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Abstract   
Ratio estimation is often useful for Official Statistics regarding energy, and for agriculture, 
econometrics, and perhaps many other applications in business, social science, and other 
areas. Notably, ratio estimation is very often useful for highly skewed establishment survey 
populations where, per Brewer(2002), mid-page 111, there should be at least as much 
implicit heteroscedasticity as for that of the classical ratio estimator (CRE). The concepts 
of design-based and model-based ratio estimation and sampling are reviewed and 
compared.  Meaningfulness might be enhanced by understanding this comparison.  Note 
that here the design-based case is actually model-assisted, but is being contrasted with the 
strictly model-based methodology, where probability of selection does not enter into the 
estimation, actually ‘prediction,’ of totals, and may or may not be used for sample 
selection.1 These model-based and design-based interpretations of the CRE, their 
corresponding concepts of variance and bias, with relation to sampling and estimation, are 
reviewed, and extensions of these estimators are also considered. Simple random sampling, 
cutoff, and unequal probability of selection methodologies are of interest. Stratification is 
often highly useful with either approach.  Even if a regression model is not explicitly 
considered, this review considers the role it still plays.  The relationship of 
heteroscedasticity, explicitly addressed in model-based estimation, to cluster sampling for 
unequal-sized censused clusters, is a point of interest: Each observation in a model-based 
sample may be treated as a cluster unit for which we have a census.  (Again, see 
Brewer(2002), mid-page 111.)     
 
Key Words: unconditional distribution, conditional distribution, expansion factor, 
regression coefficient, optimal sampling, multipurpose surveys, bias, variance, coefficient 
of heteroscedasticity 
 
 

1. Applications and Introduction 
 
The concepts of probability sampling (design-based) and estimation, and prediction-based 
sampling and estimation, can be found in various subject matter areas.  In soil science, 
articles such as Rossel, et.al.(2016) use the model-based, model-assisted, and design-based 
concepts for estimation/prediction with a probability sample, and numerous other papers 
in soil science can be found, such as those whose authors include D.J. Brus and/or J.J. de 
Gruijter. Note also that model-based, model-assisted, and design-based concepts are also 
found in forestry. See Warren(2004). But what about simply a ratio estimator with either 
probability-based or model-based sampling?   

                                                             
1 For strictly model-based sampling, the 𝑦𝑖 are selected by the values of the 𝑥𝑖 (see bottom of 
page 158 in Cochran(1977)), but randomized sampling, or better, “balanced sampling,” may be 
used to reduce bias, at the expense of an often extreme increase in variance for skewed data.  
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The ratio estimator, considered either (1) with a design-based approach to estimation and 
sampling (thus model-assisted), or (2) with strictly model-based sampling and estimation, 
or (3) with perhaps probability sampling and model-based estimation, that is, prediction, 
which, re calculations, could only matter for variance estimation, is useful in various survey 
statistics and related applications. For any finite population, if data are available for the 
population for one (or more) auxiliary/regressor variable(s), which correlates to the data 
for which a sample is to be collected, and the relationship is linear and includes the origin, 
then this may be used to advantage to obtain more efficient estimates of totals or means.  
Fortunately, this is often the case, or nearly the case, particularly for Official Statistics.      
 
No matter how data are collected, or considered at the time with regard to design, one may 
always use model-based variance estimates2 and straight forwardly tie different strata 
together under the model-based approach.  
 
 

2. Overall Concepts 
 
Even design-based ratio estimation is model-assisted.  There is a substantial advantage to 
having auxiliary data to aid a randomized sampling and estimation method, as one will 
never know if an influential datum, or even portion of the population, may have been 
missed by a sample, which would greatly impact on estimation and estimation of accuracy.  
A variance estimate for an estimated total, for example, is based on the variance found in 
the sample, which is then projected upon the finite population.  If influential data are 
missed, or overrepresented, this is a problem.  Auxiliary or regressor data on the population 
may be very helpful.  In particular, unusual members of the population may be identified 
and properly considered.  Note that the smaller the sample, the more likely this could be 
particularly important.  Brewer(2014) notes that smaller samples are more likely to benefit 
from models. But even with a design-based approach, adjusting the estimate by using a 
ratio means using data on the entire population,  As long as the auxiliary data, x, have some 
connection to the variable of interest, y, we are not so likely to miss the influence of an 
individual member or set of members of the population, ignorance of which may greatly 
degrade the performance of unaided random sampling.      
 
Once you find that you have good auxiliary data, which could be called regressor 
(independent variable/x/predictor) data, one needs to decide, “Do I want to assume that a 
model applies, or do I want to assume that data selected at random “represent” other data?   
KRW Brewer and others combine these approaches. For an entertaining overview and 
historical perspective, see Brewer(2014). (Notice there that the only model Ken Brewer 
specifically illustrates is the CRE.)   
 
Because any ratio estimate is at least model-assisted, the devastation that could occur with 
missing what might be described as anomalous members just considered above, is greatly 
mitigated, and the decision will become one of a tradeoff of bias for variance reduction, 
with a smaller sample possible with the model-based approach, i.e., prediction.   
 
For design-based ratio estimation, i.e., a randomized selection of 𝑦𝑖 and correlated 𝑥𝑖, we 
make use of sampling 𝑦𝑖 − �̂�𝑥𝑖 = 𝑒𝑖. Both 𝒚𝒊 and 𝒙𝒊 are random variables, but only in the 
                                                             
2 See the Greek population study in Deming(1943/1964), Chapter 12, alluded to in Cochran(1977), 
on page 160.  
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sense of sample selection, as considered in Sukhatme(1954), pages 139-140.  In 
Thompson(2012), on pages 94, 105, respectively, he notes the fixed nature of x and y for 
design-based sampling. These 𝑒𝑖 are generally not optimally distributed for simple random 
sampling (SRS).  SRS corresponds to homoscedasticity, whereas 𝑅, Sukhatme(1954), page 
139, corresponds to the CRE below. For design-based sampling, the estimator is shown to 
be biased for simple random sampling (SRS) when not represented by a line through the 
origin. (See Sukhatme(1954), page 143).  This is also the case with a generalized ratio 
estimator, one which accommodates unequal probabilities of selection, as noted in 
Thompson(2012), page 102, where he notes that any such ratio estimator is not design-
unbiased, for the same reason that Sukhatme(1954) noted this for SRS: division of one 
design-unbiased estimator by another is not unbiased.   
 
Optimal designs consider that |𝑦𝑖 − �̂�𝑥𝑖| generally increases with increasing 𝑥𝑖.  That is, 
there is heteroscedasticity which is quite prevalent for skewed data from establishment 
surveys, where ratio estimation is often helpful, notably when auxiliary data are available 
from, say, an annual census, and the sample is for a monthly data collection on the same 
data elements.  Thus an optimal design-based sample would involve unequal probability 
sampling, based on knowledge of heteroscedasticity, as considered below, in this paper.      
  
For model-based ratio estimation, for a data group/stratum where one model applies, 𝑦𝑖 
may be sampled in any manner. Here we need 𝑦𝑖 − 𝑏𝑥𝑖 = 𝑒𝑖 = 𝑒0𝑖

𝑤𝑖
−0.5, a regression.  In 

such a case, we consider that y is a random variable, but x is not. The 𝒚𝒊 are conditional on 
given 𝒙𝒊. This assumes a line through the origin, as in the unbiased case for a design-based 
ratio estimator. In Sukhatme(1954), pages 143-144, this condition for bias to ‘vanish’ for 
SRS makes sense because weighted least squares (WLS) regression, and ordinary 
(homoscedastic) least squares (OLS) regression are both unbiased for 𝑏.  That is, we see 
on pages 138 to 143 of Sukhatme(1954), a derivation of the design-based ratio estimator 
which shows it is unbiased when we have a linear regression through the origin with the 
regression coefficient being homoscedastic.  But then on page 144 he argues that one can 
use an estimated regression coefficient, shown as equation (1) on page 139, which is clearly 
heteroscedastic, as it is the ratio (regression coefficient) for the CRE.  However, in 
Maddala(2001), on pages 207 to 208, we see that when the WLS ratio estimator is required, 
the OLS ratio estimator is less efficient, but it is still unbiased.  Thus the results shown on 
pages 143 and 144 in Sukhatme(1954), from the development of pages 138 to 143, leave 
us with an unbiased regression coefficient when we have linear regression with a zero 
intercept.   
 
