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Abstract 
In clinical trials with multiple primary endpoints or with multiple observations on the 
same sampling unit, the maximum of all observations is a convenient statistic that 
controls the familywise error rate. The quantile of this statistic depends on the correlation 
among multiple observations. To simplify modeling, the compound symmetry (CS) 
covariance structure is frequently used. The assumption of exact compound symmetry 
cannot usually be justified, and further sensitivity studies under more varied correlations 
are recommended. The need for multiple simulations may impose an increased demand 
on computer and time resources. To evaluate the sensitivity of simulation results 
restricted to CS structure, we calculated the linear part of the Taylor expansion of the 
CDF for the maximum statistic. Furthermore, we derived the Taylor expansion for 
quantiles of the maximum statistic. Our simulation studies on the linear approximation of 
quantiles confirmed good performance of the linearization formula.  
Key words: Compound symmetry; Covariance matrices; Monte Carlo simulation; 
Quantile; Sensitivity analysis; Taylor expansion;  

1. Introduction
In studies with multiple primary endpoints, or with multiple observations on the same 
sampling unit, the familywise error rate (Westfall and Young 1993) of random variables 
(RV) may be controlled by the maximum of the test statistic (Romano and Wolf  2005). 
As an alternative, adjustment formulae for the type I and II errors in multiple testing have 
been advocated in several studies (Armitage and Parmar 1986; Efron 1997; James 1991; 
Dubey 1985; Shi, Pavey and Carter 2012; Julious and McIntyre 2012). The tables of 
nominal significance levels (adjusted for multiplicity) for positively equally correlated 
normally distributed observations were generated (Dubey 1985; Pocock 1987).  

Equally correlated RVs are defined by the multivariate normal distribution with the 
compound symmetry (CS) covariance structure. The tables of quantiles for the maximum 
of equally correlated normally distributed random variables were generated   using a 
quadrature formulae for the integrals (Gupta, Nagel and Panchapakesan 1973; Gupta, 
Panchapakesan and Sohn 1983). Numerical integration is laborious, not practicable at 
high-dimensions, and is currently replaced by Monte Carlo (MC) simulations. 
Unfortunately, although MC simulations are relatively fast and simple, they are not very 
precise. Moreover, it is difficult to define the precision of simulated results without 
invoking other methods. The requirement of precision may impose a demand on the 
computer resources that may not be easily available, particularly for high-dimensional 
modeling. Microarray data analysis is an example of high-dimensional modeling (Jung, 
Bang, and Young 2005), where dimensions may be in the thousands. Because of this, the 
CS correlation structure is frequently used as a simple simulation model (Jung et al. 
2005). The CS assumption cannot often be justified, and sensitivity studies are 
recommended (Jung et al. 2005). In sensitivity studies, correlation matrices are 
usually 
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assumed to be close to the original CS matrices. However, the number of correlation 
coefficients to examine is proportional to the square of the dimension of the model and 
may be excessively high. To extend the results acquired under the CS assumption on 
more general correlation structures without additional simulations and with a satisfactory 
precision, we derive the linear part of the Taylor expansion of CDF with a close to CS 
structure. Using a linear approximation, we can calculate the CDF for the RVs with such 
structure. We derived the Taylor expansion for the quantiles of the maximum of RVs 
with close to CS structure and tabulated their linear parts for 9n ≤ . If a researcher is 
interested in higher than the tabulated dimensions or different correlations, the linear part 
of the Taylor expansion can be calculated using the provided formulae. Once generated, 
the Taylor expansion allows a researcher to compute the required quantiles using a 
simple calculator. In our numerical studies, we used SAS 9.4 proc IML to generate the 
samples of correlated normally distributed variables. In the equally correlated cases, the 
golden standards of precision were the tables of Gupta et al. (Gupta 1963; Gupta et al. 
1973; Gupta at al. 1983).  

The 2×2 covariance matrices were not studied in this paper because they belong to the CS 
class and were tabulated by Gupta et al. in earlier work (Gupta 1963, table II; Gupta et al 
. 1973, table I; Gupta et al. 1983, table IV). The macros for the cumulative probabilities 
of bivariate normal distribution are readily available on the Web (for example, 
http://socr.ucla.edu/htmls/HTML5/BivariateNormal/).  

The proofs for the 3×3 and n×n (n ≥ 4) cases are slightly different and are therefore 
provided separately.  

2. The Linear Approximation

Let ,{ }hl h l nR r ≤= be a positive definite correlation matrix and 

1
( , ) {max }R

n ii n
Q y R P Y y

≤ ≤
= ≤ , where the random variables R

iY  are normally distributed 

with the correlation matrix R . Without loss of generality we assume that ( ) 0R
iE Y =  . 

Then, 

1
1/2 1/2

1 1( , ) ... exp( ) ...
(2 ) | | 2

y y
T

n nnQ y R X R X dx dx
Rp

−

−∞ −∞

= −∫ ∫ , where 

1 2( , ,..., )T
nX x x x= and | | det( )R R= . 

