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Abstract
Agresti-Coull (1998) developed an improvement over the classical central limit theorem
based confidence interval for a single binomial proportion; however, it is based on the
assumption of an infinite population. The 2™ edition (2013) of API 1163 used in the
oil/gas industry to compare in-line inspection tools to excavated corrosion anomalies
introduced the Agresti-Coull approach to the pipeline industry. While the exact Clopper-
Pearson (1934) binomial confidence interval approach avoids many of the issues of
central limit theorem approximations (including Agresti-Coull) its coverage sometimes
exceeds the stated confidence level. For example 95% confidence intervals may average
greater than 95% coverage while the Agresti-Coull intervals more closely track to the
desired coverage level. In the oil/gas industry small sample sizes are not uncommon and
the calling population is often finite. This paper expands the Agresti-Coull method to
accommodate finite populations. In addition an Excel VBA function has been developed
that creates Agresti-Coull single population binomial confidence intervals as well as
expansions beyond the one-tailed upper bound used in API 1163.
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1. Introduction

This paper discusses the following topics (not in this order) related to the one sample
binomial proportion:

e C(lassical normal approximation confidence intervals

e Exact Clopper-Pearson confidence intervals

o  Agresti-Coull normal approximation confidence intervals

o Agresti-Coull extension for finite populations

e American Petroleum Institute API 1163 use of Agresti-Coull

e Pipeline and Hazardous Materials Safety Administration notice of proposed
rulemaking

e Excel VBA software for Clopper-Pearson and finite-population Agresti-Coull

2. Clopper-Pearson Binomial Confidence Intervals

Most introductory statistical texts cover a standard normal approximation to the one
sample binomial proportion including the development of confidence intervals for the
true unknown population proportion. With sufficient sample size and proportions not too
close to 0 or 1, this central limit based approximation may be fairly accurate. More
advanced text books (e.g., Hollander and Wolfe, 1999) cover exact binomial confidence
intervals originally published by Clopper and Pearson (1934) as shown in Equation Set 1
below.
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P2 (n,x) = 4
L x+n—x+ 1)fa/2,2(n—x+1),2x

pi(n,x) =1 - p*(n,n — x)

Equation Set 1. Exact binomial confidence intervals (Clopper and Pearson, 1934)

In Equation Set 1 x is the number of successes in the n Bernoulli trials and f,,, », is the

upper y‘" percentile of the F distribution with n; and n, degrees of freedom. The top
equation is the lower bound and the second equation is the upper bound if developing a
two-tailed confidence interval. This approach results in coverage of at least 100*(1-a)%
and can be overly conservative. One-tailed confidence intervals put the full a into one of
the appropriate tails.

3. Agresti-Coull Normal Approximation Binomial Confidence Intervals
and Finite-Population Extension

For years I used only Clopper-Pearson exact binomial confidence intervals from Minitab
or using Excel VBA functions (Harper, 2005) when developing confidence intervals for a
single binomial proportion. In 2013, the American Petroleum Institute in the second
edition of API 1163 introduced the Agresti-Coull normal approximation. From an API
web page http://www.api.org/about, “The American Petroleum Institute (API) is the only
national trade association that represents all aspects of America’s oil and natural gas
industry.” API develops and maintains approximately 700 standards and recommended
practices. API 1163 titled “In-line Inspection Systems Qualification” addresses how well
an in-line inspection tool has performed. API 1163 has guidelines about qualifying
processes based on in-line inspection. Appendix C of the second edition of API 1163
(2013) helps assess how well the in-line inspection depth measurements match
corresponding field excavation depths. The first edition of API 1163 (2005) appendix
provided similar information; however, it was based on the usual normal approximation
to the binomial addressed in the next paragraph.

Equation Set 2 has the classical central limit theorem based one-sample two-tailed
binomial normal approximation confidence intervals found in standard texts where x is
the number of “successes”, n is the sample size, p = x/n is the sample proportion of
“successes”, and z») is the (100 - 0/2) percentile of a standard normal z.

1—p)/

Pt Z(a/2) n

Equation Set 2. Classical normal approximation of the two-tailed confidence interval for
the binomial population proportion p.

