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Abstract
Condition-based maintenance is an effective method to reduce unexpected failures as well as the

operations and maintenance costs. This work discusses the condition-based maintenance policy
with optimal inspection points under the gamma degradation process. A random effect parameter is
used to account for population heterogeneities and its distribution is continuously updated at each
inspection epoch. The observed degradation level along with the system age is utilized for making
the optimal maintenance decision, and the structure of the optimal policy is examined along with
the existence of the optimal inspection intervals.
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1. Introduction

In the modern reliability studies, products are outfitted with numerous sensors in order
to capture information on how, when, and under what environmental and operating condi-
tions they are being used. This generates complex field reliability data with the emerging
IoT technology, and feeds System Health Management for developing prognostic infor-
mation systems. As a part of System Health Management, Condition-Based Maintenance
utilizes modern sensor technology for periodic inspections of a system. The maintenance
actions are based on the inspection of working conditions of the system unlike traditional
methods. It has proven effective in reducing unexpected failures with lower operational
costs, and it outperform the traditional age-based and block-based maintenance policies;
see Jardine et al. (2006) and Wang (2002). In this work, we develop an optimal condition-
based maintenance/replacement policy under the gamma degradation process with random
effects to account for population heterogeneities. The problem is formulated using the
Markov Decision Process where the replacement decision is based on the observed degra-
dation level and the age of a unit. Aiming to minimize the total discounted operational
costs, we investigate the structural properties of the optimal policy and determine the opti-
mal inspection interval.

The rest of the paper is organized as follows. Section 2 describes the gamma degra-
dation process with random effects to model population heterogeneities. The properties of
the stochastic model considered in this work are laid out in Section 3. Then, the procedure
of condition-based maintenance is explained in Section 4, and the optimization problem is
formulated using the Markov Decision Process. The structure of the optimal maintenance
policy is investigated in Section 5 along with the existence of the optimal inspection inter-
val. Section 6 presents the results of a numerical study to understand the behavior of the
optimal maintenance policy and the optimal inspection interval in relation to other model
parameters. Finally, Section 7 draws a brief conclusion.

2. Gamma Process with Random Effects

Statistical degradation processes have been studied and used to construct prognostic
models in characterizing the physical deterioration of a component and/or a system. The
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choice of a stochastic model affects the prediction of the Remaining Useful Life as well as
influences the maintenance strategy and economic performance. Such stochastic processes
include Markov chain models based on discrete degradation states (Block-Mercier (2002)
and Chen et al. (2003)), continuous degradation state models with independent degradation
increments – Wiener process (Elwany et al. (2011) and Guo et al. (2013)), inverse Gaussian
process (Wang (2010) and Chen et al. (2015)), and gamma process (Lawless and Crowder
(2004)). In particular, the gamma process is characterized by a monotonic degradation
evolution {Yt, t ≥ 0}, which is appropriate for modeling crack growth and wears. In the
gamma process, the increments 〈Yt2 − Yt1〉 and 〈Ys2 − Ys1〉 are independent for 0 ≤ s1 <
s2 ≤ t1 < t2, and they are gamma distributed. That is, 〈Yt − Ys〉 ∼ Gamma(α[Λ(t) −
Λ(s)], β), where Λ(t) is a monotonically increasing time transformation function with
Λ(0) = 0.

Moreover, due to variations in raw materials, diverse usage, field conditions, environ-
mental differences, etc., the degradation characteristics can differ among units of the same
population; see Hong (2013). Hence, different units often exhibit different degradation pat-
terns. It is then necessary to account for commonly observed unit-specific heterogeneities,
and it can be achieved by introducing random effects or prior distributions for parameters.
This distribution is then updated when more degradation observations become available.
For the gamma degradation process considered here, different units can have different re-
alizations of β and this random effect can be modeled by an inverse gamma distribution.
That is, β ∼ Inverse Gamma(γ, λ) with the probability density function given by

f(β; γ, λ) =
λγ

Γ(γ)
β−γ−1e−λ/β, β > 0.

In this work, the effect of random β on maintenance planning is also investigated.