Let ( )D q  be a CS correlation matrix with non-diagonal entries q  and each diagonal 
entry equals one. We use the notation ( )D D ρ=  if q ρ=  for brevity. Let us define the 

PDF 
2 21 (0.5 / )( , ) ( 2 ) tf t e σσ σ p − −= , the CDF ( , ) ( , )

y
y f t dtσ σ

−∞
Φ = ∫ , and 

1
1

ρν
ρ

+
=

−
. We denote the 1 α−  quantiles for the maximum of correlated random 

variables with correlation matrices D  and R  by yα′  and yα , e.g., ( , ) 1nQ y Dα α′ = −  
and ( , ) 1nQ y Rα α= − . 
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2.1 Case 3n =   

The matrix D  is positive definite if 1 1 / 2ρ> > − . By definition 

1
3

1.5 1 0.5
3 0

1

( , ) (2 )
Ty y y X D X

i
i

Q y D e dxp σ
−− − −

−∞ −∞ −∞
=

= ∏∫ ∫ ∫ ,

where 2 2
0 | | (1 ) (1 2 )Dσ ρ ρ= = − +  and 1 2 3( , , )TX x x x= .  

For the 3×3 correlation matrix R  such that lh hl hlr r ρ ε= = +  ( h l≠ ), we have the 
following formula:  

2

3 0( , ) / | ( , 1 ) ( / ( (1 2 ),1)
hlhlQ y R f y yεε ν ρ ν ρ=

 ∂ ∂ = + Φ +   (1).  

The proof is provided in Appendix A. 

For the correlation matrix R , we have the approximate formula for the upper α quantile 
as follows: 

( )
12 13 23

2

/ ( 1 2 ),11 ( , )( ) (max | |)
3 1

/ ,
1

hl

yf yy y o
Q y D

αα
α α

α

ν ρνε ε ε ε
ρ ρν

ρ

′Φ +′
′= − + + +

−   ′  +  

 , (2) 

where 2 / ,
1

Q y Dα
ρν
ρ

  ′  +  
is the CDF of a bivariate normal distribution with the 

correlation coefficient 
1
ρ
ρ+

 and the upper limit of integration ( / , / )y yα αν ν′ ′ .  

The proof is provided in Appendix C. 

The tables for the quantile yα′  of the distributions with CS correlation matrices are 
available in a variety of papers by Gupta (Gupta 1963, table II; Gupta et al. 1973, table I; 
Gupta et al. 1983, table IV) (see also Tables 2 and 4). 

The macro for the CDF of bivariate normal distribution is readily available on the Web 
(for example, http://socr.ucla.edu/htmls/HTML5/BivariateNormal/).  

Using formula (2), we can approximately evaluate quantiles for the close to CS 

correlation matrices R  if the values of 
( )

3

2

/ ( 1 2 ),11 ( , )
3 1

/ ,
1

yf yF
Q y D

αα

α

ν ρν
ρ ρν

ρ

′Φ +′
=

−   ′  +  

are 

known. The values of 3F  and quantiles for 0.1,...,0.9ρ =  and 0.05,0.1α = are 
provided in Tables 1 and 3. 
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2.2 Case 4n ≥  

The matrix D  is positive definite if 1 1 / ( 1)nρ> > − − . The n n× correlation matrix R
such that lh hl hlr r ρ ε= = +  ( h l≠ ) is expressed by the formula 

2

0 2( , ) / | ( , 1 ) ,
1 22 1hln hl n

yQ y R f y Q Dε
ρε ν ρ
ρν ρ= −

   ∂ ∂ = +     ++   
. (3) 

The proof is provided in Appendix B. 

It is easy to see that   

[ ] ( )2 2( , ) [ ( ,1)] ( ,1) [ ,1 ] (max | |)n n
n hl hl

h l
Q y R y f y y oε ε−

<

= Φ + Φ +∑  (Zaslavsky and 

Chen, 2016), if 0ρ = . The case of 0hl
h l
ε

<

<∑  is allowed if ( , )nQ y R  is positive definite

and | |hl
h l

ε
<
∑  is sufficiently small. 

From formula (3) and formula ( , ) ( ,1) ( ,1)
1

n

n
y xQ y D f x dxρ

ρ
∞

−∞

 −
= Φ 

− 
∫  (Steck and 

Owen 1962; Tong 1990, p.115) it follows that 0( , ) / |
hln hlQ y R εε =∂ ∂  is a decreasing to 

zero function of n as n →∞ .  

For the correlation matrix R , we have the approximate formula for the upper α quantile 
as follows: 

(max | |)hl n hl
h l

y y F oα α ε ε
<

′= − +∑ , (4) 

where 
2

1

,
1 22 11 ( , )

1 ( / , ( ))
1

n

n

n

yQ D
f yF

n Q y D

α

α

α

ρ
ρν ρν

ρρ ν
ρ

−

−

 ′  
  ++′   =

− ′
+

The proof is provided in Appendix C. 

It is easy to see that 1 1/( ,1)(1 ) (max | |)n
hl hl

h l
y y n f y oα α α α ε ε− −

<

′ ′= − − +∑  (Zaslavsky 

and Chen 2016), if 0ρ = .  

The values of nF  and quantiles for 0.1,...,0.9ρ = , 3,...,9n =  and 0.05,0.1α = are 
provided in Tables 1 and 3. 
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It is worth mentioning that numerical calculation of nF in Tables 1and 3 for 3n =  were 
performed using SAS functions PDF, CDF, and PROBBNORM. If using the MC 
simulation (procedure IML) instead of PROBBNORM, the result may be slightly less 
precise.  