Agresti and Coull (1998) discuss the history of various approaches to better normal
approximations for the one-sample proportion case. For this particular article we will
focus on just the one-tailed upper bound that is used in API 1163 though the Excel VBA
macro permits lower, upper, or two-tailed intervals using the Agresti-Coull method. At
first glance the upper bound confidence value shown below appears the same as the
standard normal approximation. However in place of the typical p and n are p and 71
defined below. In Equation Set 3, n is the sample size, x = number of successes, and z)
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is the (100 - a))™ percentile of a standard normal z along with the other variables defined
in Equation Set 3. This results in the Agresti-Coull upper confidence bound pypper-

p(1-p)

ﬁupper =P+ 2z, where
ZZ
fi=n+z2 5= 2
- a P = 7
Equation Set 3. Agresti-Coull upper one-tailed confidence interval in 2™ edition of API
1163

The Agresti-Coull method is a normal approximation and thus requires a reasonable
sample size among other limitations. The Agresti-Coull approach provides confidence
intervals that are often closer to the intended coverage levels than the exact Clopper-
Pearson which can be conservative as mentioned earlier. Equation Set 4 below provides
the finite population correction factor to the standard error in the Agresti-Coull infinite
population normal approximation. Capital N is the population size. This replaces

’@ shown in Equation Set 3. This finite population adjustment can be important to

the pipeline industry. Setting the population size to a large number results in the infinite
population Agresti-Coull confidence intervals for all practical purposes

n

jﬁ(l — )« (N —n)/N

Equation Set 4. Agresti-Coull standard error adaptation for finite populations
4. API 1163 Application of Agresti-Coull Normal Approximation

An Excel VBA function for the Agresti-Coull infinite population as used in appendix C
of the 2™ edition of API 1163 was developed several years ago and has been used to
compare in-line inspection (ILI) called depths to field excavation depths. The focus in
API 1163 is on assessing if there is sufficient reason to declare at the 95% confidence
level that the in-line inspection is not performing adequately in terms of anomaly depth.
There are multiple issues such as it is common to ignore uncertainty in the field measured
depths, but that is beyond the focus of this paper. In essence for each matched pair of ILI
and excavation values, the in-line inspection is found to be within vendor specification
(success) or not within specification (failure). Then x is the number of “successes” within
specification of the n matched pairs.

Driven by the 2016 Pipeline and Hazardous Materials Safety Administration (PHMSA)
notice of proposed rulemaking (NPRM) the mathematical formulation converting the
infinite population case to accommodate finite populations was completed and a revised
Agresti-Coull finite population Excel VBA function was created. In addition the Agresti-
Coull VBA function has been expanded from just the API 1163 illustrated one-tailed
upper confidence bound to include a one-tailed lower confidence bound as well as a two-
sided (two-tailed) confidence interval lower and upper bounds. One focus of PHMSA’s
2016 NPRM was a concern whether or not sufficient pipeline samples have been
collected.
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Before illustrating a potential application related to assessing the NPRM issue “have we
sampled enough?”’ using both the exact Clopper-Pearson method and the new finite-
population Agresti-Coull method, a brief illustration of the initial VBA function is
provided in Table 1 using two examples in appendix C of the 2™ edition of API 1163
(2013). In-line inspection companies (sometimes called pigging vendors as the ILI tool is
commonly called a pig) set specifications for how well a particular ILI should perform.
There are many aspects to this and brand new technologies may have wider initial
specifications than more established technology. All such successful matches may be
thought of as a 1 from a binomial distribution perspective while those that do not meet
the vendor specification are failures or a 0 for the binomial distribution.

A complete ILI to excavation comparison entails more than a mere binomial 0-1 analysis
solely on depth; however, the binomial assessment is an important one as it is clearly
delineated in API 1163. That does not mean all companies perform such an analysis;
however, it is good practice. There are multiple concerns about such comparisons and
one that is often overlooked is the quality of the field excavations that are treated as
somewhat of a gold standard. In reality there is variability in any measurement and in
field measurements this is definitely the case. More can be said about this though it is out
of the scope of this paper. API 1163 does allow the incorporation of an estimate of field
measurement error prior to assessment of the matched ILI and field measurements though
to the best of my knowledge most pipeline companies do not quantify field measurement
error nor do they fold such into their API 1163 based analysis.

In the first example the vendor specification is that 80% of the ILI depth calls will be
within +/- 10% of the field measured depth. This 80% is seen in the penultimate column
of Table 1 titled “Vendor target for proportion in spec”. The +/- 10% is not shown in this
table but must be used to determine if a given ILI tool call successfully matched the field
measurement. For an ILI call of 20% depth, it is considered a success if the excavation
depth is included in the interval [10%, 30%]. The “tolerance” of +/- 10% is common but
may vary from one tool type to another. Additionally the 80% within the tolerance is
vendor specific. For typical pipeline corrosion analysis +/- 10% for 80% of the calls is the
current most common combination.