Note that for the model-based classical ratio estimator (CRE), which is really regression 
prediction where the regression weight may be described as 𝑤𝑖 = 𝑥𝑖

−2𝛾
= 𝑥𝑖

−1, this 
corresponds to the design-based CRE. Perhaps in the model-based case we should say 
“Classical Ratio Prediction (CRP).”  
 
To apply a model-based CRE, the 𝑦𝑖 are sampled, but not necessarily randomly.  
Stratification may be particularly important, however, to be certain that each model is only 
applied to the part of the population relevant to that model.  (This model-relevance is 
important to both stratification and “borrowing strength” for small area estimation, as the 
latter is explained in Knaub(1999), for examples involving estimations for (sub)totals of 
hydroelectric generation. Note there that a special variance estimate was used for purposes 
of flexibility, unrelated to this paper, but the overall concept still applies.)   
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The 𝑥𝑖 for 𝑖 = 1, 𝑁 are generally considered to be “known.” However, if errors-in-variables 
are considered for both 𝑦𝑖 and 𝑥𝑖 in model-based ratio estimation, 𝑏 is biased downward, 
as shown in Maddala(2001), pages 438 to 440, Section 11.2, “The Classical Solution for a 
Single-Equation Model with One Explanatory Variable.”  If the 𝑥𝑖  are uncertain from an 
inverse regression perspective, then from Deming(1943/1964), for 𝑤𝑖

−0.5, he uses 𝑊𝑖
−0.5 =

(𝑏2𝑤𝑥𝑖
−1 + 𝑤𝑦𝑖

−1)
0.5

, where for the CRE, 𝑤𝑦𝑖
= 𝑥𝑖

−2𝛾
= 𝑥𝑖

−1.   Finally, if the 𝑥𝑖 are 
generally observed, but some values might be predicted from a previous process, as may 
often be the case for official statistics, Joel Robert Douglas suggested directly considering 
the increase in uncertainty that would result.  (Douglas and Knaub(2010).)   
 
Joel Douglas also created a “tiered” system of estimation for the US Energy Information 
Administration (EIA), where only the best regressor or regressors was/were used in each 
ratio estimation across a population, or set of subpopulations.  See Douglas(2013), while 
available, and some slides attributed to Joel Douglas in Knaub and Douglas(2010).      
 
An excellent discussion regarding the model-based CRE is found in Cochran(1977), pages 
158 to 160, Section 6.7, “Conditions Under Which the Ratio Estimator is a Best Linear 
Unbiased Estimator.”  Note on page 125 of Brewer(2002), equation 8.5 shows us that in 
general, b must be the best linear unbiased estimator (BLUE), for the prediction of y to be 
from the best linear unbiased predictor (BLUP).     
 
 

3. Methodology  
 
Basically, for the Classical Ratio Estimator (CRE), we have the following:  
 
Design-based estimator, based on simple random sampling:  

�̂��̂� = [
∑ 𝒙𝒊

𝑵
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

] ∑ 𝒚𝒊

𝒏

𝒊=𝟏

= �̂�𝑋 

 

Note that �̂� is not [∑ 𝒙𝒊
𝑵
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

].  Actually, �̂� = [
∑ 𝒚𝒊

𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

], which is 𝑏 in the model-based approach.   
 

Some have been known to refer to [∑ 𝒙𝒊
𝑵
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

] as the “ratio,” but that should be reserved for �̂� 

or 𝑏.  Let us refer to [
∑ 𝒙𝒊

𝑵
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

] as an expansion factor, like 𝑁

𝑛
, but weighted by the size-

measures, 𝑥𝑖.   
 
 
Model-based estimator, actually based on prediction (i.e., regression), for any reasonable3 
sample:   

𝑻∗ = [
∑ 𝒚𝒊

𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

] (∑ 𝒙𝒊

𝑵

𝒊=𝟏

) = 𝑏𝑋 

 
 
                                                             
3 Just as when determining the stratification for design-based stratified random sampling, one 
relies on knowledge of auxiliary data to determine what might be “reasonable.”  
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3.1 Design-Based Ratio Estimator:  
For simple random sampling (SRS), the usual expansion factor, 𝑵

𝒏
, which is the inverse of 

the sampling fraction, is used for the estimation of the population total as follows:  
�̂� =

𝑁

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1    

For the ratio estimator, we have �̂��̂� = [
∑ 𝑥𝑖

𝑁
𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1

] ∑ 𝒚𝒊
𝒏
𝒊=𝟏 , so ∑ 𝒙𝒊

𝑵
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

 acts as an expansion factor 

for the sample sum of 𝑦𝑖, in this paired data sample, to estimate for the population total of 
the 𝑦𝑖. Such an expansion (or “expanding”) factor is part of what has been varyingly 
presented as a weighting procedure, at least in Kish(1965), pages 203 and 204, and 

Lohr(2010), p. 122. So instead of referring to ∑ 𝒙𝒊
𝑵
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

 as a ‘ratio,’ we may consider it a kind 

of ‘expansion factor,’ based on auxiliary data, and n, and N.   Note that on page 86 of 
Raj(1968), Des Raj states that when we do not ‘use’ x in �̂� = ∑ 𝑥𝑖

𝑁
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1 / ∑ 𝑥𝑖

𝑛
𝑖=1 , 

then we have �̂� = 𝑁 ∑ 𝑦𝑖
𝑛
𝑖=1 /𝑛, thus giving ∑ 𝑥𝑖

𝑁
𝑖=1 / ∑ 𝑥𝑖

𝑛
𝑖=1  a role analogous to 𝑁/𝑛.    

 

More generally, �̂��̂� = (∑
𝒚𝒊

𝝅𝒊

𝒏
𝒊=𝟏 ) (

∑ 𝒙𝒊
𝑵
𝒊=𝟏

∑
𝒙𝒊
𝝅𝒊

𝒏
𝒊=𝟏

) is the design-based ratio estimator, where 

(
∑ 𝒙𝒊

𝑵
𝒊=𝟏

∑
𝒙𝒊
𝝅𝒊

𝒏
𝒊=𝟏

) adjusts the Horvitz-Thompson estimator.  This can be written as  

�̂��̂� = [
∑

𝒚𝒊
𝜋𝑖

𝒏
𝒊=𝟏

∑
𝑥𝑖
𝜋𝑖

𝒏
𝒊=𝟏

] ∑ 𝒙𝒊
𝑵
𝒊=𝟏 = �̂�𝑋, and Steven K. Thompson, attributes this to a paper by Ken 

Brewer in 1963, and later work by others, as noted on page 102 in Thompson(2012).4   
 
     
Also on that page, at the bottom, Thompson states that the variable which we are 
considering is not 𝒚𝒊, but 𝒚𝒊 − 𝑹𝒙𝒊, where  𝑅 =  

∑ 𝒚𝒊
𝑵
𝒊=𝟏

∑ 𝒙𝒊
𝑵
𝒊=𝟏

.    This is an important concept 
which is often not given enough emphasis, or even left as an implicit truth, which would 
best be more explicitly recognized.   
      
[Curiously, it seems that both Deming(1950,1966), page 165, and Hansen, Hurwitz, and 
Madow(1953), pages 107 and 108,  reverse the currently accepted order of the use of the 
variable labels x and y, when considering a design-based approach.]  
   
Another way to describe a design-based ratio estimator, shown on page 51 of Chambers 
and Clark(2012), is a weight, 𝑤𝑖 there, which has the same expansion factor-like 
appearance.  There, if z is a size measure, then 𝑤𝑖 = ∑ 𝑧𝑗𝑈 ∑ 𝑧𝑖𝑠⁄ =

𝑁�̅�𝑈

𝑛�̅�𝑠
, where U 

represents the population (universe), and s is the sample.        
 
 

Extension:  The Chain Ratio-Type Estimator:  �̂�𝒄𝒓 = [
∑ 𝒙𝒊

𝑵
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

]
𝜶

∑ 𝒚𝒊
𝒏
𝒊=𝟏 , where 𝜶 is chosen 

to minimize the mean square error for a given application.  See Knaub(2015).   
 