3. Performance of the Linear Approximation

In our numerical studies, we used SAS 9.4 proc IML. The MC simulation was a fast but 
not very precise method. We compared the MC simulation results for quantiles with the 
estimates by Gupta et al. (Gupta at al.1983) that were obtained using quadrature formulae 
for the integrals. Gupta et al. claim that the precision is 10-8 but published 10-5 estimates. 
To achieve 10-4 precision in the evaluation of quantiles using MC simulation, we used 107 
of draws from the multivariate normal distribution. Because of memory restriction 
(100GB of RAM allocated to SAS), we were unable to increase the number of draws 
sufficiently to achieve a higher precision. With 10-4 precision in mind, we calculated the 
95% and 90% quantiles for the maximum of RVs with matrices ( )D ρ ε+  by formulae 
(2) and (4) and by the exact MC simulation. With | | 0.05ε ≤ , both results were very
close. In Tables 5 - 8 we provide the estimates of 95% and 90% quantiles for

(0.5 0.05)D ±  and (0.2 0.05)D ± . If formula (4) were precise,
( )

1
(1 ) 0{max }D

ii n
P Y yρ ε

α α+

≤ ≤
− −≤ = . Because it is approximate, the value 

( )

1
(1 ){max }D

ii n
P Y yρ ε

α α+

≤ ≤
≤ − −  is a measure of the precision for the estimates of quantiles.

With an increase in the dimension n, the perturbation ( 1) / 2hl
h l

n nε ε
<

= −∑ increases,

but the error of formulae (2) and (4) remains at 43 10−≤ × .  

4. Pharmaceutical Example

The objectives of the study (Littell, Pendergast and Natarajan 2000) were to compare the 
effects of two drugs and a placebo on a measure of respiratory ability, called forced 
expiratory volume (FEV1). Twenty-four patients were assigned to each of the three 
treatment groups, and FEV1 was measured at baseline (immediately prior to 
administration of the drugs) and at hourly intervals thereafter for eight hours. Data were 
analyzed using SAS PROC MIXED. The correlations for different correlation structures 
of repeated measures are given in (Littell et al. table II, 2000) for one of the drugs. Of 
these correlation structures, we consider CS and Toeplitz models. The off-diagonal 
entries of the CS correlation matrix are 0.766ρ = . The Toeplitz correlation matrix is 
defined by off-main-diagonal diagonals with diagonal-wise equal entries. Counting from 
the 7-dimensional diagonal down to the one-dimensional diagonal, the corresponding 
entries are defined by the following numerical values: 0.858, 0.811, 0.777, 0.716, 0.686, 
0.635, and 0.593. We calculated the 95% quantile of the maximum of FEV1 for the CS 
model and for the Toeplitz model using formula (4), the quantile 0.05 2.17734y′ = , 

8 0.03784F =  for 8n =  and 0.8ρ =  (see Tables 1 and 2). The estimate of the 95% 
quantile for the CS model with ρ = 0.766 using formula (4) is 2.2134, and the 
corresponding probability for this estimate is 0.9503 (0.03% error). For comparison, the 
exact value of the 95% quantile for the CS matrix with ρ = 0.766 is 2.2106. The 
estimate of the 95% Toeplitz quantile using formula (4) is 2.1449, and the corresponding  
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probability is 0.9449 (0.51% error). For comparison, the exact value of the 95% quantile 
for the Toeplitz matrix is 2.1890. Thus, formula (4) performs well for the CS matrices 
and should include a margin of error in α  if applied to the matrices substantially 
deviating from the CS structure.  

5. Conclusion.

By determining the proper choice of deviation hlε from the CS structure, a researcher has 
some freedom to better reflect the correlation structure of multiple correlated testing and 
to verify the sensitivity of the results. The numerical study shows that the precision of the 
linear approximation (4) is 43 10−≤ × if the perturbation of each entry of the correlation 
matrix is 0.05≤  and the dimension 9≤ .  

The high dimensional and high precision studies with multiple testing may require 
advanced hardware and special software. The performance of linear approximation for 
high dimensions may be a topic of further research. If the precision of linear 
approximation is verified for high dimensions, using linear approximation may 
substantially simplify research as an alternative to the computer simulations for each 

hlε .  particular 

Disclaimer 

The opinions and information in this article are those of the author and do not represent the 
views and/or policies of the U.S. Food and Drug Administration. 
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Appendix A: The proof of formula (1). 

It is evident that  ( , ) / hlQ y D ε∂ ∂ are equal for all h l≠ . Therefore we need to proof that 

( )2
( , ) / ( , 1 ) / ( (1 2 ),1hlQ y D f y yε ν ρ ν ρ ∂ ∂ = + Φ +   , or , equivalently,

2 2 (1 2 )( , ) / ( , 1 ) / ,hlQ y D f y y ρ
ε ν ρ ν

ν
 + ∂ ∂ = + Φ  
 

  . 

Proof. 

Let 
1

1
(1

D
ρ ρ

ρ ρ
ρ ρ

 
 =  
  

 and 1 1 1

( 1)
(1 ) (2 1) ( 1)

( 1)
D

ρ ρ ρ
ρ ρ ρ ρ ρ

ρ ρ ρ

− − −

+ − − 
 = − + − + − 

− − +  

 .   