In Table 1 the “Ex 1 API 1163” has x = 5 of the n = 10 matched pairs within +/- 10%
between the ILI called and field measured depth or a sample proportion of 5/10 = 0.500
as seen in the p-hat column. The Agresti-Coull binomial assessment in API 1163 is set at
a 95% confidence level to develop a one-sided upper confidence value for the true
unknown population proportion. Hence the “Conf level” column is set to 0.95 and the
Option is set to UpperFullAlpha putting the entire a level of 0.05 in the upper tail.
Following the earlier Equation set 3 formulas this results in the “API 1163 Upper Bound
1-tailed” result of 0.731 that is below the vendor specification of 0.80 and thus fails the
API 1163 assessment. In the second example using the same vendor specifications and
confidence level the 18 of 25 within specification ILI calls results in a sample proportion
of 0.72. This results in a corresponding 95% upper confidence bound of 0.842 that
exceeds the vendor specification of 0.80 and thus does not fail this API 1163 test.

Li et al (2017) suggest (without any statistical justification in their paper) that a sample
size of n > 20 be required before declaring the API 1163 criteria to be passed. Enbridge,
the company all the authors of Li et al (2017) work for has an aggressive excavation
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program. On some pipelines run by other companies the sample size is often less than 20
as pipelines tend to dig (excavate) only the portions of a given line that appears to have
issues as excavations are expensive.

Vendor target
# -
X, #in n, P hat- Conf Option (using API APT1163 for Passes API
Segment matched  (proportion . Upper Bound .
spec . . level 1163 choice) . proportion in 1163?
pairs in spec) 1-tailed spec
Ex 1 API 1163 5 10 0.500 0.95 | UpperFullAlpha 0.731 0.80 No
Ex2 API 1163 18 25 0.720 0.95 | UpperFullAlpha 0.842 0.80 Yes

Table 1. API 1163 Agresti-Coull examples comparing ILI to field excavations

The initial Excel VBA code associated with this comparison (UpperFullAlpha is the one
for API 1163 as seen in Table 1) has been used for about 2-3 years. More recently
additional alternatives (LowerAlpha/2, UpperAlpha/2, LowerFullAlpha) have been added
to provide two-tailed confidence intervals as well as lower bound confidence intervals.
Initially all four options were based on the calling population being infinite.

The Pipeline and Hazardous Materials Safety Administration (PHMSA) notice of
proposed rulemaking (NPRM) in 2016 requires sample sizes of 150 — 350 for which no
statistical rationale was provided. These samples sizes are based on the number of
inconsistencies found in pipeline data. Each observation is binary, i.e., each new data
value is either consistent or inconsistent with already collected data for a given pipeline
segment. Not addressed but important is how consistency or inconsistency is assessed.

5. Pipeline and Hazardous Materials Safety Administration notice of
proposed rulemaking

Uses of the Excel VBA software addressing the NPRM sample size concerns provides an
upper consistency bound based on binomial confidence intervals. One worksheet uses the
exact Clopper-Pearson methodology that is based on an infinite calling population and
cannot be easily changed to address a finite population. A second Excel worksheet uses a
finite population Agresti-Coull approach developed in this paper. Accounting for a finite
population may reduce the number of needed samples and save pipeline operators time
and expense. Care is needed when using the Agresti-Coull approach as it is still a central
limit theorem based normal approximation to the binomial and thus will not be applicable
for small sample sizes. Related to this to some extent is the Li et al (2017) recommended
that the sample size be a minimum of 20. At this point in time, the Agresti-Coull
worksheet starts with a sample size of ten.

The binomial work in this paper is one approach to calculate the number of
measurements needed to verify that a material property such as pipe grade, or wall
thickness, is consistent with existing measurements to a given statistical confidencel level
on a given pipeline. Such a framework provides a basis to assess needed sample size as
opposed to the NPRM sample sizes of at least 150 measurements. For the NPRM a lower
bound confidence interval can be used as a reliability metric when comparing verifiability
for prioritization between different pipe populations.

Table 2 summarizes the number of measurements needed to achieve a given confidence
level and lower bound consistency for an infinite population using the exact Clopper-
Pearson solution, assuming no inconsistencies (n - x = 0 inconsistencies or failures; thus
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x = n successes) have been found. If an operator wants to have 95% confidence that 95%
of the pipe joints on a pipeline are the same grade, he must perform 59 digs, all of which
must be consistent with the target grade. If sufficient data is available, the finite
population approach covered later may require fewer samples.