3. Stochastic Model Properties

Under the model setup in Section 2, let Yj = Ytj be degradation levels observed at
times tj , j = 1, 2, . . . , n, and let Yn = (Y1, Y2, . . . , Yn) with Λj = Λ(tj). Then, it can be
shown that 〈β|Yn〉 ∼ Inverse Gamma(αΛn+γ, Yn+λ). That is, the updated posterior
distribution of β depends only on the most recent degradation measure Yn and Λn. Further,

it can be shown that
〈
Yn+1 − Yn
Yn+1 + λ

∣∣∣∣Yn

〉
∼ Beta(α[Λn+1 −Λn], αΛn + γ) by computing

f(yn+1|yn) =

∫ ∞
0

f(yn+1 − yn|β) f(β|yn) dβ. Hence, 〈Yn+1|Yn〉 attains the Markov

property since its distribution depends only on Yn.
Before we formulate and understand the structure of the optimal maintenance policy,

we first need to study the age-dependent degradation behaviors with heterogeneity, using
the properties of stochastic orders and likelihood ratio orders; see Shaked and Shanthikumar
(2007). Following are the essential lemmas to understand the structural properties of the
optimal maintenance/replacement policy.

Lemma 1. 〈Yt+∆|Yt〉 is stochastically non-decreasing in Yt. That is, 〈Yt+∆|Yt = y1〉 ≺
〈Yt+∆|Yt = y2〉 given y1 < y2.

Lemma 2. 〈Yt+∆|Yt〉 is stochastically non-increasing in t. That is, 〈Yt1+∆1 |Yt1 = y〉 ≺
〈Yt2+∆2 |Yt2 = y〉 given t1 > t2 and Λ(t1 + ∆1)− Λ(t1) ≤ Λ(t2 + ∆2)− Λ(t2).
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4. Procedure of Condition-Based Maintenance

Here we illustrate the procedure of condition-based maintenance with Λ(t) = t. A
system is inspected periodically with δ denoting an inspection interval. It is assumed that
failure of the system is not self-announcing and only revealed through inspections. Also,
any maintenance action is assumed instantaneous. Let ci be the cost of inspection, cf the
cost of corrective replacement, cp the cost of preventive maintenance (cp < cf ), and cd the
downtime cost per unit time while exp(−rt) denotes the conventional discounting factor
for the purpose of calculating the present values. First, a system is initialized with the
state of t = 0 and Y (t) = 0. Then, at each inspection point, the system is inspected
at cost ci and Y (t) is observed. With the degradation threshold D, if Y (t) > D, it is
considered that (soft) failure of the system has occurred. Then, the Corrective Maintenance
(CM) action is performed at cost cf in order to restore the state to the as-good-as-new
state. That is, the system is restored to the initial state. On the other hand, if Y (t) ≤ D,
failure has not occurred yet. Then, there are two options. Either we perform the Preventive
Maintenance (PM) action at cost cp in order to restore the state to the as-good-as-new state,
or the maintenance decision is deferred to the next inspection epoch by setting t = t + δ.
In the latter case, failure may occur at unknown failure time Tk ∈ (t, t + δ). If so, the
downtime cost incurs due to loss of efficiency or quality by operating in the failure state.
The question is “How do we decide between these two options?” This question can be
answered by formulating the problem using the Markov Decision Process.

Here, (τk, Yτk) forms a discrete-time continuous-state Markov chain with age-dependent
transition probability. At each state, one action is taken from CM, PM, or NULL (decision
deferment). Under this framework, the cost of maintenance is captured by the Value func-
tion defined by

Vδ(u, v) =

{
min

{
e−rδUδ(u, v) +Wδ(u, v), cp + Vδ(0, 0)

}
, v ≤ D;

cf + Vδ(0, 0), v > D
(1)

for equi-spaced inspection time u = 0, δ, 2δ, . . . and degradation level v > 0. Eq.(1) is
the minimum total discounted cost, starting from the state (u, v) on the infinite horizon.
It satisfies the Bellman equation; see Puterman (2009). In eq.(1), Uδ(u, v) = E

[
Vδ(u +

δ, Yu+δ) | τk = u, Yτk = v
]

is the expected value with one period transition from the current
state (u, v) while Wδ(u, v) = E

[
ρ(Tk) | τk = u, Yτk = v

]
is the expected downtime cost

based on the current state (u, v). The discounted downtime cost is given by

ρ(Tk) =


∫ τk+δ

Tk

cde
−r(t−τk)dt =

cd
r

(
e−r(Tk−τk) − e−rδ

)
, τk < Tk < τk + δ;

0, otherwise

Then, the expected total maintenance cost is represented by Vδ(0, 0). On the other hand,
the total discounted inspection cost is expressed by

S(δ) =

∞∑
k=0

cie
−rkδ = ci

(
1− e−rδ

)−1
(2)

The aim of the optimization is then to find the optimal inspection interval δ∗ and to find
the corresponding maintenance policy for minimizing the total operational costs Vδ(0, 0)+
S(δ).