Let R  be a correlation matrix with the non-diagonal entries hl hlr ρ ε= + .  According to 
(Berman,  1964), the derivative 12( , ) /Q y R ε∂ ∂  at 0hlε =  ( )h l<  is given by the 
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derivative 12( , ) /Q y R ε∂ ∂  at 0hlε =  ( )h l< is given by 
11.5 1 0.5

12 0 0( , ) / | (2 )
T

hl

y Z D ZQ y R e dzεε p σ
−− − −

= −∞
∂ ∂ = ∫ , where ( , , )TZ y y z= . It is clear that 

1 1 2 2 1 2(1 ) (2 (2 1) (2 ) )TZ D Z y z y zρ ρ ρ− − −= − + − + + . 

Let 
2
1

a yz t
a
ρ
ρ

= +
−

, where 1(1 )a ρ −= +  . Then ( 2 ) / (1 )z t t yρ ρ ρ= + + +  and 

1 2 2(1 ) 1 2
(1 )(2 1) (1 )

TZ D Z t yρ
ρ ρ ρ

− +
= +

− + +

By changing variables in the integral, the upper limit of integration  z y=  is transformed 
into the upper limit of integration (1 ) / (1 )t y ρ ρ= − + . It is clear that dz dt= . Thus 

2 22
0

(1 )/(1 ) 0.5 (1 )(1 )1.5 1 /(1 )
12 0( , ) / (2 )

y tyQ y R r e e dt
ρ ρ σ ρ ρρp σ

−− + − − +− − − +

−∞
∂ ∂ = ∫

2
2

(1 )(1 ) 0.5
1.5 1 /(1 ) (1 )(1 2 )(1 )

12 0( , ) / (2 )
tyyQ y R r e e dt

ρρ
ρ ρ ρρp σ

+− −
− − − + − ++

−∞
∂ ∂ = ∫ . It is clear that 

21.5 1 /(1 ) 0.5 1 2
0 0

1(2 ) (2 ) (1 ) ( , 1 )
1

ye f yρρp σ p σ ρ ρ
ρ

− − − + − −+
= + +

+
. Then  

21.5 1 /(1 ) 0.5 1 2
0 0

(1 ) (1 ) (1 )1(2 ) (2 ) ( , 1 )
1 (1 )

ye f yρ ρ ρ ρρp σ p σ ρ
ρ ρ

− − − + − − + + −+
= +

+ −
 

21.5 1 /(1 ) 0.5 2
0 1

0

(1 ) (1 )1(2 ) (2 ) ( , 1 )
1

ye f yρ ν ρ ρρp σ p ρ
ρ σ

− − − + −
−

+ −+
= +

+
. We use the

identities: 

2 0.5
0 / (1 )(1 ((1 ) (1 2 )) / (1 )(1σ ρ ρ ρ ρ ρ ρ− + = − + − + = 

0.5 0.5
0

1/ (1 )(1 ( (1 2 )) (1 2 ) /
1

ρσ ρ ρ ρ ρ ν
ρ

−
− + = + = +

+
    

2 22
0

(1 )/(1 ) 0.5 (1 )(1 )1.5 1 /(1 )
12 0( , ) / (2 )

y tyQ y R r e e dt
ρ ρ σ ρ ρρp σ

−− + − − +− − − +

−∞
∂ ∂ = ∫

2 2
0( , ) / ( , 1 ) ( / , / (1 )(1 ))hlQ y D f y yε ν ρ ν σ ρ ρ ∂ ∂ = + Φ − +  , where

0.5
0 ((1 )(1 2 ))σ ρ ρ= − + . 

0.5
0

1 2/ (1 )(1 ) ((1 )(1 2 )) / (1 )(1 ) ρ
σ ρ ρ ρ ρ ρ ρ

ν
+

− + = − + − + =
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21.5 1 /(1 ) 0.5 1 2
0 0

1(2 ) (2 ) (1 ) ( , 1 )
1

ye f yρρp σ p σ ρ ρ
ρ

− − − + − −+
= + +

+
 

Thus 
2 2 (1 2 )( , ) / ( , 1 ) ( / , )hlQ y D f y y ρ

ε ν ρ ν
ν
+ ∂ ∂ = + Φ  . It can be reduced to 

form (1) by change of variables. 

Appendix B: The proof of formula (3). 

The given below proof is not applicable to the 3 3×   case because it uses the assumption 
4n ≥  . However, formula (1) for the  3 3×  case can be interpreted as a trivial form of 

formula (3) for a one-dimensional CS correlation “matrix” with the single” diagonal” 
entry “one”. 

Lemma 1. For a CS matrix with the non- diagonal entries α  and the diagonal entries β  , 

the inverse matrix is a CS matrix with the non-diagonal entries 
( )(( 1) )n

α
β α α β

−
− − +

and the diagonal entries 
( 2)

( )(( 1) )
n

n
α β

β α α β
− +

− − +
. Similarly, for the n n×  matrix 1D−  the 

non-diagonal entries are 
(1 )(( 1) 1)

a
n
ρ

ρ ρ
−

=
− − +

and the diagonal entries are 

( 2) 1
(1 )(( 1) 1)

nb
n
ρ

ρ ρ
− +

=
− − +

. 

Proof. Consider for simplicity the matrix 1D− . 