                                                             
4 Brewer(1963) is also noted in Cochran(1977), on page 158, for its landmark presentation of 
model-based ratio estimation/prediction.   
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3.2 Model-Based Ratio Estimator:    
 

𝑇∗ = (
∑

𝒚𝒊
𝝅𝒊

𝒏
𝒊=𝟏

∑
𝒙𝒊
𝝅𝒊

𝒏
𝒊=𝟏

) (∑ 𝒙𝒊
𝑵
𝒊=𝟏 ) = �̂�𝑋 is design-based, say, model-assisted design-based, but 

ignoring probability of selection, we have the following:  
  

𝑇∗ = (
∑ 𝒚𝒊

𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

) (∑ 𝒙𝒊
𝑵
𝒊=𝟏 ) = 𝑏𝑋, where 𝑇∗ is a realization of a random variable, 𝑇.   (Note 

Knaub(2013).)   This is the model-based classical ratio estimator (CRE), which uses 
weighted least squares (WLS) regression, with a specific degree of heteroscedasticity, as 
will now be described:   
 
The derivation for the regression weight in the one-regressor case is shown in a number of 
places, including the bottom of page 2 in Knaub(2009).        
  
𝑦𝑖 = 𝑏𝑥𝑖 +  𝑒0𝑖

𝑤𝑖
−0.5, is often usefully written as  𝑦𝑖 = 𝑏𝑥𝑖 +  𝑒0𝑖

𝑥𝑖
𝛾, and for 𝛾 = 0.5, we 

have the regression coefficient in the model-based classical ratio estimator (CRE),  
𝑏 =

∑ 𝑦𝑖
𝑛
𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1

.   (See Knaub(2011), regarding the coefficient of heteroscedasticity, 𝛾.)  

  
In general, 𝑏 =

∑ 𝒙𝒊𝒚𝒊𝒘𝒊/𝝅𝒊
𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝟐𝒘𝒊/𝝅𝒊

𝒏
𝒊=𝟏

, and ignoring sample selection design, 𝑏 =
∑ 𝒙𝒊𝒚𝒊𝒘𝒊

𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝟐𝒘𝒊

𝒏
𝒊=𝟏

 , where 

we use regression weight 𝑤𝑖 = 𝑥𝑖
−2𝛾. For the CRE, 𝛾 = 0.5 , thus resulting in  

𝑏 =
∑ 𝒚𝒊

𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

.  See Knaub(2011) for more on the history of  𝑤𝑖 = 𝑥𝑖
−2𝛾 as a regression 

weighting system, and note its use in explaining within cluster variance shown, for 
example, in Cochran(1977), on page 243, with 𝑔 = 2𝛾, which can be traced at least back 
to Fairfield Smith(1938) in an agricultural setting. For within cluster variance, 𝑆𝑤

2 , and M 
number of elements in the cluster, William Cochran uses 𝑆𝑤

2 = 𝐴𝑀𝑔  on page 243. Note 
that from 𝑦𝑖 = 𝑏𝑥𝑖 +  𝑒0𝑖

𝑥𝑖
𝛾 we have that the variance of the estimated residuals is 

proportional to 𝑥𝑖
2𝛾 , which corresponds to 𝑀𝑔  in Cochran.  Further, in Murthy(1967), on 

pages 299 and 300, there is described under cluster sampling,  a variance for proportions, 
which also considers this research in agricultural application(s), also providing references, 
and with a goal of arriving at the best cluster size.   
  
Note that the celebrated 1948 Greek population study by Jessen and others, including W. 
Edwards Deming, noted by Cochran(1977) on page 160, is given a chapter in 
Deming(1950, 1966): Chapter 12, “A Population Sample for Greece,” pages 372 through 
398.  Though, on page 9, Deming states that his book only considers probability-of-
selection-based samples, he does devote a good deal of attention to modeling when 
considering variance, and the Greek population study finds a useful application for  𝛾 =

1.0, such that 𝑏 =
∑ 𝒙𝒊𝒚𝒊𝒘𝒊

𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝟐𝒘𝒊

𝒏
𝒊=𝟏

, with 𝑤𝑖 = 𝑥𝑖
−2, is helpful.   Therefore we may consider 𝑏 =

∑ 𝒚𝒊/𝒙𝒊
𝒏
𝒊=𝟏

𝑛
, at least with regard to variance there.  

 
A completely model-based approach considers whether or not there is good partition of 
data by “estimation group” as in Knaub(1999), where variance is also described, and a 
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special approximation is included for operational flexibility if needed for a stressed data 
system.   
  
We should keep in mind that 𝑥𝑖 is used as a ‘size’ measure in the regression weight. If we 
use multiple regression, we could use predicted-y, or some other combination of regressors 
as the measure of size, instead of x.  (See Särndal, Swensson, and Wretman(1992), page 
232, for more on the use of a linear combination of these regressors, for multiple linear 
regression.)       
  
The coefficient of heteroscedasticity, 𝛾, for surveys, tends toward  0.5 ≤ 𝛾 ≤ 1.0, with 𝛾 =
0.5 resulting in the CRE. This is analogous to independence of elements within a larger 
unit (cluster), re Brewer(2002), p. 111. There he explains this by saying that a larger unit 
in a sample could be considered to be a conglomerate of smaller units.  Brewer considers 
the case of retail stores.  If larger units were like a conglomerate of independently 
controlled retail stores under a given larger retail name, then their variances would be 
simply additive, which implies 𝛾 = 0.5, where we have 𝜎𝑖

2 ∝ 𝑥𝑖.  Larger values of 𝛾 result 
when there is more central control, as explained by Ken Brewer on that page.    
 
 
3.3 Calibration:  
The ratio estimator is the simplest example of a cosmetically calibrated estimator, i.e., one 
where the estimator can be “interpreted” from a prediction-based viewpoint. See 
Brewer(2002), page 104 regarding that.  Also, see page 19 in Knaub(2012).  For a simple 
explanation of calibration regarding a ratio estimate, see Lohr(2010), page 132.  For 
calibration to occur, the ‘estimate’ of  ∑ 𝒙𝒊

𝑵
𝒊=𝟏  must be exact when we apply the ratio.  Note, 

for example, that in that case, [∑ 𝒙𝒊
𝑵
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

] ∑ 𝒚𝒊
𝒏
𝒊=𝟏  becomes [∑ 𝒙𝒊

𝑵
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

] ∑ 𝒙𝒊
𝒏
𝒊=𝟏 = ∑ 𝒙𝒊

𝑵
𝒊=𝟏 .    

 
 
3.4 ‘Optimal’ sampling:   
This brings us to the consideration of ‘optimal’ sampling ‘design’ for both probability-of-
selection-based (‘design-based’), and regression-prediction (model-based) ratio 
estimation:    
          Design-Based:  Probability Proportional to 𝒙𝒊

𝜸.   
          Model-Based:  Cutoff Sampling for largest 𝒙𝒊, when appropriate. (But the sample 
may need to be “balanced” on the mean of 𝑥𝑖, i.e., it may be necessary to require that for 
the sample, ∑ 𝒙𝒊

𝒏
𝒊=𝟏 /𝑛 = ∑ 𝒙𝒊

𝑵
𝒊=𝟏 /𝑁, if bias is a particular problem, say if data falling under 

different models are treated under one ratio model. Such a problem is shown in 
Knaub(1999), for example, but solved there by properly identifying subpopulations for 
model applications.  -  Balanced sampling can cause a tremendous increase in variance.  
See Knaub(2013).) 
 
