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Abstract
There is growing concern over the number of scientific findings that fail when replication is at-

tempted. Traditional statistical inference is designed as a look back to how data originates. Perhaps
we also need to look ahead in anticipation of what data we will see next. Through the use of a
Bayesian prediction model, this paper seeks to determine what can reasonably be expected to occur
in a replication trial.
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1. Introduction

There is growing concern over the number of scientific findings that fail when replication is
attempted. Indeed, when repeated experimentation leads to distinct versions of “truth”, the
scientific method as a whole becomes suspect. The question of how best to understand and
analyze replication studies has drawn great interest within the statistical community. At the
2017 Joint Statistical Meetings, over 25 presentations featured replication or reproducibility
in the title or as a key word.

In this paper, we take the position that the random behavior governing replicated ex-
periments is misunderstood by scientists in general, and perhaps by some statisticians as
well. Consider a quote from legendary statistician John Tukey (1991): “Truly solid knowl-
edge does not come from analyzing a single experiment, but from a demonstrated ability to
repeat experiments, each of which shows confident direction at a reasonable error rate.” In
other words, a statistically significant result alone is not enough to draw a final conclusion.
It is only after we see statistical significance across repeated experiments that we are will-
ing to take a finding as truth. For a scientific claim to be established as credible, we must
have the same finding appear in a replication attempt. However, this rarely occurs in prac-
tice. Open Science Collaboration (2015) attempted to replicate 100 prominent studies in
psychology, with only 39 repeating the outcome of statistical significance. Replication at-
tempts in the health sciences do not fare any better (Begley and Ellis, 2012). Is the problem
with the science, or with unrealistic expectations for replicated experiments?

So, what is realistic for a replicated study? To answer, we will pose the question as a
problem in prediction. With the use of a simple Bayesian model, we will show how the
information from a single study can be used to determine what can reasonably be expected
to occur in a replication trial. Bayesian methods handle prediction problems more natu-
rally than other frameworks; thus our choice of a Bayes model. It should be noted that
the lessons learned in this inquiry can be seen to translate across statistical frameworks, in-
cluding frequentist approaches, information theoretic methods, and more intricate Bayesian
assumptions.
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2. Predicting a Replication Trial

Consider an experiment conducted to study some scientific phenomenon, followed by a
replication study where the intention is to either verify of refute the original result. Suppose
the experimental results can be summarized by the observed effect sizes and their standard
errors. Let M1,M2 represent the sample effect sizes for the original trial, and the replication
trial, respectively. Let σ1, σ2 represent the standard errors of estimation for the respective
trials. For simplicity, assume σ1, σ2 are equal, and that the common σ is known. We are
assuming the trials are performed independently, under identical conditions. So, the true
underlying effect size θ is constant across experiments.

Our model and notation is borrowed from Senn (2002). Take

M1,M2 | θ ∼ N
(
θ, σ2

)
.

We are considering the problem of predicting the results of the replication trial, based on
the observed results of the original experiment. Take a “zero weight” noninformative prior
on θ. The only information used in our model is from the experimental results. In this way,
we are mimicking the thinking of an experimenter that is unaware (intentionally or not) of
any outside evidence connected to their study. Let m1 denote the observed effect size for
the first trial. (Without loss of generality, take m1 > 0 ).

Although our approach is Bayesian, we would like our focus to be on the p-value, the
most widely used measure of evidence. We can define a Bayesian analog to the p-value
through the posterior probability of a type S error. A type S, or sign, error occurs when
the observed effect size m is in the opposite direction of the true effect size θ (Gelman and
Tuerlinkx, 2000). Since m1 > 0, the initial observed effect is in the positive direction. A
type S error occurs if the true effect is actually in the negative direction. Define

p1 = P (θ < 0 |m1)

as the posterior probability of a type S error. Under our modeling conditions, one can
establish the posterior distribution on θ as

θ |m1 ∼ N
(
m1, σ

2
)
.

Thus, the posterior probability of a type S error is

p1 = Φ

(
0−m1

σ

)
= Φ(−z1) ,

the (one-sided) p-value for testing Ho : θ ≤ 0, H1 : θ > 0 with z1 = m1/σ, the standard-
ized test statistic using results from the original trial. Let

P2 = P (θ < 0 |M2)

= Φ (−Z2)

denote the corresponding p-value from the replication trial, where Z2 = M2/σ. As the
replication trial is the focus of our prediction problem, M2 is not yet observed. Thus, P2 is
a random variable. The predictive distribution for M2 given m1 is established to be

M2 |m1 ∼ N
(
m1, 2σ

2
)
.

