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Abstract 
Agresti-Coull (1998) developed an improvement over the classical central limit theorem 
based confidence interval for a single binomial proportion; however, it is based on the 
assumption of an infinite population. The 2nd edition (2013) of API 1163 used in the 
oil/gas industry to compare in-line inspection tools to excavated corrosion anomalies 
introduced the Agresti-Coull approach to the pipeline industry. While the exact Clopper-
Pearson (1934) binomial confidence interval approach avoids many of the issues of 
central limit theorem approximations (including Agresti-Coull) its coverage sometimes 
exceeds the stated confidence level. For example 95% confidence intervals may average 
greater than 95% coverage while the Agresti-Coull intervals more closely track to the 
desired coverage level. In the oil/gas industry small sample sizes are not uncommon and 
the calling population is often finite. This paper expands the Agresti-Coull method to 
accommodate finite populations. In addition an Excel VBA function has been developed 
that creates Agresti-Coull single population binomial confidence intervals as well as 
expansions beyond the one-tailed upper bound used in API 1163. 
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1. Introduction 

This paper discusses the following topics (not in this order) related to the one sample 
binomial proportion: 

 Classical normal approximation confidence intervals 
 Exact Clopper-Pearson confidence intervals 
 Agresti-Coull normal approximation confidence intervals 
 Agresti-Coull extension for finite populations 
 American Petroleum Institute API 1163 use of Agresti-Coull 
 Pipeline and Hazardous Materials Safety Administration notice of proposed 

rulemaking 
 Excel VBA software for Clopper-Pearson and finite-population Agresti-Coull 

 
2. Clopper-Pearson Binomial Confidence Intervals 

Most introductory statistical texts cover a standard normal approximation to the one 
sample binomial proportion including the development of confidence intervals for the 
true unknown population proportion. With sufficient sample size and proportions not too 
close to 0 or 1, this central limit based approximation may be fairly accurate. More 
advanced text books (e.g., Hollander and Wolfe, 1999) cover exact binomial confidence 
intervals originally published by Clopper and Pearson (1934) as shown in Equation Set 1 
below. 
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𝑝𝑈
𝛼/2(𝑛, 𝑥) = 1 − 𝑝𝐿

𝛼/2(𝑛, 𝑛 − 𝑥) 

Equation Set 1. Exact binomial confidence intervals (Clopper and Pearson, 1934) 

In Equation Set 1 x is the number of successes in the n Bernoulli trials and 𝑓𝛾,𝑛1,𝑛2
 is the 

upper 𝛾𝑡ℎ percentile of the F distribution with n1 and n2 degrees of freedom. The top 
equation is the lower bound and the second equation is the upper bound if developing a 
two-tailed confidence interval. This approach results in coverage of at least 100*(1-α)% 
and can be overly conservative. One-tailed confidence intervals put the full α into one of 
the appropriate tails. 

3. Agresti-Coull Normal Approximation Binomial Confidence Intervals 

and Finite-Population Extension 

For years I used only Clopper-Pearson exact binomial confidence intervals from Minitab 
or using Excel VBA functions (Harper, 2005) when developing confidence intervals for a 
single binomial proportion. In 2013, the American Petroleum Institute in the second 
edition of API 1163 introduced the Agresti-Coull normal approximation. From an API 
web page http://www.api.org/about, “The American Petroleum Institute (API) is the only 
national trade association that represents all aspects of America’s oil and natural gas 
industry.” API develops and maintains approximately 700 standards and recommended 
practices. API 1163 titled “In-line Inspection Systems Qualification” addresses how well 
an in-line inspection tool has performed. API 1163 has guidelines about qualifying 
processes based on in-line inspection. Appendix C of the second edition of API 1163 
(2013) helps assess how well the in-line inspection depth measurements match 
corresponding field excavation depths.  The first edition of API 1163 (2005) appendix 
provided similar information; however, it was based on the usual normal approximation 
to the binomial addressed in the next paragraph. 

Equation Set 2 has the classical central limit theorem based one-sample two-tailed 
binomial normal approximation confidence intervals found in standard texts where x is 
the number of “successes”, n is the sample size, �̂� = x/n is the sample proportion of 
“successes”, and z(α/2) is the (100 - α/2) percentile of a standard normal z. 

�̂� ± 𝑧(𝛼 2⁄ )
√�̂�(1 − �̂�)

𝑛⁄   

Equation Set 2. Classical normal approximation of the two-tailed confidence interval for 
the binomial population proportion p. 