 
3.4.1 Considering probability of selection based sampling:  
First, recall that the variable which we are considering is 𝑦𝑖 − 𝑅𝑥𝑖, not 𝑦𝑖. Thus, with 
unequal probabilities of selection, using the Horvitz-Thompson estimator, one can use 
variance estimators associated with that.    
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Now we consider page 254 in Särndal, Swensson, and Wretman(1992), and other parts of 

that book referenced from that page. For the ratio estimator, 𝑅 is ∑ 𝒚𝒊
𝑵
𝒊=𝟏

∑ 𝒙𝒊
𝑵
𝒊=𝟏

, so for the classical 

ratio estimator, this is modeled as  𝑦𝑖 = 𝑏𝑥𝑖 +  𝑒0𝑖
𝑥𝑖

𝛾 , where in the estimated residual and 

in the formulation for b, to be explained, we have 𝛾 = 0.5. Besides 𝑏 =
∑ 𝒚𝒊

𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

, which 

corresponds to simple random sampling for design-based considerations, we may use 𝑏 =
∑

𝒚𝒊
𝝅𝒊

𝒏
𝒊=𝟏

∑
𝒙𝒊
𝝅𝒊

𝒏
𝒊=𝟏

, which is 𝑏 =
∑ 𝒙𝒊𝒚𝒊𝒘𝒊/𝜋𝑖

𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝟐𝒘𝒊/𝜋𝑖

𝒏
𝒊=𝟏

, with probability of selection 𝜋𝑖, survey weight 𝜋𝑖
−1, 

regression weight 𝑤𝑖 = 𝑥𝑖
−2𝛾, and γ = ½. Optimally efficient sampling for a probability of 

selection based approach in this situation would not be simple random sampling (SRS). 
Instead it would be probability of selection proportional to 𝑥0.5. Särndal, Swensson, and 
Wretman(1992) calls this 𝜋𝑝√𝑥 (probability proportional to square root of x) sampling.  
They also note, also on page 254, that for probability proportional to size sampling, we can 
write 𝜋𝑝𝑥.  This is because x is a measure of size.  Here, we consider the coefficient of 
heteroscedasticity: 𝛾.  The “residuals” (borrowing from model-based language), 𝑦𝑖 − 𝑅𝑥𝑖, 
are estimated by 𝑦𝑖 − 𝑏𝑥𝑖.  But for the design-based case, we are really looking at 
probability of selection for these 𝒚𝒊 − 𝒃𝒙𝒊 values, and because these cases are generally 
heteroscedastic, this is the basis for using unequal probability sampling.  Because these 
estimated residuals, 𝑒0𝑖

𝑥𝑖
𝛾 , are the sampling unit measures of interest, in general, for 

optimal design-based sampling, we need probability proportional to 𝑥𝑖
𝛾 sampling: denoted 

as 𝜋𝑝𝑥𝛾 .  If γ = 1, we have probability proportional to size (PPS) sampling.   
 
     
3.4.2 Cluster sampling analogy:  
One might think of sampling for ratio estimation, either randomized or 
purposeful/balanced/cutoff, in a skewed population, as if one had a one-stage cluster 
sample. Each selected unit might be considered to be a cluster with x elements, for which 
we have a census.  This directly links Ken Brewer’s explanation (Brewer(2002), page 111) 
as to why γ should generally not be less than 0.5, with the concept of within cluster 
variance, as noted, say, in Cochran(1977), on page 243, and discussed above. There 
Cochran mentions some references and attempts to quantify the within cluster variance, 
and states that empirical studies in agriculture have shown that the M elements within a 
cluster can be related to the variance for these elements, within that cluster unit, 𝑆𝑤

2 , such 
that 𝑆𝑤

2 ∝ 𝑀𝑔, where the 𝑔 on that page is equal to 2γ here.  See Knaub(2011), page 400, 
and discussion above.  
  
 
3.4.3 Considering model-based sampling:   
For the (strictly) model-based case, it has been shown in numerous publications that the 
most efficient sampling technique is a cutoff sample of the members of the population of 
largest size, x.  Perhaps the first instance is found in Brewer(1963), and noted in 
Cochran(1977), on page 160 regarding the classical ratio estimator where he references an 
estimate of variance he provides on page 159, equation (6.26).5 The drawback is that if the 
model does not apply well to the prediction of y for the smaller x-value members of the 
“estimation group” (see Knaub(1999) to which a ratio model is applied, then there may be 
substantial bias.  However, this can be overcome with proper ‘stratification,’ and is 
                                                             
5 Cochran(1977), equation (6.26) estimates variance as 

𝜆(𝑋−𝑛�̅�)𝑋

𝑛�̅�
, which is smaller with larger 𝑛�̅�.  
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mitigated by the degree to which this can occur when we definitely expect y to be zero if x 
is zero. That is, if we have collected the y-values for the largest x-value members of the 
population, and we know the origin should be included, this limits how far astray a missing 
y-value might be.  See Knaub(1999) and Knaub(2014a), for example, regarding grouping 
data for borrowing strength, or separating data by group for stratification, as would be 
helpful here.  Graphics in Knaub(2014b) also show how well data from different areas may 
or may not fit under a ratio model. Also see the figure on page 9 in Knaub(2010).  In 
Section 5.5 of Chambers and Clark(2012), Figure 5.3 on page 58 shows other examples of 
using scatterplots to illustrate the application of linear regression, with different estimates 
of the regression coefficient, b, for sugarcane farms, located in four different “growing 
regions.”    
 
Bias may be present for model-based ratio estimation (i.e., prediction) with cutoff, or even 
quasi-cutoff sampling, but can be quite limited by careful model application. For instance, 
in Knaub(1999) it was found that totals for hydroelectric generation could be estimated 
very well when subpopulation “estimation groups” were formed properly. Using 
hydroelectric generation data by establishment entity from a previous annual census as the 
main regressor, missing y-value data were estimated for nonsampled members of the 
subpopulations in a monthly sample survey program. One region-of-interest was referred 
to as the Pacific Contiguous Census (Bureau) Region, which consists of these States: 
California, Oregon, and Washington.  However, rainfall patterns are different for those 
States.  An examination of a map produced by the US National Oceanic and Atmospheric 
Administration’s National Climate Data Center (NOAA/NCDC) shows that it is better to 
group California with Nevada, and group Oregon and Washington with Idaho.  This was 
done, and small area estimation by State began being performed, producing monthly 
estimates of hydroelectric generation totals by State, along with estimates of relative 
standard errors for these estimated (sub)totals. (Example 2 in Knaub(1999), pages 23 to 
26, provides more details.)   
 
However, at one point a few years later, for a few monthly publications, the estimated totals 
for hydroelectric generation for California were substantially degraded, which became 
somewhat obvious.  It was then discovered that a software change had been made, 
inadvertently ignoring the argument above, and grouping the State data inappropriately.  
Once the software was returned to using the proper grouping, as specified in Knaub(1999), 
the problem was solved.6 In this, and more complicated data requirement cases, model-
based ratio estimation has performed very well for decades.   
  

                                                             
6 In 1999, the US Energy Information Administration (EIA), because of Government budget 
constraints, but a large public appetite for more energy data, promised to increase publication of 
official statistics by way of a great many new categories of electric power generation and related 
fuel data, but without an appreciable increase in monthly sampling. To attempt to meet this goal, 
which management did not understand was not automatic, with many thousands of new sub-
aggregate values to be published in categories for which there would often not be anything close 
to sufficient data, the author quickly developed the system touched upon in Knaub(1999), which 
was flexible to multiple problems in the rapid and frequent production of official statistics. The 
hydroelectric generation example was shown for simplicity in Knaub(1999), as other fuel-related 
cases are more complicated.  Further, another multiple regression version of model-based ratio 
estimation was later developed to consider fuel switching by the population members, occurring 
between the annual census data collection, and monthly sample data collections. See discussion 
of this electric power plant fuel-switching problem in Knaub(2016a), on pages 23 and 24.  
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In addition, the reduction in variance over simple random sampling (SRS) is typically 
huge!  See Knaub(2013).  Sampling balanced such that ∑ 𝑥𝑖

𝑛
𝑖=1 /𝑛 is approximately equal 

to ∑ 𝑥𝑖
𝑁
𝑖=1 /𝑁 may reduce bias, as long as missed large members of the population are not 

important, but variance for balanced sampling will be about as bad as for SRS.  Further, as 
noted below, one generally has more than one variable of interest on a survey, so the sample 
will generally not be optimal for all such variables/questions on a given survey. Thus, 
typically when using a cutoff sampling approach, the sample will actually be a quasi-
cutoff sample for each variable of interest, where not all of the largest members of the 
population for a given variable will be collected, and a scattering of smaller ones will 
be collected.  There is more below on multipurpose surveys, where more than one y-
variable (question) is of interest.       
  
Stratification by size, sigma, or category will often be helpful in either the model-assisted 
design-based case, or strictly model-based sampling and estimation (‘prediction’) case. 
Scatterplot graphics, as noted above, may be very helpful for this, as well as part of a data 
editing process.      
  
For further information on quasi-cutoff sampling and estimation, see Knaub(2014a), and 
Knaub(2016b).   
 
Regarding size measure for members of the population, Figure 2.1 on page 37 in Valliant, 
Dorfman, and Royall(2000) shows scatterplots which demonstrate the concepts of 
ignorable and nonignorable sample selection. There it shows the problem with using y-
values instead of x-values as a measure of size.  (For multiple regression, you can use 
predicted values of y, or any other combination of regressors, as a measure of size, but not 
the actual y-values.)  That figure illustrates that selection is flawed if a cutoff sample is 
based on y-values, but not on x-values.  Interestingly, a colleague, Joel Robert Douglas, 
was asked to explore a problem with a survey at the US Energy Information Administration 
on one occasion, and he traced the problem to this very issue.  
 