Table 2. Required Number of Measurements as a Function of Confidence Level and
Lower Bound Consistency with the Exact Clopper-Pearson Solution when the Sample
has no inconsistencies (x = n, i.e., all successes)

Consistency
80% 90% 95% 99%
80% 8 16 32 160
[<5]
(&)
S5 90% 11 22 45 228
2 3
s - 95% 14 29 59 297
o
99% 21 44 90 456

6. Application of Excel VBA software for Clopper-Pearson and Finite
Population Agresti-Coull

6.1 Clopper-Pearson Application

Table 3 based on a 95% confidence level provides an example to aid in the interpretation
of lower confidence bounds for the binomial proportion using the Clopper-Pearson
approach. There are numerous applications for such binomial confidence intervals though
the wording that follows focused on PHMSA’s NPRM concern with consistency of
pipeline material property assessments. Consistency may be viewed as either a
proportion in the range [0, 1] or a percentage in the range [0%, 100%]. The computed
consistency is a function of:

e Desired confidence level (80%, 90% or 95% are suggested)
e # observations (labeled “# joints inspected”): row labels in the first column
e #inconsistencies: 0 — 9 shown here
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Table 3. Lower-Bound Clopper-Pearson Consistency (95% Confidence)

A B C [u] E F [E] H | J S
Lower bound on reliability shown in matrix below
952 confidence level [ s a5 obaainad’]
0.80 Reliability level for conditional formatting fovfaerage o caradf

%

2nd Edition, ISBM 978-0471130455, 1339, John wiley & Sons, Mew York
Harper, William %, “Excel Functions to Cornpute Exact Binomial Confidence Intervals™
Proceedings of the 25th European beeting of Statisticians, July 2005, Oslo, Morway, Paper P-031

1

2

3

4

5 |Hollander, tyles and Douglas A., Wolfe Monparametric Statistical Methods,
g

7

8

9 | e mreffand sobs S aes Sy SIS GO EE e Sinaiten i el

0 # Inconsistencies

# Joints
1 |inspected 0 1 2 3 4 5 6 7 8 9
12 1 0.050 0.000
13 2 0.224 0.025  0.000
14 3 0.368 0.135 0,017 0.000
15 4 0.473 0.249  0.098% 0.013 0.000
& 3 0.549 0343 0.180 0.076 0.010 0.000
7 6 0.607 0418 0271 0133 0063 0000 0.000
12 7 0.652 0479 0341 0225 0120 0033 0.007 0.000
19 8 0.688 0520 0400 0280 0193 0111 0046 0.006 0.000
20 9 0.717 0571 0430 0345 0251 0.169 0.098 0.041 0.006 0.000
ey 10 0.741 0606 0493 0393 0304 0222 0130 0.087 0.037 0.005
22 11 0.762 0636 0330 0436 0350 0271 0200 0.133 0.079 0.033
23 12 0.779 0661 03562 0473 0391 0315 0245 0181 0.123 0.072
24 13 (. 794 0.684 0300 0505 0427 0335 (0287 0.224 0.166 0113
25 14 0.807 0703 0615 05334 0460 0390 0325 0.264 0206 0.153
26 15 0810 0.721 0637 0360 0489 0423 0360 0.300 0.244 0.191
27 16 0.829 0.736 0.636 0583 0516 0452 0391 0.333 0.279 0.227
28 17 0.838 0750 0674 0604 0539 0478 0420 0.364 0311 0.260
29 18 0.847 0.762 0690 0623 0361 03502 0446 0392 0341 0291
a0 19 0.854 0774 0704 0641 0381 03524 0470 0418 0368 0.320
k| 20 0.861 0.784 0717 0.636 0599 0544 (0492 0.442 0.394 0.347
3z 21 0.867 [L20 0.729 0671 0616 0363 0513 0.464 0417 0.372
a3 22 0.873 .?41 0.684 0631 0580 0.332 0483 0439 0.395
34 23 0.878 BI0 0.751 0696 0645 03596 0349 0304 0460 0417
a5 24 0.883 0817 0760 0708 0658 0611 03563 0.521 0479 0.437
36 25 0.887 0824 0769 0718 0670 0625 0580 0.538 0496 0.456
7 26 0.891 0.830 0777 0728 0.682 0.637 | 0.5393 0.553 0.513 0.474
38 27 0.895 0.836 0.785 0737 0.692 0.649 0.608 0.568 0.529 0.491
29 28 8=500 0841 0792 0746 0702 0661 0.620 0.581 0.543 0.5306
40 29 &}. 0847 0798 0734 0712 0671 0632 0.504 0.557 0521
1 30 0.905 0851 0805 0781 0720 0681 0643 0606 0.570 0.535

