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Abstract

In precision medicine, predictive scores (eg, those from accurate predictive systems or procedures)
can be used to inform patients and physicians to make decisions. Survival endpoints are of spe-
cial importance in precision medicine. Time-dependent AUC and Harrell's C statistic has been
routinely used as a global adequacy measure of predictive scores for censored survival outcomes.
As new biomarkers and prediction procedures are in rapid development, it is of great interest
to develop e�ective statistical methods and algorithms for comparing predictive power of two or
more predictive score systems (eg, incremental AUC under correlated time-dependent ROC curves).
Theoretical assessment of correlated predictive scores (eg, hypothesis testing) is complicated for cen-
sored time-to-event outcomes. Alternatively, numerical evaluation of the predictive accuracy via
comprehensive simulation studies is an attractive approach, however, there is an unmet need to
develop e�ective algorithms to generate multiple correlated predictive scores with given predictive
accuracy measure. To �ll in this knowledge gap, this paper is to provide a uni�ed copula-based
framework for numerically evaluating performance of correlated predictive scores. We designed
e�ective algorithms and an R package to simulate correlated predictive scores with preset accuracy
measures such as concordance index or time-dependent AUC for time-to-event outcomes. The sim-
ulation based numerical approach is convenient for simultaneously evaluating multiple measures of
predictive accuracy with complementary strengths, and also convenient to investigate �nite sample
properties such as correcting for optimism of a given performance measure using cross-validation
or bootstrap.
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1. Introduction

In precision medicine, predictive scores (eg, those from accurate predictive systems or pro-
cedures) can be used to inform patients and physicians to make decisions. As a common
practice, researchers routinely explore the possibility of adding newly discovered biomark-
ers into existing regression models as new predictors. The new predictors can be used
to obtain new predictive scores that are correlated with the existing one but potentially
with higher predictive accuracy. As new biomarkers and prediction procedures are in rapid
development, it is of great interest to develop e�ective statistical methods and algorithms
for comparing the predictive power of two or more predictive scores. As is well known,
direct theoretical comparison, e.g. via hypothesis testing, on predictive accuracy of such
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correlated scores has been challenging even when the outcome variable Y is binary [Vickers
et al., 2011, Demler et al., 2012, Pepe et al., 2013, 2014]. Additionally, survival outcomes
play an important role inn precision medicine [Osborn et al., 2015, Scher et al., 2015, Davoli
et al., 2017].

Theoretical assessment of the performance of predictive scores for time-to-event out-
comes is more complicated due to data censoring. As a speci�c example, note that Harrell's
C statistic has been routinely used as a global adequacy assessment of a predictive score
X in predicting corresponding survival time T . Note that Harrell's C statistic K̂H(X) is
commonly regarded as an estimate of the following concordance probability [Pencina and
D'Agostino, 2004]

KH(X) = pr(X1 > X2 | T1 < T2), (1)

where (T1, X1) and (T2, X2) are bivariate observations of survival time and predictive score
from a pair of randomly selected independent subjects. The concordance index KH(X) is a
useful global assessment of the predictive power of a risk score system X. Let X and Y be
two scores or prediction procedures for a subject with event time T . A question of interest
is to compare predictive powers between X and Y , i.e., to test the following null hypothesis

H0 : KH(X) = KH(Y ). (2)

Recently, Kang et al. [2015] proposed a formal nonparametric approach using the di�erence
between two Harrell's C statistics, i.e., ∆K̂ = K̂H(X)−K̂H(Y ) as a test statistic. Harrell's
C statistic K̂H(X) is well known to be a biased estimate of the concordance probability
KH(X) [Uno et al., 2011, Wang and Long, 2016, Han et al., 2017]. In general, ∆K̂ =
K̂H(X) − K̂H(Y ) may not have mean zero under the null hypothesis in formula (2), even
for large sample sizes. Given the complexities of direct theoretical assessment, naturally,
numerical evaluations of the performance of the proposed method are used. Kang et al.
[2015] simulated two predictive scores X and Y from bivariate normal distribution under
independent censoring. Under this setting, their simulation results indicated that the ∆K̂
had satisfactory performance in terms of Type I error. Kang et al. further provided a
publically accessible R package compareC to implement their test procedure. Given the
nonparametric nature of the proposed method, more extensive simulation studies would
be necessary to make sure the proposed nonparametric test has desired type 1 error under
various settings beyond the bivariate normal distributions. Unfortunately, neither a rigorous
framework nor a general computing algorithm is readily available to simulate correlated
predictive scores with given predictive accuracy. This has been an important bottleneck
towards e�ective numerical comparison of predictive scores. To �ll in this knowledge gap,
this paper is to provide a uni�ed framework for numerically evaluating performance of
correlated predictive scores. Utilizing a relationship between copula and commonly used
predictive performance measures, we designed e�ective algorithms and an R package to
simulate correlated predictive scores with preassigned accuracy measures such as AUC for
binary outcome and concordance index or time-dependent AUC for time-to-event outcomes.
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The newly proposed performance evaluation framework for predictive scores and com-
puting algorithms have multiple �exibilities and strengths. First of all, the simulation algo-
rithm is rooted in the theory of copula [Nelsen, 2007]. The �exibility of selecting di�erent
families of copula allows investigators to simulate correlated predictive scores with preset
AUC or concordance index with more general marginal distributions than the commonly
used normal or exponential distributions and various types of correlation structure. Sec-
ondly, the same framework can conveniently be used to simulate prediction scores for both
binary outcomes as well as time-to-event outcomes. In particular, simulating predictive
scores with preassigned time-dependent AUC or given concordance index have never been
systematically investigated before. Thirdly, the framework can handle multiple correlated
predictive scores corresponding to multiple correlated ROC curves or c-indices of predic-
tive procedures. Last but not least, the numerical evaluation framework is convenient to
investigate �nite sample properties such as correcting for optimism of a given performance
measure using cross-validation or bootstrap [Harrell et al., 1984, Steyerberg et al., 2010].