Agresti and Coull (1998) discuss the history of various approaches to better normal 
approximations for the one-sample proportion case. For this particular article we will 
focus on just the one-tailed upper bound that is used in API 1163 though the Excel VBA 
macro permits lower, upper, or two-tailed intervals using the Agresti-Coull method. At 
first glance the upper bound confidence value shown below appears the same as the 
standard normal approximation. However in place of the typical �̂� and n are �̃� and �̃� 
defined below. In Equation Set 3, n is the sample size, x = number of successes, and z(α) 
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is the (100 - α)th percentile of a standard normal z along with the other variables defined 
in Equation Set 3. This results in the Agresti-Coull upper confidence bound �̂�𝑢𝑝𝑝𝑒𝑟. 

�̂�𝑢𝑝𝑝𝑒𝑟 = �̃� + 𝑧𝛼√
�̃�(1−�̃�)

�̃�
  where 

�̃� = 𝑛 + 𝑧𝛼
2, �̃� =

𝑥+
𝑧𝛼

2

2

�̃�
 

Equation Set 3. Agresti-Coull upper one-tailed confidence interval in 2nd edition of API 
1163 

The Agresti-Coull method is a normal approximation and thus requires a reasonable 
sample size among other limitations. The Agresti-Coull approach provides confidence 
intervals that are often closer to the intended coverage levels than the exact Clopper-
Pearson which can be conservative as mentioned earlier. Equation Set 4 below provides 
the finite population correction factor to the standard error in the Agresti-Coull infinite 
population normal approximation. Capital N is the population size.  This replaces 

√
�̃�(1−�̃�)

�̃�
 shown in Equation Set 3. This finite population adjustment can be important to 

the pipeline industry. Setting the population size to a large number results in the infinite 
population Agresti-Coull confidence intervals for all practical purposes 

√
�̃�(1 − �̃�) ∗ (𝑁 − 𝑛)/𝑁

�̃�
 

Equation Set 4. Agresti-Coull standard error adaptation for finite populations 

4. API 1163 Application of Agresti-Coull Normal Approximation 

An Excel VBA function for the Agresti-Coull infinite population as used in appendix C 
of the 2nd edition of API 1163 was developed several years ago and has been used to 
compare in-line inspection (ILI) called depths to field excavation depths. The focus in 
API 1163 is on assessing if there is sufficient reason to declare at the 95% confidence 
level that the in-line inspection is not performing adequately in terms of anomaly depth. 
There are multiple issues such as it is common to ignore uncertainty in the field measured 
depths, but that is beyond the focus of this paper. In essence for each matched pair of ILI 
and excavation values, the in-line inspection is found to be within vendor specification 
(success) or not within specification (failure). Then x is the number of “successes” within 
specification of the n matched pairs. 

Driven by the 2016 Pipeline and Hazardous Materials Safety Administration (PHMSA) 
notice of proposed rulemaking (NPRM) the mathematical formulation converting the 
infinite population case to accommodate finite populations was completed and a revised 
Agresti-Coull finite population Excel VBA function was created. In addition the Agresti-
Coull VBA function has been expanded from just the API 1163 illustrated one-tailed 
upper confidence bound to include a one-tailed lower confidence bound as well as a two-
sided (two-tailed) confidence interval lower and upper bounds.  One focus of PHMSA’s 
2016 NPRM was a concern whether or not sufficient pipeline samples have been 
collected. 
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Before illustrating a potential application related to assessing the NPRM issue “have we 
sampled enough?” using both the exact Clopper-Pearson method and the new finite-
population Agresti-Coull method, a brief illustration of the initial VBA function is 
provided in Table 1 using two examples in appendix C of the 2nd edition of API 1163 
(2013). In-line inspection companies (sometimes called pigging vendors as the ILI tool is 
commonly called a pig) set specifications for how well a particular ILI should perform. 
There are many aspects to this and brand new technologies may have wider initial 
specifications than more established technology. All such successful matches may be 
thought of as a 1 from a binomial distribution perspective while those that do not meet 
the vendor specification are failures or a 0 for the binomial distribution. 

A complete ILI to excavation comparison entails more than a mere binomial 0-1 analysis 
solely on depth; however, the binomial assessment is an important one as it is clearly 
delineated in API 1163. That does not mean all companies perform such an analysis; 
however, it is good practice. There are multiple concerns about such comparisons and 
one that is often overlooked is the quality of the field excavations that are treated as 
somewhat of a gold standard. In reality there is variability in any measurement and in 
field measurements this is definitely the case. More can be said about this though it is out 
of the scope of this paper. API 1163 does allow the incorporation of an estimate of field 
measurement error prior to assessment of the matched ILI and field measurements though 
to the best of my knowledge most pipeline companies do not quantify field measurement 
error nor do they fold such into their API 1163 based analysis. 

