we can write

Yi = ‘80 + ﬁlxli + ,Bzle- + €i;i = 1, 2, e, n (22)

Equation 2.1 presents the Population Multiple Regression Model and equation 2.2
expresses the Sample Multiple Regression Model. Now the sum of squares of deviations
from the true line is

S=ZXic1 'Si2 = Yt — Bo — Bixyi — Bax21)?. (2.3)
Now the least square estimates of 8; must satisfy

as

a_ﬂo = =2 Z‘{l:l(yl - BO - ﬂlxli - ﬂzxzi) = 0’ (24)
as
a_ﬂl = =2 Z?:l(yi - :80 - ﬁlxli - ,Bzx2i)x1i =0, (25)
as
38, = =2 Z?:l(}’i — Bo — Bix1; — Baxzi)xy; = 0. 2.6)

After simplification the normal equations are generally found such that

nfo + By Yisq Xq + B Vi1 X2 =211 Vi (2.7)
.éo Yic Xq + Bl Z?=1x12i + 32 Vi1 X1iX2; = Nieq X1V (2.8)
Bo Yisq X + B Vit X2iXq; + B2 Y xs = Yy Xy (2.9)

The solution to the normal equations is

Bo =¥ — Pr¥y — Paxs, (2.10)
5 (Chivixy —nyx,) (B, %2> —n%p?) — (T, YiXei —nyx,) (Rie, X1 %2 —n¥1%z)
B, = - - 2 , (2.11)
(T 1 xf -y ?) (B 23 -2, ) —(XiL, X1%2—nX1 %2)
and
Bz = (Bl Yixai —ny%2)(Bizq 222 11 *) = (Bie Yixsi —nyxs) (T X120 —nE1%;) (2.12)

(S, 2 —n2y2) (S, %3 -5, )~ (S, X1 X, —nT17z)
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— _1an __ 1en _ _ 1en
where y = ;Zi:13’i,x1 = ;21':13511' and x, = ;Ziﬂ X2i

Therefore, B, and f;, B, are the Least Square estimates of the intercept and slopes

respectively. The fitted Simple Linear Regression Model is

9o = Bo+ Brx1 + Prx,.

2.1 Least Deviation Estimates for Multiple Regression

(2.13)

For the aforesaid regression model the sum of absolute deviations from the true line is

Z?:l l&i| = ?:1 lyi = Bo — B1x1i — P2x2il.

Now the least deviation estimates of S8,, f,and S, will satisfy

XL, &l

= 0,
9B
I l&il
L — 0’
0P
AN, el
and == =0
i ] ZJip)
which are equivalent to
O¥i tnleil _
9B
Y, In|g] -
0P ’
AN In|g]
and == L = —o00,
ZJip)
Therefore, Bo =V — 1% — %,
5 — (XN p (L\_p (*
Moreover' ﬂl - (xl) 30 (xl) 32 (xl)

» = En
[5Gl
Again, A%, In|e] — ANty In|yi— Bo= B1X1i= BaXail - _
9B 0B

= - AD-AE

h[n @) @l-f-=ERE)- 7 6)l=e
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. ()-7GH=E)- (P (2.27)

[1-=(5,)]

Therefore, from (2.22) and (2.25) we get the following equations of 3;, 3,such that

ml-aG)-20=6)- BHE)-56l-
Bl El-al-= 1[Gl

After the cross multiplication we get the following equations

Therefore,

3. Properties of the Least Deviation Estimators

Unlike the least square estimates, least deviations estimates may follow other properties,
which might not be BLUE.

Theorem 3.1: If for the multiple linear regression model y; = By + Bix1; + Baxzi +
&, Po and By B, are the unknown the intercept and the slope constants known as
regression coefficients and ¢ is a random error component, and if we have n pairs of data,

say (y1,%11,%21), V2, X12,%22), ooy Vny X100, X27,), then R be the percentage of
observations that explains the extent fit of the model such that

D s NS
0< SN R<1. (3.1)

Here R presents the percentage of observations being explained by the fitted model. The
proof has been shown in Appendix Al.