Let (1,...,1)d ′ = . Then (1 )( )
1

D I ddρρ
ρ

′= − +
−

 and 1 1(1 ) ( )D I ddρ λρ− − ′= − − , 

where 1(( 1) 1)nλ ρ −= − + . The non-diagonal entries are 

1(1 )
(1 )(( 1) 1)

a
n
ρλρ ρ

ρ ρ
− −

= − − =
− − +

and the diagonal entries are 

1 ( 2) 1
(1 ) (1 )(( 1) 1)

nb
n

λρ ρ
ρ ρ ρ

− − +
= =

− − − +
.   

Lemma 2. Let nA  be a n n×  CS matrix with non-diagonal entries  a  and the diagonal 

entries b . Let 
2

( 3)
ayc

n a b
= −

− +
, 2 3 4( , ,..., )n nt t t t− ′=  and 3( , , ,..., )n nt y y t c t c ′= + + . 

Then 
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2 2 2
2 2 2

2 [( 2) ( 1) )]
( 3)n n n n n nt A t n ab n a b y t A t
n a b − − −′ ′= − − − + +
− +

, where 2nA − is a 

( 2) ( 2)n n− × −  principle submatrix of the matrix nA . The proof can be achieved by the 
algebraic calculations. 

Using notations of Lemma 1, we get for the matrix 1D− : 

2 22 2(( 2) ( 1) )
( 3) 1

n ab n a b
n a b ρ

− − − + =
− + +

Lemma 3. For a CS n n×  matrix nA  with the non- diagonal entries a  and the diagonal 

entries b , the determinant 1| | ( ) (( 1) )n
nA b a n a b−= − − + . 

Proof. The matrix nA  has 1n − eigenvalues ( )b a− corresponding to eigenvectors 
( 1,0,....0,1,0,...,0)′−  and the eigenvalue (( 1) )n a b− +  corresponding to the 
eigenvector (1,1,...,1)′ . 

Proof of the theorem.  

By a permutation transformation of the matrix R , any non-diagonal entry of R can be 
placed into the first row and the second column. Therefore, without loss of generality, we 
study the perturbation of the entry 12r . 

Consider the case of the correlation matrix R  with the entry 12 12r ρ ε= +  and hlr ρ=  
for the rest of  h l< . Then (Berman, 1964) 12( , ) / ( )hlQ y R r r ρ∂ ∂ =  ( )h l<  is 

1
12 3/2 1/2

1 1( , ) / ( ) ... exp( ) ...
(2 ) | D | 2

y y
T

n hl n n nnQ y R r r D dx dxρ τ τ
p

−

−∞ −∞

∂ ∂ = = −∫ ∫ , where  

1| D | (1 ) (1 ( 1) )n nρ ρ−= − + −  and 3( , , ,..., )n ny y x xτ ′= . According to Lemma1, the 
1D− is a CS matrix with the non-diagonal entries a  and the diagonal entries b .  Let us 

change the variables as follows: 
2

( 3)i i
ayx t

n a b
= −

− +
(3,..., )i n= . Then the upper 

integration limit for it  is 
2 ( 1)

( 3) ( 3)
ay b n ay y y

n a b n a b
+ −

= + =
− + − +

 . From Lemma 1 it 

follows that 21 /
1

y y yρ ν
ρ

−
= =

+
 . 

From Lemma 2 it follows that 

2

12 2 2 2 3/2 1/2

exp( / (1 ))( , ) / ... exp( 0.5 ) ...
(2 ) | D |

y y

n n n n nn

yQ y R r t A t dt dtρ
p − − −

−∞ −∞

− + ′∂ ∂ = −∫ ∫
 

.  
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It is clear that 
22

/2 1/2 /2 1 1/2

(1 ) ( , 1 )exp( / (1 ))
(2 ) | | (2 ) | |n n

f yy
D D

ρ ρρ
p p −

+ +− +
= , where  

1| | (1 ) (1 ( 1) )nD nρ ρ−= − + − . We use the notation 

/2 1 1 1/2

(1 )
(2 ) [(1 ) (1 ( 1) )]n nK

n
ρ

p ρ ρ− −

+
=

− + −
and  

2 2 2 3( ) ... exp( 0.5 ) ...
y y

n n n nJ y t A t dt dt− − −
−∞ −∞

′= −∫ ∫
 

 . Then 

2
12( , ) / ( , 1 ) ( )nQ y R r f y KJ yρ∂ ∂ = +  .

Let us Consider the n-2 –dimensional integral ( )J y . 

If 3n = , from lemma 1 and 2 it follows 1 1
2 (1 )(1 ) (1 2 )nA ρ ρ ρ− −

− = + − + . Let 4n ≥ , 
then the diagonal entries of a ( 2) ( 2)n n− × −  matrix 2nA −  are 

( 2) 1
(1 )(( 1) 1)

n
n
ρβ

ρ ρ
− +

=
− − +

 and the non-diagonal entries are 
(1 )(( 1) 1)n

ρα
ρ ρ

−
=

− − +
. 