 

4. Bias 
 
Bias due to division of one of a pair of correlated randomly selected variables by another, 
estimated by a Taylor series, is explored explicitly for the case of simple random sampling 
in an excellent presentation in Sukhatme(1954), pages 138-146.  In Cochran(1977), on 
pages 160 through 162, Section 6.8, “Bias of the Ratio Estimate,” the treatment is 
somewhat different, and abbreviated, due, it appears, to the large range of topics covered 
well in Cochran(1977). On page 161, Cochran approximates bias for simple random 
sampling, as did Sukhatme, but with differences that might be described as follows:  
 
(1) In Sukhatme(1954), it is shown how bias is eliminated when you have linear regression 
through the origin. If that is defined as homoscedastic, we know, for example, from 
Maddala(2001), page 208, that if the real relationship is heteroscedastic (as should be 
expected7), we still have unbiasedness. After page 143 in Sukhatme(1954), where he shows 

                                                             
7 If we expect y to be zero when x is zero, we should often expect heteroscedasticity.  That is, if 
the origin should be a point on a linear regression, would we expect numbers for y|x to include 
such possibilities for a prediction interval as 1,000,000 +/- 1,000, as well as 1,000 +/- 1,000, or 
even 5 +/- 1,000?  Certainly as we approach the origin, prediction intervals should become 
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that unbiasedness means a linear relationship through the origin is required, he goes on to 
say, on page 144, that the estimated coefficient, b, which appears homoscedastic on page 
143, can be replaced by ∑ 𝒚𝒊

𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

, which in the model-based case occurs for 𝑏 = (
∑ 𝒙𝒊𝒚𝒊𝒘𝒊

𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝟐𝒘𝒊

𝒏
𝒊=𝟏

) 

when γ = 0.5, the classical ratio estimator, not when γ = 0, the case of homoscedasticity as 
used in ‘ordinary’ least squares regression.  He shows, on page 144 that the expected value 

of ∑ 𝒚𝒊
𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

 is ∑ 𝒚𝒊
𝑵
𝒊=𝟏

∑ 𝒙𝒊
𝑵
𝒊=𝟏

. Thus when any ratio estimate exactly applies, it is unbiased.8  

 
(2) In Cochran(1977), on page 161, it can be seen that bias is reduced as �̅� becomes closer 
to �̅�.  This would be approximated by simple random sampling, especially with larger 
sample sizes, and in the model-based case indicates the usefulness of sampling balanced 
on the mean of the regressor.  He also notes the need for a linear regression with a zero-
intercept on page 158, and basically notes that the term “model-unbiased” applies when 
the expected sum of the estimated residuals is zero.   
 
 
In Thompson(2012), near the bottom of page 102, he notes that the generalized (design-

based) ratio estimator, which is written here as (
∑

𝒚𝒊
𝝅𝒊

𝒏
𝒊=𝟏

∑
𝒙𝒊
𝝅𝒊

𝒏
𝒊=𝟏

) (∑ 𝒙𝒊
𝑵
𝒊=𝟏 ), is also such that we have 

a ratio of two unbiased estimates,  �̂� = (
∑

𝒚𝒊
𝝅𝒊

𝒏
𝒊=𝟏

∑
𝒙𝒊
𝝅𝒊

𝒏
𝒊=𝟏

), which itself is not unbiased from a design-

based perspective.   
 
 

From a model-based perspective, we only need 𝑏 = (
∑ 𝒙𝒊𝒚𝒊𝒘𝒊

𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝟐𝒘𝒊

𝒏
𝒊=𝟏

), with 𝑤𝑖 = 𝑥𝑖
−2𝛾.  But the 

more general estimate for the ‘slope’ for a more general model-assisted design-based ratio  

                                                             
shorter, and skewed distortions to those intervals become apparent as we approach the origin, 
when we may not expect negative numbers, which may be nonsensical to an application.    
 
8 Three discrete values for 𝛾 are often used, though it is a continuous number, and an estimate of 
𝛾 may be made, based on the data.  (See, for example, Knaub(1997).)  The three values for 𝛾, as 
defined in this paper, which correspond to homoscedasticity, the CRE, and a mean of ratios, are, 
respectively, 0, 0.5, and 1.0.  In Thompson(2012), on page 109, he describes those three cases, 
but refers to the homoscedastic case as regression through the origin.  No matter the value of 𝛾, 
these are all linear regressions through (really ‘to’) the origin. However, on page 127 in Valliant, 
Dorfman, and Royall(2000), they also appear to associate the term “through the origin” with a 
homoscedastic model.  In Särndal, Swensson, and Wretman(1992), they use the term “ratio” when 
𝛾 = 0.5 (actually 1, as 𝛾 is defined there), and all other cases are termed ‘alternative ratios,’ as 
shown in Section 7.3.4 of that book, where probability of selection weights are also used with 
regression weights.  The latter weights are determined by the coefficient of heteroscedasticity, 𝛾.  -  
Another notable place where these three key values for 𝛾 are found is the second half of page 149 
in Sukhatme(1954).  For the Greek population study mentioned earlier, here we say that 𝛾 = 1 
was used to estimate variance, though page 11 states that only probability-based sampling is 
considered in that book.  For optimal design-based sampling, 𝛾 = 1 would require probability 
proportional to size (PPS, or PPx) sampling, which is often used.  There is a reference to using the 
mean of individual sample member ratios for estimation with PPS/PPx sampling on page 167 in 
another old textbook, Yates(1949).  – Also, please be aware that the notation in Särndal, 
Swensson, and Wretman(1992) is such that 𝛾 = 1 here is 𝛾 = 2 there.   
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estimator is 𝑏 = (

∑ 𝒙𝒊𝒚𝒊𝒘𝒊/𝜋𝑖
𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝟐𝒘𝒊/𝜋𝑖

𝒏
𝒊=𝟏

), where this is written in Section 7.3.4, “Alternative Ratio 

Models,” in Särndal, Swensson, and Wretman(1992), with regression weights, 𝑤𝑖 , defined 
as the inverse of those here.     
   
 
The design-based bias, which Sukhatme(1954) shows to completely ‘vanish’ with a linear 
regression through the origin, will alternatively be reduced with larger sample sizes, n.  
Removal of design-based bias is also possible by modification of the ratio estimator, or 
sample selection method, as noted in Cochran(1977), pages 174-175, citing various 
sources.  But the statement by Sukhatme(1954), on page 143, that when we have a linear 
regression with a zero intercept, under the design-based concept, bias disappears, is quite 
the bridge to a model-based concept of bias.     
   
Bias in the model-based case is also due to assuming linear regression through the origin.  
Only 𝑦𝑖 is considered to be a random variable under the strictly model-based approach.  Of 
importance is the conditional distribution of 𝑦𝑖 on each 𝑥𝑖. As noted above, a specific 
degree of heteroscedasticity is associated with the Classical Ratio Estimator (CRE), and 
other coefficients of heteroscedasticity may be more appropriate, either as estimated from 
the data, as in Knaub(1997), or perhaps reduced to guard against disproportionately large 
nonsampling error for smaller members of the population, as noted in Knaub(2009), pages 
5 and 6, and Knaub(2010), page 4, but b remains unbiased (Maddala(2001), page 208).   
 
For the model-based approach, we consider the model to be correct.  However, bias due to 
‘model-failure’ can be examined post hoc.  The 𝑦𝑖 − 𝑏𝑥𝑖 values collected for the sample 
are now estimated residuals for a model, and we are more generally considering (𝑦𝑖 −

𝑏𝑥𝑖)𝑤𝑖
0.5, rather than considering the collected data under a randomized probability of 

selection design. Note that although 𝑏 = �̂�, we generally see 𝑦𝑖 − �̂�𝑥𝑖 written for (model-
assisted) design-based sampling and estimation, and 𝑦𝑖 − 𝑏𝑥𝑖 is used for (strictly) model-
based sampling and prediction.9 We consider “model-unbiasedness” in the latter case, as 
mentioned in Cochran(1977), which means we look for models where the sum of the 
estimated residuals has an expected value of zero.  For the CRE that sum is always exactly 
zero. Bias occurs because of “model-failure,” because the model is not exactly correct.  
(See Knaub(2010).) Test data and graphical analyses may be used to study bias, post hoc, 
as in Knaub(2001), and some of Knaub and Douglas(2010).10  For official statistics which 
are derived from finite population samples at regular intervals, various methods may be 
used, including subject matter knowledge, to validate results.       
 