764



JSM 2017 - Business and Economic Statistics Section

Theorem 3.2: If for the simple linear regression model y; = By + L1x1; + Baxai + &,
Bo and B; are the unknown the intercept and the slope constants known as regression
coefficients and ¢ is a random error component, and if we have n pairs of data, say
1, %11, %21), V2, X12,X22), ooy Yy X100, X27,), Obtained from a controlled experimental
design or from an observational study or from existing historical records, then the
estimators of 8, and 3, will be

= () - GIE) - 7@+ == G -7E)]
s @ -=@E-RE) - G |

,_mE)- QI -y@I+-=EIE) -7 &)
[ _

31:

B =~ —

O£ O RO - @)

such that 3;, B, are the unbiased estimators i.e.

E(ﬁ1) = p1 E(Bz) = fa, (3-2)

Proof: E(f,) =E [[ LA~ SYALS 18

—1(Bo %21 Bo ..., Bo xﬂ):lni n X2
= (B Bt B ek Lo B+ B ) 2 NI B+ B B,

=P (xil) + p1 + B (i_i)

B8 +a ()

Similarly, E [(xl)]: By (xi) + B, (ﬁ—) + B,

Slnce, y""N(BO + ,lel + ﬁzxz, 0-2),

LY _nBo x, o Y __ncBe X1 a*
i N(x1+ﬁl+ﬁ2 )andx2 N(xz+ﬁ1xz+ﬁz,x22

xq xq2
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~ E(B,)=p,. Similarly, E(B,)= Bs.

Therefore, 8, and 3, are unbiased estimators for the Least Deviation Method.

Theorem 3.3: If for the simple linear regression model y; = By + Bix1; + La2x2: + &,
Bo and B; are the unknown the intercept and the slope constants known as regression
coefficients and & is a random error component, and if we have n pairs of data, say
V1, %11, %21), V2, X12, X22), s Vno X100 X21), then the estimator of gand B, will be

ﬁ1=

By ==

1

&

=0 BIE- Ol [ -~ -5C)
== Gll= -6~ BlE)- 6

%) - GIE) 7@+~

1

A -= 6= 6)- (i—i)]

such that the variance of the estimator £, will be
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() 46 :
-a @)= E)- GG

Proof: V(B,) =V {

Now V)] =v (o )=ty (2 22 g g 2n)
' X1 n l=1x1i n2 X11  X12 X1in
1 o (2 o? _o n 1 _o? i
_E(F+E+ +xn2)_nzzl—1x 2" n(xlz)

V)= ()

Similarly, v [(;’—2)] = %z(xizz)

— 1 2[ = ——2

(3.3)
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V@& -0 @]
(1-x @ -=0)-O- OO- @)

4. Real Life example and Simulation

Some real-life example along with data will be cited to explain the credibility of the Least
Deviation Estimates over Least Square Estimates. Multiple simulations will be backed to
simplify and amplify the limiting behaviors of the Least Deviation Estimators and
Estimates.

Example 4.1: Delivery time Data: Two independent variables

A set of 25 paired observations of average number of delivery time, y, and the number of
cases, x4, and the distances, x;, are available in page 74 of the same text. From the scatter
plot we observe that the 3-tupled observations form a 3D form.

Two linear regressions lines having following equations have been fitted according to the
Least Square Method and Least Deviation Method respectively as

Pors = 2.34 — 1.62x; + 0.01x;,
Pop = 3.94 + 1.68x; + 0.01x,.
We also observe the following dispersion measures.
YO ==X —Jors)*+ LGoLs = M*<XY = Jorp)*+ LFoLp — ¥)?
5785 =234 + 5551>280 + 4774
2y =y <XZly = Vorsl+ ZlYors — ¥ < X1y — Yowp |+ XlJorp — ¥

251<57 + 257>58 + 235

Y = Vors)? =234 < X(y — Jorp)?= 280 and Y|y — Jors| = 150 <X|y — Jorp| =
223
2 _X@oLs—¥)?* _ 5551 _ 2 _X@oLp—9)? _ 4774 _
R%o1s= SO3)2 5785 0.96> R4y1p = S5y 5785 0.83