The matrices 1
2nB A−

−=  and 1
2nB A−

−=  belong to the CS class. According to Lemma 1, 

the diagonal entries of 1
2nB A−

−=  are 
2

2

2 1 1 2 1(2 1)
1 1

ρ ρ ρ ργ ρ
ρ ρ ν

− + + − +
= = + =

+ +
 and 

the non-diagonal entries are 
1

1
ρρ

ρ
−
+

. In order to evaluate the integral ( )J y  using 

published tables for the CS integral, we need to normalize the entries on the main 
diagonal of the matrix 1

2nB A−
−= . To do so, we change the variables in the integral as 

follows 1/2/t z γ= , where z  is a 2n −  dimensional vector.  Then the upper limits of 
integration by variable z  is  1/2 yγ −

 . The diagonal entries of 1
2nB Aγ γ−

−=  are 
( 2) 1

(1 )(( 1) 1)
n

n
ργ

ρ ρ
− +

− − +
 and the diagonal entries of 1 1 1( )B Bγ γ− − −=  are 1 1γ γ− = . The 

non-diagonal entries of 1Bγ −  are 1 1
1 2 1
ρ ργ ρ

ρ ρ
− −

=
+ +

 . Thus ( )2 /2 1/2( ) ( )nJ y J yγ γ− −=  . 

To calculate  ( )KJ y , we use the 2n −  dimensional CDF 

1/2 1/2

1/2 1
2 2 2 3( 2)/2 1 1/2

1( | ) ... exp( 0.5 ) ...
2 1 (2 ) | |

y y

n n n nnQ y z B z dz dz
B

γ γργ γ
ρ p γ

− −

− −
− − −− −

−∞ −∞

′= −
+ ∫ ∫

 



, where 
3

1 1 ( 1) 1| |
2 1 2 1

n
nB ρ ργ

ρ ρ

−
−  + − +

=  + + 
. Then   
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1/2 ( 2)/2 1 1/2 1/2
2( ) (2 ) | | ,

2 1
n

nJ y B Q y D ργ p γ γ
ρ

− − − −
−

  
=   +  

  and 

( ) ( )2 /2 2 /21/2 ( 2)/2 1 1/2 1/2
2( ) ( ) (2 ) | | ,

2 1
n n n

nKJ y K J y K B Q y D ργ γ γ p γ γ
ρ

− −− − − −
−

  
= = =  +  

  

1/23 2
( 2)/2 1/2

21/2/2 1 1

( )

(1 ) 1 ( 1) 1 1(2 ) (2 1) ,
2 1 2 1 1 2 1(2 ) (1 ) (1 ( 1) )

n n
n

nn n

KJ y

n Q y D
n

ρ ρ ρ ρ ρp ρ γ
ρ ρ ρ ρp ρ ρ

− −
− −

−− −

=

        + + − + −
+        + + + +       − + −      





Thus 

  2 1/2
12 2

1( , ) / ( , 1 ) ,
1 2 1n nQ y R r f y Q y Dρ ρρ γ

ρ ρ
−

−

  +
∂ ∂ = +   − +  

 , where 

1/2 1/21 (2 1)
1

y yργ ρ
ρ

− −−
= +

+
 . Using the notation 

1
1

ρν
ρ

+
=

−
, we get 

2
12 2( , ) / ( , 1 ) ,

2 12 1n n
yQ y R r f y Q D ρν ρ

ρν ρ−

  
∂ ∂ = +   ++   

. 

Appendix C: The proof of formula (4). 

We consider the case of n ≥4. The proof of the case of n =3 is similar. 

From formula (3), it follows that by definition, ( , ) ( , ) 1Q y D Q y Rα α α′ = = − . Thus 

2

2

( , ) ( , )

( , 1 ) / ( (1 2 )), (max | |)
1 2

n n

n hl hl
h l

Q y R Q y D

f y Q y D o

α α

α α
ρν ρ ν ρ ε ε
ρ−

<

= +

   + + +    +  
∑

Therefore 

2

2

( , ) ( , )

( , 1 ) / ( (1 2 )), (max | |)
1 2

n n

n hl hl
h l

Q y D Q y D

f y Q y D o

α α

α α
ρν ρ ν ρ ε ε
ρ−

<

′ = +

   + + +    +  
∑

Let y y yα α′∆ = − .  Because the functions in this expression are smooth and restricted in 

yα′  , we can expand ( , ) ( , )n nQ y D Q y Dα α′ − into an infinite series by small hlε . 
Presenting y∆  as an infinite series by hlε  with unknown coefficients and expanding the 
left hand side by hlε  , we get that (max | |).hly O ε∆ = Therefore, 
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( , ) ( , ) ( , ) / ( )Q y D Q y D y Q y D y o yα α α′ ′− = −∆ ∂ ∂ + ∆  and 

2

2

( , ) / ( )

( , 1 ) / ( (1 2 )), (max | |)
1 2

n

n hl hl
h l

y Q y D y o y

f y Q y D o

α

α α
ρν ρ ν ρ ε ε
ρ−

<

′−∆ ∂ ∂ + ∆ =

   ′ ′+ + +    +  
∑

To calculate ( , ) /Q y D yα′∂ ∂ , we use the following formula (Steck and Owen 1962, (A)): 

1( , ) ( ,1) / ,
1

y

n nQ y D n f x Q x D dxρν
ρ−

−∞

  
=   +  
∫ . 

Then 1( , / ( ,1) / ,
1n nQ y D y nf y Q y Dα α α
ρν
ρ−

  ′ ′ ′∂ ∂ =   +  
. 