 
 
  

                                                             
9 In the former case, the 𝑥𝑖 are “auxiliary” data, and in the latter case, they are “regressor” data.     
10 Barely mentioned in Knaub and Douglas(2010) was an extensive, painstaking study, by Brett 
Foster and Lisa Guo, summer interns at the US Energy Information Administration (EIA), in the 
Joint Program in Survey Methodology (JPSM) Junior Fellow interns program.  They compared 
cases of estimated annual totals found from 12 monthly samples, whose estimated totals were 
published in close to ‘real time,’ to the later collected annual census derived totals, to compare 
these differences with estimated relative standard errors.         
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5. Variance 

 
Under the design-based (probability of selection) approach, there is a randomized selection 
of the (𝑥𝑖 , 𝑦𝑖), to thus obtain a randomized selection of values for (𝑦𝑖 − �̂�𝑥𝑖)

2
 to be used 

for estimation of sigma.   
  
Under the model-based (regression/prediction) approach, we select the 𝑦𝑖 for the sample, 
as Cochran(1977) notes at the bottom of page 158, only with regard to the 𝑥𝑖 values, 𝑦𝑖|𝑥𝑖, 
with sigma then based on (𝑦𝑖 − 𝑏𝑥𝑖)2𝑤𝑖. For the classical ratio estimator (CRE), this is 
(𝑦𝑖 − 𝑏𝑥𝑖)2𝑥𝑖

−1.  This becomes part of a development on page 159, Cochran(1977), using 
a Lagrange multiplier, where interestingly, Cochran finds that minimizing variance for the 
CRE has him using (𝑦𝑖 − �̂�𝑥𝑖)

2
𝑥𝑖

−1.   (See Cochran (1977), page 159, equation 6.27.)  For 
more on this, see Knaub(2016a), pages 15 through 19, which compares design-based 
variance for simple random sampling with regression model-based variance, with heavy 
reference to Cochran(1977).  
   
In model-based ratio estimation/prediction, the 𝑦𝑖, and the total to be estimated, are random 
variables from a superpopulation. (See Cochran(1977), page 158.) There is a component 
to the variance due to the “irreducible error” (Fortmann-Roe(2012))11, which is the part for 
sigma only, not the regression coefficient(s), which is (are) also based on sigma. Thus we 
are looking at an analysis of variance in that there are at least two components to the 
variance of the prediction error. This relates to the second term in Cochran’s variance 
estimate/prediction for the predicted total of equation 6.26, on page 159, which appears to 
give rise to the “nonsample part” in Valliant, Dorfman, and Royall(2000), pages 130-134.  
Using compatible notation here, what Valliant, Dorfman, and Royall call 𝑉(�̂�𝑅 − 𝑌𝑅) =

𝑉(�̂�𝑅) + 𝑉(𝑌𝑅), Cochran just calls 𝑉(�̂�𝑅).   
 
Note that Section 5.1.2 “Variance Estimators for the Ratio Estimator,” in Valliant, 
Dorfman, and Royall(2000), they show what happens when you introduce the ‘hat matrix’ 
to account for individual data point influences, and do not use regression weights.  
However, in the context of practical work experience for production of official energy 
statistics for many small populations with small samples, this author has found it very 
robust to use weighted least squares with an underestimated coefficient of 
heteroscedasticity.  When the coefficient of heteroscedasticity, γ, for an establishment 
survey was estimated for energy data at the US Energy Information Administration (EIA), 
it was very often the case that 0.8 < 𝛾 < 0.9, and it was virtually always in the range 0.5 <
𝛾 < 1.0, as expected in the explanation by Brewer(2002) on page 111.  Experience at the 
EIA showed generally good results using  𝛾 = 0.5, thus using the classical ratio estimator 
(CRE), which appeared robust to nonsampling error issues for smaller respondents.  
(Sometimes further steps were necessary when the data are very ‘dirty.’  See Knaub(2009), 
top of page 6, but generally the CRE performed well.)      
 
With regard to analysis of variance, there is an interesting relationship between the usual 
analysis-of-variance method, and the partitioning of the estimated variance of prediction 
error. On page 293 of Walpole and Myers(1972), they use SST = SSR + SSE to represent  

                                                             
11 See also Stansbury(2013) for another illustration of the bias-variance concept involved.   
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the partitioning of the total sum of squares into a part based on the model and a part based 
on residuals only, i.e, a part that is “explained” by the model and a part that is not, where 
this latter part is a sum of squared “errors.”  This has the “feel” of a probability of selection 
(design-based) approach, because it is based on the unconditional distribution of y-values, 
even though users may often never consider the appropriateness of the sampling 
methodology, or even the sample size.12  At any rate, let us compare SST = SSR + SSE to 
the analogous “analysis of variance” of sorts we may see from examining the estimated 
variance of the prediction error of totals, shown, for example, on page 19 of Knaub(2009):  
 
𝑉𝐿

∗(𝑇∗ − 𝑇) = 𝜎𝑒0
∗2 ∑ 𝑥𝑖

2𝛾𝑁
𝑖=𝑛+1 + 𝑉∗(𝑏)(∑ 𝑥𝑖

𝑁
𝑖=𝑛+1 )

2
, where 𝑉∗(𝑏) = 𝜎𝑒0

∗2 ∑ 𝑥𝑖
2−2𝛾𝑛

𝑖=1⁄ , 
and 𝜎𝑒0

∗2 = ∑ 𝑒0𝑖
2 (𝑛 − 1)⁄𝑛

𝑖=1 , for the ratio estimator based on 𝑦𝑖 = 𝑏𝑥𝑖 + 𝑒0𝑖𝑥𝑖
𝛾, with 𝑏 =

∑ 𝑥𝑖
1−2𝛾

𝒚𝒊
𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝟐−𝟐𝜸𝒏

𝒊=𝟏

. 

 
There, that is referred to as “regression through the origin,” though it is for any value of 
the coefficient of heteroscedasticity, including zero, where Thompson(2012), page 109 
labeled that as the “regression-through-the-origin estimator.”   
 
As with SST = SSR + SSE, when we write 𝑉𝐿

∗(𝑇∗ − 𝑇) = 𝑉∗(𝑏)(∑ 𝑥𝑖
𝑁
𝑖=𝑛+1 )

2
+

𝜎𝑒0
∗2 ∑ 𝑥𝑖

2𝛾𝑁
𝑖=𝑛+1 , we are partitioning into a part based on the model, and a part based on 

random error alone, respectively.  However, here we are considering the conditional 
distribution of y given x, as shown on page 18 in Maddala(2001) as 𝑓(𝑦|𝑥).  For 𝑦|𝑥, we 
do not look at �̅�, as that only matters to the unconditional distribution of y.  But we still 
partition variance into a part for the model coefficient parameter(s), and one based on the 
“irreducible error”13 noted above.  So another way to look at model ‘fit’ for ratio predictions 
would be to consider 𝑉∗(𝑏)(∑ 𝑥𝑖

𝑁
𝑖=𝑛+1 )

2
/𝑉𝐿

∗(𝑇∗ − 𝑇), instead of SSR/SST = 𝑟2. However, 
we should also note that the unconditional approach, SST = SSR + SSE, considers the 
sample only, and may even be used for an infinite population, whereas the conditional 
(‘fully’ model-based) approach for totals considered here, though we could have looked at 
𝑉𝐿

∗(𝑦𝑖
∗ − 𝑦𝑖) = 𝑥𝑖

2𝑉∗(𝑏) + 𝜎𝑒0
∗2𝑥𝑖

2𝛾 , is for a finite population.14 As with any variance 
estimation for a population, 𝑉𝐿

∗(𝑇∗ − 𝑇) makes use of an estimate of sigma from the n 
members of the sample, and then applies it to the N-n members of the population which 
are not in the sample (analogous to applying a finite population correction factor).  SSE, 
really ∑ (𝑦𝑖 − 𝑏𝑥𝑖)𝑛

𝑖=1 = ∑ 𝑒𝑖
𝑛
𝑖=1 , compares to 𝜎𝑒0

∗2𝑥𝑖
2𝛾 . For 𝑉𝐿

∗(𝑇∗ − 𝑇), we are looking at 
the N-n population members not in the sample.     
  