_ ZlYoLs—¥| _ 257 _ _ 2lPoLp—¥| _ 235 _
Rors = Syl 251 1.02> Ryip = Syl 251 0.94

Y e? is less (234<280) for OLS but Y |e| is not much more (150<223) for OLD method.
Moreover, total variation of the unidimensional data (y), being explained by two
dimensional co-efficient of determination, is greater (0.96>0.83) for OLS fit, and also
being explained by one dimensional co-efficient of determination, is also greater
(1.02>0.94) for OLS fit. One dimensional scaled dispersion conducts little bit more error
and commit less good quality of estimation for OLD method compared to OLS method.
So, the Ordinary Least Dispersion Method does not worth better estimation compared to
Ordinary Least Square Method for multiple regression.
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5. Comparison of the Least Deviation Estimates with the Least Square

Estimates
Performances and potentialities will be better for the Least Deviations Estimates compared
to those of Least Square Method due to the reason is that the estimators of the regression
coefficients are maintaining the similar dimension of the true data since they are expressed
in terms of the mathematical operations with unidimensional scaling. Besides, for the
presence of extreme values or outliers, the two-dimensional scaling of the dispersions of
the fitted line from the data are being exaggerated. So, the malicious influences of the
extreme value(s) and/or outlier(s) drastically affects the overall estimation of parameters
in regression based on Least Square Method. On the other hand, the absolute deviations for
the dispersion of the observations apart from fitted regression line in regression estimators
are apathetic to the extreme observation(s) and/or outlier(s) and equi-sensitive to all
observations.

Moreover, error and quality estimation are two complementary factors. If error increases
and quality estimation decreases or vice versa, then it is better to assess the relative
performance like estimation divided by error. If for one-dimensional data, one-dimensional
relative variation due to regression with respect to total error encountered for fitting the
model by one method is greater than that of the other method, then it is better to use the
first method for fitting regression line. Interestingly enough it is observed that the relative
fit to the error as

FBR = Fit _ Y|YMmethoa=J| (5.1)

Error  Y|Y—YMethod!

is less for Ordinary Least Deviation Method compared to Ordinary Least Square Method
for the above case. That is

Fit Y -y Fit Y% -y
FBRy,p = oD _ Z|y(iLP yl > FBR,, s = oLs  _ Zl:V(iLf Y|' (5.2)
Errororp  Xly—Yorpl ErroroLs  Xly—JoLsl

Here, one-dimensional FBR for OLS is greater than one-dimensional FBR for OLD
(4.50>4.04).

The two dimensional co-efficient of determination can be described as below

Fit TPMethoa=)*
FBR = = . .
Error Y =IMethod)? (5 3)

Two-dimensional FBR for OLS is higher than two-dimensional FBR for OLD
(23.74>17.08). In example, two dimensional relative co-efficient of determination for OLS
is greater than that for OLD, because in the current multiple regression there are two
independent variables and the regression model is a plane rather that a line in 3D space.
Here we also observe the following inequalities.

FitoLs Y@PorLs—9)? Fitorp Y@oLp—¥)?
FBRy,s = = FBR, = _ 4
OLS ™ Errorors ~ S(v—Fors)? > OLD ™ Errorgp  S(y=F0Lp)? (5.4)

As aresult, the distance between any point/data and the fitted plane is a perpendicular plane
rather than a perpendicular line.
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Conclusion

The extended version of this paper could be to find the estimators and their properties of
the parameters of the regression model with three and more independent variables as well
as for the generalized multiple regression model and multivariate regression model.
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Appendix A

Al: Proof of Theorem 3.1
n n n n
Di=31= D 10i= N+ =N <D =91+ 19— 71
i=1 i=1 i=1 i=1

_ILyi= 9l X9 -7

L1 < — —
Yy =yl Xkl =yl

L1 LIl BLY o 31
=1 Y lyi-yl T Xyl (3.1)

~0 <R <1
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