Thus, 

2

2

2

( ,1) / ,
1

( , 1 ) / ( (1 2 )), (max | |)
1 2

n

hl n hl
h l

f y Q y y

f y Q y D o
n

α α

α α

ρν
ρ

ν ρε ρ ν ρ ε
ρ

−

−
<

  ′ ′− ∆ =  +  
   ′ ′+ + +    +  

∑

By a simple algebra, 

2
( , 1 )

( , )
( ) 1

f y
f y

f y
α

α
α

ρ ν ν
ρ

 ′ +  ′=
′ +

. 

Finally, 

( )2

1

/ (1 2 ) ,
1 21 ( , )( )

1
/ ,

1
(max | |) ( )

n

hl
h l

n

hl

Q y D
f yy y

n
Q y D

o o y

α
α

α α

α

ρν ρ
ρνε

ρ ρν
ρ

ε

−

<
−

  ′ +  +′   ′= − +
−   ′  +  

+ ∆

∑
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Table 1. The values of nF  for 0.1,...,0.9ρ =  and 0.05α =  
/n ρ  3 4 5 6 7 8 9 

0.1 0.02173 0.01315 0.00890 0.00647 0.00494 0.00390 0.00317 

0.2 0.03120 0.01928 0.01327 0.00977 0.00753 0.00601 0.00493 

0.3 0.04285 0.02684 0.01863 0.01380 0.01069 0.00857 0.00704 

0.4 0.05742 0.03615 0.02517 0.01868 0.01450 0.01163 0.00956 

0.5 0.07599 0.04790 0.03334 0.02474 0.01917 0.01536 0.01262 

0.6 0.10077 0.06338 0.04404 0.03260 0.02524 0.02019 0.01656 

0.7 0.13647 0.08549 0.05917 0.04369 0.03375 0.02694 0.02215 

0.8 0.20202 0.12169 0.08389 0.06170 0.04754 0.03784 0.03095 

0.9 0.32677 0.20202 0.13849 0.10144 0.07783 0.06178 0.05042 

Table 2. The values of 95% quantile ( 0.05α = ) for 0.1,...,0.9ρ =
/n ρ  3 4 5 6 7 8 9 

0.1 2.11585 2.22762 2.31157 2.37849 2.43398 2.48126 2.5224 

0.2 2.10707 2.21796 2.30056 2.3664 2.42098 2.46749 2.50793 

0.3 2.09693 2.2042 2.2847 2.34882 2.40194 2.44718 2.4865 

0.4 2.08197 2.1854 2.26291 2.32458 2.37562 2.41904 2.45675 

0.5 2.06208 2.16033 2.23382 2.29219 2.34044 2.38144 2.41702 

0.6 2.03577 2.12719 2.1954 2.24948 2.2941 2.33198 2.3648 

0.7 2.00055 2.08298 2.14429 2.1928 2.23274 2.2666 2.28591 

0.8 1.85164 2.02189 2.07395 2.11502 2.14878 2.17734 2.20203 

0.9 1.87666 1.92888 1.96738 1.99766 2.02248 2.04344 2.06152 

666



Table 3. The values of nF  for 0.1,...,0.9ρ =  and 0.1α =  
/n ρ  3 4 5 6 7 8 9 

0.1 0.03623 0.02195 0.01487 0.01080 0.00824 0.00652 0.00529 

0.2 0.04769 0.02941 0.02018 0.01482 0.01140 0.00908 0.00743 

0.3 0.06108 0.03802 0.02625 0.01937 0.01495 0.01194 0.00979 

0.4 0.07705 0.04815 0.03332 0.02461 0.01901 0.01519 0.01245 

0.5 0.09679 0.06052 0.04188 0.03092 0.02387 0.01906 0.01561 

0.6 0.12257 0.07651 0.05285 0.03896 0.03006 0.02396 0.01960 

0.7 0.15915 0.09902 0.06823 0.05018 0.03864 0.03075 0.02514 

0.8 0.21893 0.13560 0.09312 0.06830 0.05246 0.04168 0.03405 

0.9 0.35123 0.21636 0.14794 0.10814 0.08281 0.06568 0.05353 

Table 4. The values of 90% quantile ( 0.1α = ) for 0.1,...,0.9ρ =
/n ρ  3 4 5 6 7 8 9 

0.1 1.80893 1.93201 2.02397 2.09702 2.15739 2.20871 2.25326 

0.2 1.79638 1.91665 2.00651 2.07786 2.13683 2.18694 2.23044 

0.3 1.78012 1.89649 1.98336 2.0523 2.10923 2.15758 2.19953 

0.4 1.75948 1.87073 1.95367 2.01942 2.07366 2.1197 2.1596 

0.5 1.73352 1.83827 1.91623 1.97793 2.02879 2.07191 2.10925 

0.6 1.70081 1.79739 1.86912 1.92531 1.97246 2.01197 2.04616 

0.7 1.65892 1.74518 1.80909 1.85949 1.90091 1.93595 1.96624 

0.8 1.60308 1.67585 1.7296 1.77191 1.80662 1.83594 1.86126 

0.9 1.52091 1.57437 1.6137 1.64458 1.66985 1.69118 1.70956 
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Table 5. Estimation of quantile 0.05y  by formulae (2), (4) and by MC simulation, where 
0.5ρ = ,  0.05hlε = ±  and 3,...,9n =  