 
 
                                                             
12 This may often mislead users of statistical software when they see, for example r = 0.98 on a 
graph with two data points, and think all is fine. 
13 Being “irreducible” is contingent upon having the completely “correct” model, which is not 
possible in practice.    
14 Note that since we have 𝑦𝑖|𝑥𝑖, when we consider heteroscedasticity, as we do here, if we used 
𝑥𝑖

2𝑉∗(𝑏)/𝑉𝐿
∗(𝑦𝑖

∗ − 𝑦𝑖) in place of 𝑟2, it would be different for each member of the population.  
Also note that whether we use 𝑉∗(𝑏)(∑ 𝑥𝑖

𝑁
𝑖=𝑛+1 )2/𝑉𝐿

∗(𝑇∗ − 𝑇) or 𝑥𝑖
2𝑉∗(𝑏)/𝑉𝐿

∗(𝑦𝑖
∗ − 𝑦𝑖),    

𝜎𝑒0
∗2 ‘cancels’ from the numerator and denominator, so we are left with functions of x only.  Thus, 

like r, we would have a measure of dubious stand-alone worth.   

712



 
6. Multiple Regression 

  
In Cochran(1977), on page 184 through 186, section 6.20, “Multivariate Ratio Estimates,” 
he presents the case of design-based ratio estimation with multiple auxiliary variables, 
referencing an article in Biometrika, 1958, by Ingram Olkin. Today, “multivariate” might 
mean multiple dependent variables, rather than multiple auxiliary (or 
regressor/independent) variables, which is what is meant here.  On page 186, Cochran notes 
that use of a second (or more) auxiliary variable(s) can substantially improve “precision,” 
where he is comparing variance estimates.  In statistical learning, the bias-variance tradeoff 
tells us that increased model complexity, such as more regressor variables, generally leads 
to less bias, but more variance. (Note the impact, however, of estimated sigma on estimated 
variance of the prediction error, such as discussed in Knaub(2016a), on pages 23 and 24.)15 
Here,  the design-based multiple auxiliary variable ratio estimator, as described on page 
185 in Cochran(1977), is actually a linear combination of the usual single variable ratio 
estimators, not a multiple regression in the usual sense.  This is the (at least now) familiar 
technique used in different types of applications, where weights are assigned to more than 
one estimation (prediction), such that the weights will sum to unity.  These weights, based 
on a covariance matrix, in the case of two auxiliary variables, are described primarily on 
page 185 in Cochran(1977).       
 
In the model-based case of actually using multiple regression, we may say, for example, 
for two regressors, that  𝑦𝑖 = 𝑏1𝑥1𝑖

+ 𝑏2𝑥2𝑖
+ 𝑒0𝑖

𝑤𝑖
−0.5   where 𝑤𝑖 = 𝑧𝑖

−2𝛾.   Here, 𝑧𝑖 is a 
measure of size, analogous to cluster size, as 𝑥𝑖 is possible to be considered to be a cluster 
size for one regressor.  𝛾 = 0.5 corresponds to the one-regressor model-based Classical 
Ratio Estimator (CRE).  For  𝛾 = 0.5, the 𝑒0𝑖

𝑤𝑖
−0.5 = 𝑒0𝑖

𝑧𝑖
0.5 =  𝑒𝑖  always sum exactly to 

zero, as with the usual model-based CRE.   (See Särndal, Swensson, Wretman(1992), 
Example 6.5.1, page 232,16 with regard to multiple linear regression.)     
 
  

7. Multipurpose Surveys 
  
Data collection is generally done for more than one y variable of interest.  A design-based 
approach means one set of 𝜋𝑖 (probability of selection) values provides the optimal 
sampling, and best estimation, for one y-variable of interest.  That may often be far from 
ideal for the estimation phase for numerous other y-variables. Cassel, et.al.(1977/1993), 
pages 107, and 150 notes this problem, and suggests on page 150 that a compromise size 
measure needs to be used.  Holmberg(2007) considers a compromise based on modeling 
this problem with regard to unequal probability sampling.  Page 107 in Cassel, 
et.al.(1977/1993) notes work by J. N. K. Rao, published in 1966, which they say considered 
                                                             
15 Aside: Bias-variance tradeoff considerations in Statistical Learning tell us that generally when 
we increase the complexity of a model, such as the number of regressors, we decrease bias and 
increase variance. But because estimated sigma is part of the estimated variance of the prediction 
error, overestimation of sigma may ‘absorb’ the assumption of linearity through the origin, to a 
degree, and thus the estimated variance of the prediction error can be a good overall measure of 
accuracy, though it somewhat conflates bias and variance. That is, by adding a needed regressor, 
estimated variance of the prediction error may be reduced due to the way sigma is estimated.  (See 
discussion of electric power plant fuel switching problem in Knaub(2016a), on pages 23 and 24.) 
16 Thank you to Phil Kott for noting this page of that reference, on a different occasion, in another 
context.     
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when y and x may be unrelated.  In Thompson(2012), page 104, he notes that for cases 
where y is not linearly related to either the probabilities of selection, nor to an “auxiliary 

variable,” we may use a generalized ratio estimator, as (
∑

𝒚𝒊
𝝅𝒊

𝒏
𝒊=𝟏

∑
𝒙𝒊
𝝅𝒊

𝒏
𝒊=𝟏

) (∑ 𝒙𝒊
𝑵
𝒊=𝟏 ), with the 𝒙𝒊 all 

set equal to 1, thus using (
∑

𝒚𝒊
𝝅𝒊

𝒏
𝒊=𝟏

∑
1

𝝅𝒊

𝒏
𝒊=𝟏

) 𝑁.   Thompson(2012), pages 103 and 104, explains, 

though not stated this way, that this would have saved the circus statistician’s job in Basu’s 
(in)famous elephant fable.17  However, it would seem we could often do better with a 
strictly model-based approach.   
  
Often, in survey statistics, we have one or more auxiliary variables/regressors available for 
each y-variable for which we wish to use ratio estimation. (This occurs frequently in the 
area of Official Statistics.) If we stratify or post-stratify the population for one reasonable 
model per subpopulation, then a strictly model-based prediction approach may be used, 
and applied for estimation (really prediction), one y-variable at a time, often to great 
advantage.  That is, for the model-based approach, the estimation phase is customized by 
y-variable and stratum.  A quasi-cutoff compromise sample may be used.  The customized 
estimate for each y variable does not depend upon one size measure. In the design-based 
approach, when confined to one size measure, the set of 𝜋𝑖 values, for all y variables, this 
could provide very inaccurate results in the estimation phase, without some kind of 
adjustment.    
  
Calibration for multivariate y across the same vector of auxiliary variables (which is a 
model-assisted, probability design-based method) can be another, more complex solution 
for dealing with multipurpose surveys, under favorable circumstances.  See Chambers and 
Clark(2012), page 141. However, even when appropriate for a practical situation, 
Chambers and Clark(2012) page 143 notes that this can be inefficient. In an application to 
Official Statistics, where many small populations are sampled, and the same survey will 
have many questions relating to basically different populations, for which a common set of 
useful auxiliary variables is not the case, this would not appear to be helpful.      
 
  

8. Closing Remarks 
 
The classical ratio estimator (CRE) is cosmetically calibrated, so under both design-based 
and model-based concepts, the estimators are identical.    
  
For the design-based ratio estimator, we sample 𝑦𝑖, but effectively sample 𝑒𝑖 = 𝑦𝑖 − �̂�𝑥𝑖, 
where �̂� =

�̅�

�̅�
 , and we employ a version of an expansion factor, because we assume we 

have a “representative” set of 𝑒𝑖 used in variance estimation.  How the �̅� and �̅� are estimated 
depends upon the design, and we are considering the unconditional distributions of x, and 
y. Simple random sampling (SRS) is suboptimal due to heteroscedasticity for 𝑒𝑖. One may 
stratify by size of 𝑒𝑖, or use unequal probability sampling. Note that stratification by size 
is essentially a more granular version of unequal probability sampling.      
  