The paper is organized as follow. In section 2, we �rst review c-index and time-
dependent AUC that are commonly used metrics to assess predictive accuracy in time-
to-event data. Secondly, we discuss the relationship between copula, c-index and time-
dependent AUC. By using the relationship, we propose the uni�ed algorithm to simulate
multiple correlated risk scores with given predictive accuracies. In section 3, we illus-
trate the proposed algorithm through simulation studies. Section 4 contains discussion
and �nal remarks. Some technical proofs are contained in the Appendix. The proposed
algorithms have been implemented in an R package simuCPP and available at https:

//github.com/elong0527/simuCPP.

2. Methods

2.1 Predictive Accuracy

Various forms of concordance probability or c-index have been widely used in di�erent
clinical areas to assess the overall predictive accuracy [Hanley and McNeil, 1982, Harrell
et al., 1984, Gönen and Heller, 2005, Heagerty et al., 2000, Heagerty and Zheng, 2005,
Steyerberg et al., 2010, Osborn et al., 2015, Scher et al., 2015, Healy et al., 2016, Zhang
and Shao, 2017]. Let T denote the event time and X denote a predictive score or a marker.
For two independent copies {(X1, T1), (X2, T2)} of (X,T ), A concordance probability or
c-index is de�ned as

KH = Pr(X1 > X2 | T2 > T1). (3)

Without much of generality, we assume small prediction score X is associated with long
survival. Then the range ofKH is between 0.5 and 1. The c-index equals to 1 if a marker has
perfect discrimination. When the c-index equal to 0.5, the marker does not have meaningful
discriminatory power over the naive prediction based on �ipping of a fair coin. Another
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concordance probability or k-index is de�ned as

KG = Pr(T2 > T1 | X1 > X2). (4)

Consistent estimates of the k-index exist under the commonly used Cox PH models and
transformation models [Gönen and Heller, 2005, Zhang and Shao, 2017]. When T and X
are continuous random variables and Pr(X1 > X2) = Pr(T2 > T1) = 0.5, then c-index is
equivalent to k-index, i.e. KH = KG. Therefore, our discussion below on c-index KH can
be directly applied to k-index KG.

Time-dependent ROC and AUC have also been proposed to assess the overall predictive
accuracy for time-to-event outcomes [Heagerty et al., 2000, Heagerty and Zheng, 2005]. Two
types of time-dependent AUC were investigated by Heagerty and Zheng [2005]. The �rst
one focuses on cumulative �cases� that is de�ned as

AUCC(t) = Pr(X1 > X2 | T1 ≤ t, T2 > t), (5)

where t > 0 is a cut-point used to de�ne �case� (T ≤ t) and �control� (T > t). The second
one is for incident �case� (T = t) that is de�ned as

AUCI(t) = Pr(X1 > X2 | T1 = t, T2 > t). (6)

The integrated incident time-dependent AUC (iAUC) can also be used to summarize the
overall prognostic accuracy de�ned as

iAUC(τ) =

∫ τ

0
AUCI(t) · w(t)dt, (7)

where τ is a truncation time and w(t) is a known weight function.

2.2 Copula, concordance probability and time-dependent AUC

The copula of a bivariate random vector (W1,W2) can be written as

C(u, v) = Pr(W1 < F−1
W1

(u),W2 < F−1
W2

(v)),

where FW1 and FW2 are the CDF ofW1 andW2 respectively. A comprehensive introduction
of copula and its properties can be found in [Nelsen, 2007] and summarized in the Appendix.
Just as statistical software can generate multivariate normal data, there exist multiple R
packages and other computing programs that can generate data with given copulas. These
recently developed copula generation algorithms and computing packages are publically
available are quite convenient to implement.