The predictive distribution for Z2 given z1 follows directly as

Z2 | z1 ∼ N (z1, 2) . (1)
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Table 1: Prediction Intervals for Replication P-values

p1 z1 95% p.i. for P2

.05 1.645 [.000, .870]
.025 1.960 [.000, .792]
.005 2.576 [.000, .578]

.0001 3.719 [.000, .172]

We can summarize the predictive distribution for Z2 using a 95% prediction interval. From
(1), we get the interval

z1 ± 1.96
√
2. (2)

The effect size m1, the test statistic z1, and the p-value p1 provide equivalent informa-
tion regarding the outcome of the first trial. We can derive the posterior predictive distri-
bution for P2 given p1 from (1). A 95% prediction interval for P2 can be derived from (2)
as [

Φ
(
−z1 − 1.96

√
2
)
,Φ
(
−z1 + 1.96

√
2
)]

.

It is our interest to see how closely we are able to predict the replication p-value P2

based on the p-value from the original trial. Table 1 displays the 95% prediction interval
for P2, conditional on the result from the original trial.

What stands out is the sizable range of plausible outcomes for the replicated trial. Tak-
ing a statistically significant result as our lone source of information is not enough to accu-
rately predict the outcome of the next trial. As the examples in Table 1 illustrate, it should
not be surprising for an original trial and a replication trial to differ in their findings.

The fact that p-values exhibit greater variability than may be appreciated has been re-
vealed in various other ways. See Boos and Stefanski (2010) for a mathematical demon-
stration and Cumming (2012) for a graphical demonstration. In the study of statistical
replication, the variability inherent to a replication trial does provide us with an explana-
tion for why scientific findings seem to suffer from a failure to replicate. But it also leaves
us in an uncomfortable position. How does science move forward when a replication study,
even under identical conditions, can be so different from an original study? In the next
section, we explore a possible answer to this important question.

3. Combining Information Across Trials

Let’s now consider a different way to think of a successful replication. Rather than treating
the trials as separate entities, consider how the trials combine to provide information about
the true underlying effect. We can define a p-value for the combined trials, under the
Bayesian model developed in Section 2, as

P12 = P (θ < 0 |m1,M2) .

Recall that P1 is the probability of a type S error, given the result from the original trial,
where we observed a positive effect m1. So, P12 is the probability of a type S error, given
the results from both trials. Recall that M2 is not yet observed, and is treated as a ran-
dom variable. The direction of the sign error for the combined trials is determined by the
direction of the effect observed initially.
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Table 2: Predicted Probabilities of Replication Success

p1 z1 Psuccess

.05 1.645 .752
.025 1.960 .792
.005 2.576 .857
.0001 3.719 .938

Under the zero weight prior on effect size θ, we get a posterior conditional on both
experimental results as

θ |m1,M2 ∼ N

(
m1 +M2

2
,
σ2

2

)
. (3)

From (3), we can derive

P12 = Φ(−Z12)

where
Z12 =

z1 + Z2√
2

is the standardized test statistic when experimental results are combined. If evidence in
favor of the effect observed in the first trial has increased based on the result from the repli-
cation trial, it seems reasonable to call this a successful replication. We can say evidence
has increased when the probability of a type S error has decreased. Then P12 < p1 is the
condition to be met for a success. We write an equivalent condition as Z12 > z1, which
reduces to the inequality

Z2 >
(√

2− 1
)
z1.

Since
(√

2− 1
)
≈ 0.41, we only need a z statistic in the second trial that is 41% of the

original. The requirement that we need a repeat of statistical significance is too strong of
a condition for success in replication. There is a greater opportunity to add to the existing
evidence than may be appreciated.

Let’s bring prediction back into the problem. Once an original experimental result is
observed, we would like to know the probability that the replication attempt will be suc-
cessful where success is defined as an increase in evidence toward the originally observed
effect. Using the predictive distribution in (1), we get

Psuccess = P (Z12 > z1 | z1)
= P

(
Z2 >

(√
2− 1

)
z1 | z1

)
= Φ

((√
2− 1

)
z1
)
.

Table 2 displays the predictive probability of replication success, conditional on the result
for the initial trial.

Even for results which are marginally significant in the traditional sense, the probabil-
ity of successfully adding to the existing pool of evidence is moderately large. For highly
significant initial results, there is high probability of replication success. Viewing replica-
tion success through the lens of combined information tells a different story than the uproar
over the replication crisis in science would suggest.
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The need for a suitable definition of replication success is vital for understanding the
statistical issues when experiments are repeated. See Patil, Peng, and Leek (2016) for a
more detailed exposition, but with a similar conclusion to the one reached from our simple
Bayesian model.

4. Conclusion

There is a counterintuitive nature to the statistical replication problem. We would like to
believe that an experiment that is well-designed and carefully performed will give similar
results across repeated trials. However, the natural variability between experimental results
can be very large. We should not necessarily expect experimental results to replicate in
the traditional sense. Since we are trained to put our trust into the scientific method, this
realization may be uncomfortable and disconcerting. But there is a balancing aspect to
the replication problem. It turns out there is also great flexibility in combining seemingly
disparate experimental outcomes. Science does work, it’s just that the march of science in
the discovery of truth is not as linear as we may have previously believed.
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