For prediction from model-based ratio estimators, there is either a predicted/modeled or an 
observed value for each member of the population, for which we obtain a sum.  (Note: The 
                                                             
17 Note that Brewer(2002) is subtitled “Weighing Basu’s Elephants.”   
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sum of all estimated residuals for the model-based CRE is always exactly zero, and for the 
alternative ratio estimator where 𝑏 = (∑

𝑦𝑖

𝑥𝑖

𝑛
𝑖=1 ) /𝑛, the estimated random factors of the 

estimated residuals always sum to zero, as shown in Knaub(2005).)   Further, the sum of 
the estimated variances for each prediction error differs from the estimated variance of the 
prediction error for the total, due to the difference between a sum of squares and the square 
of a sum, with regard to 𝑏, which is not applicable to the 𝜎, “irreducible” part.  (See 
Knaub(1999), pages 4 and 5.  Erratum: On page 4 there, “multivariate” should be replaced 
by “multiple linear regression.”)   
  
Bias from the perspective of simple random sampling (SRS), as shown in Sukhatme(1954), 
is because 𝑦𝑖 and 𝑥𝑖 are correlated random variables.  Because both 𝑦𝑖 and 𝑥𝑖 are random 
variables based on probability of selection, the derived estimator is only unbiased when the 
relationship is linear through the origin, as shown in Sukhatme(1954), pp 138-144.   
Thompson(2012), page 102, also notes the design unbiasedness of the numerator and 
denominator of what amounts to �̂� in the generalized (design-based) ratio estimator, but a 
biased result for �̂� is also true, thus generalizing to other probability-based designs.  
  
Bias (model-failure) for model-based prediction is also due to failure of a linear 
relationship between 𝑦𝑖 and 𝑥𝑖, which must include the origin.  Only 𝑦𝑖 is considered a 
random variable in the model, not 𝑥𝑖.  𝑦𝑖 is conditional on 𝑥𝑖, and thus its conditional 
distribution (that of 𝑒𝑖) is very different from the (unconditional) 𝑦𝑖 population distribution.    
 
Note on page 102 of Thompson(2012), that while discussing the design-based approach, 
he notes that ratio estimation is advantageous when the variance of the 𝑦𝑖 − 𝑅𝑥𝑖 is 
(“much”) smaller than the variance of the 𝑦𝑖.   
 
Ratio estimation has many uses. In Lohr(2010), on page 180, she provides an example of 
the use of a ratio when a mean per cluster is less variable than a total per cluster, due to 
unequal cluster size sampling.  A common theme regarding ratio estimates holds here: We 
may trade addition of a small bias for a large decrease in variance.   
 
As noted in Knaub(2017), whether intended or not, use of a ratio estimator with 𝛾>0, say 
the CRE (thus 𝛾=0.5), using either a probability of selection or model-based approach, we 
are giving more emphasis (weight) to the smaller (x-value) members of a population.    
 
 
 

9. Conclusions 
 
This paper addresses various forms of ratio estimators often used for establishment and 
other sample surveys. Concentration has been on application to Official Statistics. The two 
main philosophies considered involve sampling and estimation based on (1) probability of 
selection, or (2) regression modeling/’prediction’ – or a combination of the two. Biases and 
variances for these two philosophies, though the philosophies are different in concept, have 
much in common. It is important to understand those measures of accuracy when 
considering results.   
  
The primary difference in concept is that of sampling 𝑦𝑖 − �̂�𝑥𝑖 under a design-based 
probability-of-selection scheme, where we consider the unconditional distribution of the 
𝑦𝑖, or do we collect the same statistic, but write it as 𝑦𝑖 − 𝑏𝑥𝑖, and consider the conditional 
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distribution of 𝑦𝑖|𝑥𝑖.  In both cases unbiasedness is achieved when linear regression with a 
zero intercept is the case.  Thus for all practical purposes, we can think of all ratio 
estimation as a model-driven procedure. The use of a design employing probability of 
selection is more of a safeguard against model-failure, where variance estimates are based 
on (𝑦𝑖 − �̂�𝑥𝑖)

2
 rather than (𝑦𝑖 − 𝑏𝑥𝑖)2𝑤𝑖, as an attempt at robustness.  However, the very 

nature of survey sampling with a correlated auxiliary/regressor variable, linearly related to 
each other with a zero-intercept, which is very often the case, tells us that there will be a 
strong degree of heteroscedasticity, for which simple random sampling is highly 
inefficient, and simple balanced sampling produces that same problem as well.    
  
As always, stratifications can be by category or size, and can be very helpful under either 
philosophy.   
 
Putting prediction intervals around each line can help us determine which groups to 
separate, and what may be modeled together.  See Figure 3, page 13 in Knaub(2012), for 
example.  (Note that near the origin, if negative numbers are not valid, those intervals 
would be very noticeably non-“normal,” contrary to the illustration.)   
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Appendix: Overview 

 
The following overview was a ‘handout’ which accompanied a poster presented in 
Baltimore, Maryland, USA, on August 1, 2017, at the Joint Statistical Meetings.  That 
poster is found at the following location, and was presented under the auspices of the 
American Statistical Association’s Survey Research Methods Section:  
 
https://www.academia.edu/33469291/Poster_for_Comparison_of_Model-
Based_to_Design-Based_Ratio_Estimators_ 
 
Also, see 
https://www.researchgate.net/publication/317523999_Poster_for_Comparison_of_Model
-Based_to_Design-Based_Ratio_Estimators 
 
Survey inference depends on whether you rely upon a reasonable model, or upon 
randomized sample selection, or a combination of both.  For ratio estimators, a simple 
model is either considered directly in the model-based case, or in an indirect sense in a 
design-based process.  – See reference list handout, which includes Thompson(2012). 
Although the model-based and design-based approaches to ratio estimators are quite 
different in philosophy, they have much in common: 
 
bias:  
both assume a linear relationship “through” the origin, or else they are biased: 
for the model-based case, bias is considered “model-failure,” but 
for the design-based case, it is due to the use of “�̂�,” a ratio constructed from random 
variables y and x, random in the sense of selection, and compared to the standard error, this 
bias becomes smaller with larger sample sizes (particularly good resource: 
Sukhatme(1954))     
  
variance:  
both are based on y-bx (with 𝑏 = �̂�), not just based on y,  
for the model-based case, y-bx is an estimated residual, and the estimated variance of the 
prediction error may be analyzed,  
for the design-based case, the variance of �̂� is constructed from the estimated standard 
errors of y and x, and their estimated covariance –  
note: Variance for skewed populations can be very high for design-based sampling without 
using optimal unequal probability sampling, which will not be optimal for all y-variables 
of interest* 
 
Note: The “generalized ratio estimator” incorporates Horvitz-Thompson estimators, and 
“Alternative Ratio Models,” Särndal, Swensson, and Wretman(1992) , pp. 254, 255, 246, 
further incorporate regression weights.  –  
[The smallest x-selected units may still be problematic from a data collection quality 
perspective, but the strictly model-based approach only uses the regression weights.  Very 
small problematic data may better be predicted.]    
 
The impact of heteroscedasticity is felt in each case: 
in the model-based case, this means using weighted regression, and 
in the design-based case, it means that simple random sampling is not optimal: need 
unequal probability sampling  
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note: This is related to unit size in cluster sampling (Cochran(1977), p 243).   
 
Related to cluster sampling, with cluster size 𝑥𝑖 (or perhaps predicted-𝑦𝑖 for multiple 
regression), and within-cluster variance proportional to 𝑥𝑖

2𝛾 .  See Cochran(1977), p. 243.    
  
 
Result: 𝜎𝑖

2 ∝ 𝑥𝑖
2𝛾:  0.5 ≤ 𝛾 ≤ 1, Brewer(2002), p 111  

 
 
Stratification can aid either method immensely: 
modeling should be applied by portion of the population, for which each portion is 
approximately governed by a given model (a consideration which also applies to 
‘borrowing strength’ for small area estimation), and   
similarly, for probability of selection, design-based sampling, reduced within stratum 
variance and increased mean differences between strata is helpful 
 
 
 
Note: In the design-based case, a “representative” data selection may be accomplished in 
an overall sense.  For the model-based case, without properly stratifying the population, 
and/or a “balanced” sample, this may be a problem. However, for a highly skewed 
population, a sample balanced on the mean for x, as with a simple random sample, will 
have a huge efficiency disadvantage.  
 
 
 
 
 
 
*For multipurpose surveys – and almost every survey does collect data on more than one 
item – a model-based ratio estimator will provide better weighting … no Basu’s Elephant 
problem!  
– The design-based estimator can be adjusted, but the model-based case is straightforward.     
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