As seen in Table 3, a lower bound consistency of 0.807 (80.7%) is obtained at the 95%
confidence level when zero inconsistencies are found in 14 observations. Of course, for
this example consistency could be as high as 100% since no inconsistencies have been
found. If the operator wants a higher statistical consistency, more samples are required.
For example, if the operator wants 90% of the population to be the same grade, 29
consistent samples are needed. What happens if the operator finds an inconsistent
measurement? The number of required digs to achieve the same statistical consistency
increases. If there is one inconsistency, Table shows that 22 samples are needed to
conclude that 80% of the population is the same grade. As the number of inconsistencies
increases, the lower confidence bound for consistency drops for a given number of
samples.
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Table 4 has similar lower-bound consistency values at the 99% confidence levels. Instead
of 14 samples with no inconsistencies for an 80% lower bound as the 95% confidence
level in Table 3, it now requires 21 samples to obtain the 80% lower bound with 99%
confidence seen in Table 4.

Table 4. Lower-Bound Clopper-Pearson Consistency (99% Confidence)

A E C D E F [E] H | J &8

1 |Lower bound on reliability shown in matrix below
2 0004 confidence level (change as desired
3 0.80 Rehability level for conditional formatting (charnge as desired)
4 |References
5 |Hollander, Mvles and Douglas A., Wolfe Nonparametric Statistical Methods,
£ | 2nd Edition, ISEN 978-0471190455, 1999, John Wilev & Sons, New York
7 |Harper, Wiliam V., “Excel Functions to Compute Exact Bmomual Confidence Intervals™
8 | Proceedings of the 25th European Meeting of Statisticians, July 2005, Oslo, Norway, Paper P-031
9 | This method works for any binary assessment and is not limited to bends.
0 # Inconsistencies

# Joints
1 |inspected 0 1 2 3 4 3 6 7 g g
12 1 0.010 0.000
13 2 0.100 0.005  0.000
it 3 0215 0.029 0.003 0.000
15 4 0316 0.141 0.042 0.003 0.000
16 3 0.398 0222 0.106 0.033 0.002 0.000
17 i 0.404 0294 0.173 0.085 0.027 0002 0000
13 7 0.518 0337 0236 0.142 0071 0023 0.001 0.000
19 8 0.562 0410 0293 0.198 0.121 0061 0.020 0.001 0.000
20 9 0.399 0436 0344 0230 0171 0105 0033 0.017 0.001 0.000
21 10 0.631 0496 0388 0297 0218 0150 0093 0.048 0.016 0.001
22 11 0.658 0530 0428 0340 0262 0194 0.134 0.084 0.043 0.014
23 12 0.681 0560 0463 0378 0302 0235 0175 0.121 0.076 0.039
24 13 0.702 0.587 0494 0412 0339 0273 0213 0.139 0111 0.069
25 14 0.720 0.611 0522 0443 0373 0308 0249 0.1935 0.146 0.102
26 15 0.736 0.632 0347 0471 0403 0340 0282 0.229 0.179 0.135
27 16 0.730 0.6531 0570 0497 0431 0370 0313 0.261 0212 0.166
28 17 0.763 0.668 03590 0320 0457 0397 0342 0.291 0.242 0.197
29 18 0.774 0.684 0609 0342 0480 0423 0369 0319 0271 0.226
a0 19 0.785 0.698 0626 0361 0302 0446 0394 0345 0208 0.234
| 20 (1 70 0711 0642 0379 0322 0468 0417 0369 0323 0280
az 21 0.723 0636 0396 0340 0488 0439 0.392 0.347 0305
a3 22 08 0.734 0670 0611 0557 0307 0450 0413 0370 0328
24 23 0.819 0744 0682 0626 0373 0324 0478 0.433 0391 0.330
a5 24 0.825 0734 0693 0639 0383 0340 0405 0432 0410 0.370
36 25 0.832 0763 0704 0651 0602 0336 0512 0.469 0429 0390
7 26 0.838 0771 0714 0663 0615 0370 0527 0486 0446 0.408
a3 27 0.843 0778 0723 0674 0627 0383 0542 0.502 0463 0426
23 28 0.848 0785 0732 00684 0639 0396 0535 0.516 0479 0.442
40 29 0.853 0792 0740 0693 0650 0608 0568 0.530 0403 0458
4 30 0.858 0798 0748 0702 0660 0619 0580 0.543 0.507 0473