In the first example the vendor specification is that 80% of the ILI depth calls will be 
within +/- 10% of the field measured depth. This 80% is seen in the penultimate column 
of Table 1 titled “Vendor target for proportion in spec”. The +/- 10% is not shown in this 
table but must be used to determine if a given ILI tool call successfully matched the field 
measurement. For an ILI call of 20% depth, it is considered a success if the excavation 
depth is included in the interval [10%, 30%]. The “tolerance” of +/- 10% is common but 
may vary from one tool type to another. Additionally the 80% within the tolerance is 
vendor specific. For typical pipeline corrosion analysis +/- 10% for 80% of the calls is the 
current most common combination. 

In Table 1 the “Ex 1 API 1163” has x = 5 of the n = 10 matched pairs within +/- 10% 
between the ILI called and field measured depth or a sample proportion of 5/10 = 0.500 
as seen in the p-hat column. The Agresti-Coull binomial assessment in API 1163 is set at 
a 95% confidence level to develop a one-sided upper confidence value for the true 
unknown population proportion. Hence the “Conf level” column is set to 0.95 and the 
Option is set to UpperFullAlpha putting the entire α level of 0.05 in the upper tail. 
Following the earlier Equation set 3 formulas this results in the “API 1163 Upper Bound 
1-tailed” result of 0.731 that is below the vendor specification of 0.80 and thus fails the 
API 1163 assessment. In the second example using the same vendor specifications and 
confidence level the 18 of 25 within specification ILI calls results in a sample proportion 
of 0.72. This results in a corresponding 95% upper confidence bound of 0.842 that 
exceeds the vendor specification of 0.80 and thus does not fail this API 1163 test.   

Li et al (2017) suggest (without any statistical justification in their paper) that a sample 
size of n ≥ 20 be required before declaring the API 1163 criteria to be passed.  Enbridge, 
the company all the authors of Li et al (2017) work for has an aggressive excavation 
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program.  On some pipelines run by other companies the sample size is often less than 20 
as pipelines tend to dig (excavate) only the portions of a given line that appears to have 
issues as excavations are expensive. 

 

Table 1. API 1163 Agresti-Coull examples comparing ILI to field excavations 

The initial Excel VBA code associated with this comparison (UpperFullAlpha is the one 
for API 1163 as seen in Table 1) has been used for about 2-3 years. More recently 
additional alternatives (LowerAlpha/2, UpperAlpha/2, LowerFullAlpha) have been added 
to provide two-tailed confidence intervals as well as lower bound confidence intervals. 
Initially all four options were based on the calling population being infinite.  

The Pipeline and Hazardous Materials Safety Administration (PHMSA) notice of 
proposed rulemaking (NPRM) in 2016 requires sample sizes of 150 – 350 for which no 
statistical rationale was provided. These samples sizes are based on the number of 
inconsistencies found in pipeline data. Each observation is binary, i.e., each new data 
value is either consistent or inconsistent with already collected data for a given pipeline 
segment. Not addressed but important is how consistency or inconsistency is assessed.  

5. Pipeline and Hazardous Materials Safety Administration notice of 

proposed rulemaking 

Uses of the Excel VBA software addressing the NPRM sample size concerns provides an 
upper consistency bound based on binomial confidence intervals. One worksheet uses the 
exact Clopper-Pearson methodology that is based on an infinite calling population and 
cannot be easily changed to address a finite population. A second Excel worksheet uses a 
finite population Agresti-Coull approach developed in this paper. Accounting for a finite 
population may reduce the number of needed samples and save pipeline operators time 
and expense. Care is needed when using the Agresti-Coull approach as it is still a central 
limit theorem based normal approximation to the binomial and thus will not be applicable 
for small sample sizes.  Related to this to some extent is the Li et al (2017) recommended 
that the sample size be a minimum of 20.  At this point in time, the Agresti-Coull 
worksheet starts with a sample size of ten. 

The binomial work in this paper is one approach to calculate the number of 
measurements needed to verify that a material property such as pipe grade, or wall 
thickness, is consistent with existing measurements to a given statistical confidencel level 
on a given pipeline. Such a framework provides a basis to assess needed sample size as 
opposed to the NPRM sample sizes of at least 150 measurements. For the NPRM a lower 
bound confidence interval can be used as a reliability metric when comparing verifiability 
for prioritization between different pipe populations.   

Table 2 summarizes the number of measurements needed to achieve a given confidence 
level and lower bound consistency for an infinite population using the exact Clopper-
Pearson solution, assuming no inconsistencies (n - x = 0 inconsistencies or failures; thus 

Segment X, # in 
spec

n, # 
matched 

pairs

p-hat 
(proportion 

in spec)

Conf 
level

Option (using API 
1163 choice)

API 1163 
Upper Bound 

1-tailed

Vendor target 
for 

proportion in 
spec

Passes API 
1163?