n 3 4 5 6 7 8 9 

hl
h l
ε

<
∑

0.15 0.3 0.5 0.75 1.05 1.4 1.8 

0.05y  by (2),(4) 2.0507 2.1460 2.2171 2.2736 2.3203 2.3599 2.3943 

Exact quatile of ( 0.05)D ρ + 2.0495 2.1452 2.2162 2.2723 2.3185 2.3580 2.3928 

( 0.05)
0.051

{max .95} 0D
ii n

P Y yρ+

≤ ≤
−≤  

0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 

hl
h l
ε

<
∑

-0.15 -0.3 -0.5 -0.75 -1.05 -1.4 -1.8

0.05y  by (2),(4) 2.0735 2.1747 2.2505 2.3107 2.3606 2.4029 2.4397 

Exact quantile of ( 0.05)D ρ −  2.0723 2.1740 2.2496 2.3096 2.3590 2.4012 2.4377 

( 0.05)
0.051

{max .95} 0D
ii n

P Y yρ−

≤ ≤
−≤  0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002

Table 6. Estimation of quantile 0.1y  by formulae (2), (4) and by MC simulation, where 
0.5ρ = ,  0.05hlε = ±  and 3,...,9n = . 

n 3 4 5 6 7 8 9 

hl
h l
ε

<
∑

0.15 0.3 0.5 0.75 1.05 1.4 1.8 

0.05y  by (2),(4) 1.7190 1.8201 1.8953 1.9547 2.0037 2.0452 2.0811 

Exact quatile of ( 0.05)D ρ +  1.7177 1.8194 1.8935 1.9530 2.0023 2.0436 2.0795 

( 0.05)
0.051

{m 0.9ax }D
ii n

P Y yρ+

≤ ≤
−≤  

0.0003 0.0001 0.0003 0.0003 0.0003 0.0003 0.0003 

hl
h l
ε

<
∑

-0.15 -0.3 -0.5 -0.75 -1.05 -1.4 -1.8

0.05y  by (2),(4) 1.7480 1.8564 1.9372 2.0011 2.0539 2.0986 2.1374 
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Table 7. Estimation of quantile 0.05y  by formulae (2), (4) and by MC simulation, where 
0.2ρ = ,  0.05hlε = ±  and 3,...,9n = . 

n 3 4 5 6 7 8 9 

hl
h l
ε

<
∑

0.15 0.3 0.5 0.75 1.05 1.4 1.8 

0.05y by (2),(4) 2.1024 2.2122 2.2939 2.3591 2.4131 2.4591 2.4991 

Exact quatile of ( 0.05)D ρ + 2.1030 2.2122 2.2936 2.3583 2.4124 2.4581 2.4978 

( )
0.051

0.9} 5{max D
ii n

P Y yρ ε+

≤ ≤
−≤  -.0001 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002

hl
h l
ε

<
∑

-0.15 -0.3 -0.5 -0.75 -1.05 -1.4 -1.8

0.05y by (2),(4) 2.1117 2.2237 2.3072 2.3737 2.4289 2.4759 2.5168 

Exact quatile of ( 0.05)D ρ −  2.1123 2.2240 2.3069 2.3733 2.4282 2.4747 2.5158 

( )
0.051

0.9} 5{max D
ii n

P Y yρ ε+

≤ ≤
−≤  -.0001 0.0000 0.0000 0.0001 0.0001 0.0002 0.0001

Table 8. Estimation of quantile 0.1y  by formulae (2), (4) and by MC simulation, where 
0.2ρ = ,  0.05hlε = ±  and 3,...,9n = . 

n 3 4 5 6 7 8 9 

hl
h l
ε

<
∑

0.15 0.3 0.5 0.75 1.05 1.4 1.8 

0.05y by (2),(4) 1.7892 1.9078 1.9964 2.0667 2.1249 2.1742 2.2171 

Exact quatile of ( 0.05)D ρ +  1.7884 1.9072 1.9955 2.0659 2.1238 2.1730 2.2163 

( )
0.051

0.} 9{max D
ii n

P Y yρ ε+

≤ ≤
≤ −  0.0002 0.0001 0.0002 0.0002 0.0002 0.0003 0.0002

Exact quatile of ( 0.05)D ρ −  1.7469 1.8558 1.9357 1.9997 2.0524 2.0968 2.1357

( 0.05)
0.051

{m 0.9ax }D
ii n

P Y yρ−

≤ ≤
−≤  0.0002 0.0001 0.0003 0.0000 0.0003 0.0004 0.0003
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hl
h l
ε

<
∑

-0.15 -0.3 -0.5 -0.75 -1.05 -1.4 -1.8

0.05y by (2),(4) 1.8035 1.9255 2.0166 2.0890 2.1488 2.1997 2.2438 

Exact quatile of ( 0.05)D ρ −  1.8029 1.9250 2.0159 2.0882 2.1481 2.1987 2.2430 

( )
0.051

0.} 9{max D
ii n

P Y yρ ε+

≤ ≤
≤ −  0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002

670


	Multiple Testing with Close to Equally Correlated Structure
	Abstract
	In clinical trials with multiple primary endpoints or with multiple observations on the same sampling unit, the maximum of all observations is a convenient statistic that controls the familywise error rate. The quantile of this statistic depends on th...
	Key words: Compound symmetry; Covariance matrices; Monte Carlo simulation; Quantile; Sensitivity analysis; Taylor expansion;