6.2 Finite Population Agresti-Coull Application

Samples sizes of at least 10 are shown in Table 5 for the finite-population N = 50
Agresti-Coull normal approximation to the binomial. While not specifically tied directly
to this issue, keep in mind for pipeline applications that Li et al (2017) suggest the sample
size be at least 20. The three circled results in Table 5 can be compared to the Clopper-
Pearson infinite population 95% confidence level results in Table 2. Doing so it is seen
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that less samples are needed to obtain the same lower bounds using the Agresti-Coull

finite population methodology than the Clopper-Pearson exact solution; however, a finite
population size of N = 50 is small. As the finite population N is increased in size the two

results will become closer.

B W M =

|
oS0~

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
)
32
33

Table 5. Lower-Bound Agresti-Coull Consistency (95% Confidence) for a Finite
Population of 50

c D E F

Lower bound on reliability shown in matrix below

A B
95%
0.80
50
References

G

confidence level (change as desired)
Reliability level for conditional formatting (change as desired)

Finite Population Size N

Hallander, Myles and Douglas A., Waolfe Nonparametric Statistical Methods,
2nd Edition, ISBN 978-0471190455, 1999, John Wiley & Sons, New York

Harper, Wiliam V_, “Excel Functions to Compute Exact Binomial CtAgresti Coull_FinitePop_CI{CE&7, D&, F&7
Proceedings of the 25th European Meeting of Statisticians, July 2C Function Agresti_Coull_FinitePop_CI(

K

KN,
XN,

l
!

This method works for any binary assessment and is not limited fo Function Agresti_Coull_FinitePop_CI(
# Inconsistencies

F Joints 0 1 2 3 a4 5 6 7 g 9

inspected
10 0.766 0.654 0554 0393 0304 02122 0.150 0.087 0.037 0.005
11 0.784 0.680 0.587 0436 0350 0.271 0.200 0.135 0.079 0.033
12 L2800 0.703 0615 0473 0391 0315 0.245 0.181 0.123 0.072
13 0.723 0.640 0305 0427 0.355 0.287 0.224 0.166 0.113
14 0826 0.740 0663 03534 0460 0.390 0325 0.264 0.206 0.153
15 0.837 0.756 0682 0560 0489 0.423 0.360 0.300 0.244 0.191
16 0.846 0.770 0.700 0.583 0516 0.452 0.391 0333 0279 0227
17 0.855 0.783 0.717 0604 0339 0478 0.420 0.364 0311 0.260
18 0.863 0793 0732 0623 03561 0.502 0.446 0.392 0341 0291
19 0.870 @_?45 0.641 0.581 0.524 0.470 0418 0.368 0320
20 0.877 0815 0.757 06356 0.599 0.544 0.492 0.442 0.394 0.347
21 0.883 0.824 0769 0671 0616 0.563 0513 0.464 0417 0372
22 0.889 0.832 0779 0684 0631 0.580 0.532 0.485 0.439 0395
23 0.894 0.840 0.789 0.6% 0.645 0.596 0.549 0.504 0.460 0.417
24 0899 0.847 0798 0.708 0658 0.611 0.565 0.521 0.479 0.437
25 0.853 0.807 0718 0670 0.625 0.580 0.538 0.496 0.456
26 0908 0.860 0.815 0.728 0.682 0.637 0.595 0.553 0513 0.474
27 0912 0.866 0822 0737 0692 0.649 0.608 0.568 0.529 0.491
28 0916 0.871 0.829 0746 0.702 0.661 0.620 0.581 0.543 0.506
29 0.919 0.876 0836 0754 0712 0.671 0.632 0.594 0.557 0521
30 0.922 0.881 0.842 0761 0.720 0.681 0.643 0.606 0.570 0.535

7. Summary

This paper examines one-sample binomial confidence intervals including the standard
textbook normal approximation, the exact Clopper-Pearson, and the Agresti-Coull normal

approximation. An extension of the Agresti-Could normal approximation to finite

populations is made. Discussion involving the API 1163 use of the infinite population
Agresti-Coull is providing showing how it is used as part of an evaluation of in-line
inspection tools to actual field excavations for oil and gas pipelines. Finally Excel VBA

software to implement exact Clopper-Pearson and finite population Agresti-Coull normal

approximations to binomial confidence intervals is shown along with some discussion of
PHMSA’s recent NPRM.
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