Ex 1 API 1163 5 10 0.500 0.95 UpperFullAlpha 0.731 0.80 No

Ex 2 API 1163 18 25 0.720 0.95 UpperFullAlpha 0.842 0.80 Yes
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x = n successes) have been found. If an operator wants to have 95% confidence that 95% 
of the pipe joints on a pipeline are the same grade, he must perform 59 digs, all of which 
must be consistent with the target grade. If sufficient data is available, the finite 
population approach covered later may require fewer samples. 

Table 2. Required Number of Measurements as a Function of Confidence Level and 
Lower Bound Consistency with the Exact Clopper-Pearson Solution when the Sample 

has no inconsistencies (x = n, i.e., all successes) 

 Consistency 

80% 90% 95% 99% 

C
o

n
fi

d
en

ce
 

L
ev

el
 

80% 8 16 32 160 

90% 11 22 45 228 

95% 14 29 59 297 

99% 21 44 90 456 
 

6. Application of Excel VBA software for Clopper-Pearson and Finite 

Population Agresti-Coull 

6.1 Clopper-Pearson Application 

Table 3 based on a 95% confidence level provides an example to aid in the interpretation 
of lower confidence bounds for the binomial proportion using the Clopper-Pearson 
approach. There are numerous applications for such binomial confidence intervals though 
the wording that follows focused on PHMSA’s NPRM concern with consistency of 
pipeline material property assessments.  Consistency may be viewed as either a 
proportion in the range [0, 1] or a percentage in the range [0%, 100%]. The computed 
consistency is a function of:  

 Desired confidence level (80%, 90% or 95% are suggested) 
 # observations (labeled “# joints inspected”): row labels in the first column 
 # inconsistencies: 0 – 9 shown here 
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Table 3. Lower-Bound Clopper-Pearson Consistency (95% Confidence)  

  

As seen in Table 3, a lower bound consistency of 0.807 (80.7%) is obtained at the 95% 
confidence level when zero inconsistencies are found in 14 observations. Of course, for 
this example consistency could be as high as 100% since no inconsistencies have been 
found. If the operator wants a higher statistical consistency, more samples are required. 
For example, if the operator wants 90% of the population to be the same grade, 29 
consistent samples are needed. What happens if the operator finds an inconsistent 
measurement? The number of required digs to achieve the same statistical consistency 
increases. If there is one inconsistency, Table  shows that 22 samples are needed to 
conclude that 80% of the population is the same grade. As the number of inconsistencies 
increases, the lower confidence bound for consistency drops for a given number of 
samples.  
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Table 4 has similar lower-bound consistency values at the 99% confidence levels. Instead 
of 14 samples with no inconsistencies for an 80% lower bound as the 95% confidence 
level in Table 3, it now requires 21 samples to obtain the 80% lower bound with 99% 
confidence seen in Table 4. 

Table 4. Lower-Bound Clopper-Pearson Consistency (99% Confidence) 

 

6.2 Finite Population Agresti-Coull Application 

Samples sizes of at least 10 are shown in Table 5 for the finite-population N = 50 
Agresti-Coull normal approximation to the binomial.  While not specifically tied directly 
to this issue, keep in mind for pipeline applications that Li et al (2017) suggest the sample 
size be at least 20. The three circled results in Table 5 can be compared to the Clopper-
Pearson infinite population 95% confidence level results in Table 2. Doing so it is seen 
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that less samples are needed to obtain the same lower bounds using the Agresti-Coull 
finite population methodology than the Clopper-Pearson exact solution; however, a finite 
population size of N = 50 is small.  As the finite population N is increased in size the two 
results will become closer. 

Table 5. Lower-Bound Agresti-Coull Consistency (95% Confidence) for a Finite 
Population of 50 

 

 

7. Summary 

This paper examines one-sample binomial confidence intervals including the standard 
textbook normal approximation, the exact Clopper-Pearson, and the Agresti-Coull normal 
approximation.  An extension of the Agresti-Could normal approximation to finite 
populations is made.  Discussion involving the API 1163 use of the infinite population 
Agresti-Coull is providing showing how it is used as part of an evaluation of in-line 
inspection tools to actual field excavations for oil and gas pipelines.  Finally Excel VBA 
software to implement exact Clopper-Pearson and finite population Agresti-Coull normal 
approximations to binomial confidence intervals is shown along with some discussion of 
PHMSA’s recent NPRM. 
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