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Abstract 
In neutron multiplicity counting one may fit a curve by minimizing an objective function, 
χ"# . The objective function includes the inverse of an n by n matrix of covariances, W. 
The inverse of the W matrix has a closed form solution. In addition, W%& is a tri-diagonal 
matrix. The closed form and tri-diagonal nature allows for a simpler expression of the 
objective function 𝜒(#. Minimization of this simpler expression will provide the optimal 
parameters for the fitted curve. 
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1. The Calculation of 𝛘𝟐 
 
In Walston [6] we find reference to the χ# and the Lawrence Livermore National 
Laboratory (LLNL) 𝑊 matrix. The Los Alamos National Laboratory (LANL) W matrix 
is the same as the LLNL W because the correlation is identical between the random 
variables of the gate size. The estimates of the correlation will have the same expected 
value and those of LLNL are more variable as the gate data from all except the largest 
gate size is not entirely utilized for each gate size. 
 
In Walston [6] we find the i, j	element of the n by n matrix W is 
 
 W1,2 = ρ1,2σ678 T1 σ678 T2 . (1) 
 
Define the 𝑖, j	element of the n by n matrix Σ as: 
 
 Σ1,2 =

σ678 T1 , i = j
0, i	 ≠ j. 

(2) 

 
Σ is an n by n diagonal matrix with zeros on the off diagonal. 
 
The n by n correlation matrix P contains the correlations as: 
 
 P1,2 = ρ1,2. (3) 
 
The correlations are listed in Prasad, Snyderman, and Walston [5], and the correlation 
matrix, P, is in fact the Lehmer matrix, proposed by Lehmer [1], or 
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P1,2 =

min i, j
max i, j .

 
(4) 

 
In matrix form: 
 
 W = Σ	P	Σ. (5) 
 
The inverse of W is:  
 
 W%& = Σ	%&P%&	Σ%&. (6) 
 
As 
 
 W	W%& = Σ	P	Σ	Σ	%&P%&	Σ%& = I = 	W%&	W. 

 
(7) 

The inverse of the Lehmer matrix P is a tri-diagonal matrix P%&, originally solved in 
Lehmer, Smiley, Smiley, and Williamson [2], with entries: 
 
 

P1,2%& = 	

4iE 4i# − 1 ,																																																								 i = j	and	i < n	
n# 2n − 1 ,																																																										 i = j = n												
−min i, j min i, j + 1 2	min i, j + 1 , i − j = 1										
0,																																																																																 i − j > 1.									

 

(8) 

 
P%& is a tri-diagonal matrix with zeros on the off tri-diagonal. The Lehmer matrix has 
also been used to test the inversion of a tri-diagonal matrix, Newman and Todd [4] and 
for evaluation of matrix inversion programs Lewis [3]. 
 
The inverse of Σ is the n by n matrix Σ%& where 
 
 Σ1,2%& 	=

1 σ1,2 , i = j
0, i	 ≠ j. 

(9) 

 
For completeness use (6), (8) and (9) to write the i, j-th term o𝑓	W%& as 
 
 W1,2

%& 				

= 	

Σ1,1%#4iE 4i# − 1 ,																																																																	 i = j	and	i < n	
Σ","%# n# 2n − 1 ,																																																																		 i = j = n												
−Σ1,1%&Σ12,21%&min i, j min i, j + 1 2	min i, j + 1 , i − j = 1										
0,																																																																																																	 i − j > 1.									

 

(10) 

 
The curve fit uses parameters which minimize χ# where 
 
 χ# = 	𝐄𝟐𝐅P 	W%&	𝐄𝟐𝐅. (11) 
 
Rewriting (11) by using (6) to expand W%& yields: 
 
 χ# = 	𝐄𝟐𝐅P 	Σ	%&P%&	Σ%&	𝐄𝟐𝐅. (12) 
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Divide the residual 𝐄𝟐𝐅 by its corresponding standard deviation to create scaled residuals 
as: 
 
 𝐄𝟐𝐅,Q = 	 Σ%&	𝐄𝟐𝐅. (13) 
 
In this way one may “absorb” the Σ%& into the residual to compute the χ#. Using (13) and  
(12) obtain: 
 
 χ# = 	𝐄𝟐𝐅,QP 	P%&		𝐄𝟐𝐅,Q. (14) 
 

2. Example Correlation Matrix with 𝐧	 = 	𝟓 
 
As an example let n	 = 	5 then we have: 
 
 

PU = 	

1 1/2 1/3
1/2 1 2/3

1/4 1/5
1/2 2/5

1/3 2/3 1
1/4 1/2 3/4
1/5 2/5 3/5

3/4 3/5
1 4/5
4/5 1

	. 

(15) 

 
Simplify fractions: 
 
 

PU = 	

1 1/2 1/3
1/2 1 2/3

1/4 1/5
2/4 2/5

1/3 2/3 1
1/4 2/4 3/4
1/5 2/5 3/5

3/4 3/5
1 4/5
4/5 1

	. 

(16) 

 
Evaluate fractions: 
 
 

PU = 	

1 . 5 . 33
. 5 1 . 66

. 25 . 2
. 5 . 4

. 33 . 66 1

. 25 . 5 . 75
. 2 . 4 . 6

. 75 . 6
1 . 8
. 8 1

	. 

(17) 

 
Using equation (8) to invert PU yields: 
 
 

PU%& 	= 	

4/3 −2/3 0
−2/3 32/15 −6/5

0 0
0 0

0 −6/5 108/35
0 0 −12/7
0 0 0

−12/7 0
256/63 −20/9
−20/9 25/9

	. 