5. Structure of the Optimal Maintenance Policy

The following lemmas are critical to understand the behavior of the Value function
Vδ(u, v).
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Figure 1: Schematic illustration of the optimal maintenance policy that minimizes the total
operational costs, which is a monotone control limit policy

Lemma 3. Uδ(u, v) is non-decreasing in v and non-increasing in u.

Lemma 4. Wδ(u, v) is non-decreasing in v and non-increasing in u.

Then, by induction using Lemmas 3 and 4, it can be shown that Vδ(u, v) also has the
monotone property; Puterman (2009). This monotonicity substantially reduces the compu-
tational burden of finding the optimal maintenance policy.

Lemma 5. The optimal value function Vδ(u, v) is non-decreasing in v and non-increasing
in u.

Theorem 1. Given δ, the optimal maintenance policy that minimizes V (0, 0) is a monotone
control limit policy. That is, there is a non-decreasing sequence {ξk} such that the optimal
action at state (kδ, y) is PM if y > ξk, and NULL otherwise.

Without heterogeneity, the optimal maintenance policy is still a monotone control limit
policy with respect to β. With larger β, the optimal maintenance policy has a lower (con-
stant) control limit in order to balance the costs, and the corresponding optimal inspection
interval becomes smaller (i.e., more conservative).

Corollary 1. With no heterogeneity in the population, all units share the same degradation
rate and the optimal maintenance policy is a constant control limit policy ξk = ξ0, ∀k.

The result of Theorem 1 can be extended to an arbitrary monotone increasing concave
function Λ(t).

Theorem 2. If Λ(t) is a concave shaped function, then the optimal maintenance policy that
minimizes V (0, 0) is still a monotone control limit policy.

It can be shown that as the inspection interval δ increases, the expected total mainte-
nance cost Vδ(0, 0) increases monotonically to a constant as the downtime cost dominates.
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On the other hand, as δ increases, the total discounted inspection cost S(δ) decreases mono-
tonically to 0. Hence, the total operational costs Vδ(0, 0) + S(δ) is convex with respect to
δ with lim

δ→∞
Vδ(0, 0) + S(δ) = E

[
cde
−rT /r

∣∣ Y0 = 0
]
, and the existence of the opti-

mal inspection interval δ∗, which minimizes the total costs Vδ(0, 0) + S(δ), is guaranteed.
From the numerical study, δ∗ was found to be quite robust as the total operational costs
Vδ(0, 0) + S(δ) is pretty flat near the optimal inspection point δ∗.

6. Numerical Results

An extensive numerical study was conducted to examine the structure of the optimal
maintenance policy and the optimal inspection interval in relation to other model parame-
ters. For an illustration, we let α = 1.3, γ = 23.5, λ = 19.0 with D = 10, r = 0.01, and
Λ(t) = t. The cost parameters were chosen to be ci = 0.05, cf = 10, cp = 3, and cd = 1.0.
The numerical study verified that the optimal maintenance policy is the monotone control
limit policy in age of a unit. It was also observed that as the inspection interval δ de-
creases, the optimal maintenance policy has higher control limits (i.e., less conservative).
As the inspection interval δ increases, the optimal maintenance policy has lower control
limits (i.e., more conservative). The optimal policy was also found to have varying degrees
of sensitivity to the cost parameters. As cf increases, the optimal inspection interval δ∗

becomes shorter and the optimal maintenance policy has lower control limits (i.e., more
conservative). As cp increases, δ∗ becomes shorter as well but the optimal maintenance
policy has higher control limits. As cd increases, δ∗ becomes shorter but the impact on the
control limits was minimal due to relatively high D. On the other hand, as ci increases, δ∗

becomes longer and the optimal maintenance policy has lower control limits.

7. Conclusion

In this work, the optimal condition-based maintenance/replacement policy was studied
under the gamma degradation process with random effects to accommodate population
heterogeneities. Using the Markov Decision Process, the maintenance decision at each
inspection point is based on the observed degradation level and the age of a unit. It was
found that the optimal maintenance policy that minimizes the total discounted operational
costs is a monotone control limit policy. Since the total operational cost forms a convex
function of the inspection interval, the optimal inspection interval to minimize the total
costs can be determined numerically as well.
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