(18) 

 
Factor (18) by 1 over 315 = 5 × 7 × 9 and PU%& may be written as:   
 

695



 

PU%& 	= 	
1
315

420 −210 0
−210 672 −378

0 0
0 0

0 −378 972
0 0 −540
0 0 0

−540 0
1280 −700
−700 875

	. 

(19) 

 
For n	 = 	5, use (19) and (14) where E#],Q^ is the i-th scaled residual or i-th element of 
𝐄𝟐𝐅,Q to obtain: 
 
 χU# 	= 	E#],Q_ 	E#],Q7 	E#],Q` 	E#],Qa 	E#],Qb 																													

 

 

×	
1
315

420 −210 0
−210 672 −378

0 0
0 0

0 −378 972
0 0 −540
0 0 0

−540 0
1280 −700
−700 875

	E#],Q_
	E#],Q7
	E#],Q`
	E#],Qa
	E#],Qb

	. 

(20) 

 
Multiply the last two terms of (20) 
 
 χU# 	= 	E#],Q_ 	E#],Q7 	E#],Q` 	E#],Qa 	E#],Qb 																													

 

 

×	
1
315

420	E#],Q_ − 210	E#],Q7
−210	E#],Q_ + 672	E#],Q7 − 378	E#],Q`

−378	E#],Q7 + 972	E#],Q` − 540	E#],Q`E#],Qa
−540	E#],Q` + 1280	E#],Qa − 700	E#],Qb

−700	E#],Qa 	+ 	875	E#],Qb

	. 

(21) 

 
Multiply the two arrays in (21) 
 
 

χU# 	= 	
1
315

420	E#],Q_
# − 210	E#],Q_E#],Q7 +

−210	E#],Q_E#],Q7 + 672	E#],Q7
# − 378	E#],Q7E#],Q` +

−378	E#],Q7E#],Q` + 972	E#],Q`
# − 540	E#],Q`E#],Qa

−540	E#],Q`E#],Qa + 1280	E#],Qa
# − 700	E#],QaE#],Qb +

−700	E#],QaE#],Qb 	+ 	875	E#],Qb
# .

+	 

(22) 

 
Collect like terms in (22) 
 
 

χU# 	= 	
1
315

420	E#],Q_
# − 420	E#],Q_E#],Q7 +

672	E#],Q7
# − 756	E#],Q7E#],Q` +

972	E#],Q`
# − 1080	E#],Q`E#],Qa +

1280	E#],Qa
# − 1400	E#],QaE#],Qb +

875	E#],Qb
# 	.

 

(23) 

 
Multiply the terms in (23) and rearrange as 
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 χU# 	

= 	

4
3
	E#],Q_
# +

32
15
	E#],Q7
# +

108
35

	E#],Q`
# +

256
63

E#],Qa
# +

25
9
	E#],Qb
# +

−
4
3
E#],Q_E#],Q7 −

12
5
	E#],Q7E#],Q` −

24
7
E#],Q`E#],Qa−

40
9
E#],QaE#],Qb.

 

(24) 

 
3. 𝝌𝟐 for General n 

 
The previous example of computing χU# with n	 = 	5 motivates a general solution of 
minimizing	χ"#  by generalizing the steps used to create (24). To determine χ"#  we sum the 
appropriate terms of the tri-diagonal P%& matrix. Define χ"# i, j : 
 
 

χ"# i, j 				 = 	

4iE

4i# − 1
	E#],Q^
# ,																														 	i = j	and	i < n

n#

2n − 1
	E#],Qe
# ,																																									 i = j = n

−2
i i + 1
2i + 1

E#],Q^E#],Q^f_, j = i + 	1		and	i < n

0,																																																										 otherwise.

 

(25) 

 
 
Utilizing the terms defined in (25) and (14) we obtain the general expression: 
 
 

	χ"# = χ"# i, j
"

2n&

.
"

1n&

 

 

(26) 

 
Eliminating the zero terms in (26) yields: 
 
 

	χ"# = χ"# i, i 	
"

1n&

+ χ"# i, i + 1 .
"%&

1n&

 

 

(27) 

 
Substitution of (25) in (27) yields: 
 
 

	χ"# =
4iE

4i# − 1
	E#],Q^
# 	

"%&

1n&

+
n#

2n − 1
	E#],Qe
# − 2

i i + 1
2i + 1

E#],Q^E#],Q^f_	.
"%&

1n&

 

 

(28) 

 
Minimizing (28) with respect to the parameters that define 𝐄𝟐𝐅,Q provides the fitted curve 
while accounting for the correlation between the various gate lengths. 
 

4. Enhancements and Future Work 
 
In order to reduce the computational load fewer than n points may be included in the fit. 
Excluding points does not affect the tri-diagonal nature of the resulting W%& matrix. One 
may derive a similar formula to (28) which excludes various points in the fit. Excluding 
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points may decrease the computational load of the fit and if not done wisely it may also 
decrease the quality of the fit. 
 
One advantage of exclusion of points is to increase the numerical stability of the solution. 
This is done by improving the condition number of the W matrix. [4] demonstrate that the 
condition number of the Lehmer matrix is greater than n and less than	4n#. Reducing the 
size of the matrix by excluding the largest points may directly improve the condition 
number. It is hypothesized that exclusion of points, which may not be the largest, may 
also result in a better condition number. 
 
Future research may include choosing only a small number of points to use in fitting the 
curve. Mark Smith-Nelson, personal communication, has suggested only including points 
distributed more or less uniformly throughout the x-axis region as well as including 
points where the curvature is highest. One may select these fewer than n points in an 
optimal manner with an appropriate statistical experimental design. 
 
The analysis used in Prasad, Snyderman, and Walston [5] may be used to provide a 
similar and direct Monte Carlo estimation of the LANL W matrix. In this way directly 
confirming the Lehmer functional form of the LANL P correlation matrix. 
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