Without much loss of generality, we can assume the marginal distributions of the cor-
related predictive scores and the survival time are given and considered known. These
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marginal distributions don't have to be normal or exponential, they can be any distribu-
tions. Generating data from a given distribution using the inverse of CDF is straightfor-
ward. The main challenge is to generate correlated scores so that the dependence structure
between the scores and survival time T would ensure the concordance probability or time-
dependent AUC exactly equal to the preset value. The key idea in simulating correlated
predicti scores with given concordance probability and time-dependent AUC is to use rela-
tionships between various copula families and concordance probability and time-dependent
AUC. Dependence between marginal distributions are completely determined by the cop-
ula function by Sklar's theorem, and concordance probability and time-dependent AUC are
functionaries of the copula. Thus, we can simulate various correlated predictic scores by
selecting various copula distributions, and obtain correlated score data with any given con-
cordance probability and time-dependent AUC value by selecting parameters in parametric
copula densities. In this subsection, we will provide a few Propositions that characterize
the general relationships between concordance probability, time-dependent AUC and cop-
ula. These relationships are key in determining the parameters in the various copulas that
would ensure the given concordance probability and time-dependent AUC and copula. The
basic idea is that, for any given concordance probability and time-dependent AUC, we can
identify corresponding parameters and copula families cooresponding to the given values
of concordance probability and time-dependent AUC. We can use the copula algorithms
and computing packages to simulate data from the copula with given concordance prob-
ability and time-dependent AUC. Using the marginal copula data and inverse CDF, we
can generate the corrected marginal data with the given marginal distributions and given
concordance probability and time-dependent AUC.

Proposition 1. Let C(u, v) denote the copula of a bivariate continuous random
variable (−X, log(T )), the concordance probability K in formula (3) can be expressed as

KH = 2

∫ ∫
[0,1]2

C(u, v)dC(u, v). (8)

Proposition 1 is a direct corollary of Theorem 5.1.3 in [Nelsen, 2007] by noticing that
the Kendall's τ is equal to 2KH − 1. Therefore, the c-index is fully determined by the
copula of T and X. The concordance probability KH have an analytical form for most
widely used copula family as listed in Table 1.

Copula Name Parameter Parameter range K

Gaussian ρ [−1, 1] 1
πarcsin(ρ) + 1

2

Clayton θ θ > 0 θ
2(θ+2) + 1

2

Gumbel θ θ > 1 1− 1
2θ

Table 1: Concordance probability and copula family
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Proposition 2. Let π = πt = Pr(T ≤ t) and C(u, v) denote the copula of a bivariate
continuous random vector (−X, log(T )), and ∂C(u, v)/∂v exists, then the cumulative and
incident time-dependent AUC can be expressed by the copula C(u, v) and π = πt as

AUCC(t) = AUCC(π) =
1

π(1− π)

∫
I(v > π)C(u, π)dC(u, v). (9)

and

AUCI(t) = AUCI(π) =
1

1− π

∫
I(u > π)

∂C(u, π)

∂π
dC(u, v) (10)

The proof of Proposition 2 is described in Appendix. From Proposition 2, it is clear that
both the cumulative and incident time-dependent AUC are fully determined by the copula
of T and X and the percentile of time π = Pr(T ≤ t).

Proposition 3. Under the condition of Proposition 2. Let fT , ST and FT denote the
density function, survival function and CDF of T , then the iAUC can be expressed as

iAUC(τ) = iAUCI(τ, π) =

∫ [∫
π∈[0,1]

I[min(v, FT (τ)) > π]w(F−1
T (π))

(1− π)fT (F−1
T (π))

dC(u, π)

]
dC(u, v).

(11)
Proposition 3 is a direct corollary of Proposition 2 by combining formula (7) and (10),
and interchange of the order of integration. In general, iAUC depends on the marginal
distribution and it is not a desired property for a discrimination metric, because a monotone
transformation of T can change the value of iAUC(τ). A proper selection of the weight
function w(t) is important to avoid the dependence on the marginal distribution. Therefore
the weight function w(t) should proportional to fT (t)(1−π) and

∫ τ
0 w(t)dt = 1 that result in

w(t) = 2fT (t)(1−π)/(1−S2
T (τ)). This is the same weight function described by [Heagerty

and Zheng, 2005]. With the weight function, iAUC can be written as

iAUC(η) =
2

η(1 + η)

∫
C(u,min(v, η)dC(u, v), (12)

where η = FT (τ) = Pr(T < τ) is the percentile of the truncation time τ . When τ →∞ or
η = 1, it is clear that iAUC(1) = KH by comparing formula (8) with (12).

Proposition 4. Under the condition of Proposition 2, let type I truncated c-index be
de�ned as K1(τ) = Pr(X1 > X2 | T2 > T1, T1 < τ) and type II truncated c-index de�ned
as K2(τ) = Pr(X1 > X2 | T2 > T1, T2 < τ), we have

iAUC(τ) = K1(τ), if w(t) =
2fT (t)(1− π)

1− S2
T (τ)

, (13)

and

AUCC(τ) =
K1(τ){1 + ST (τ)} −K2(τ){1− ST (τ)}

2ST (τ)
. (14)

619



The proof of Proposition 4 is provided in Appendix. The key is to show that

K1(η) =
2

η(1 + η)

∫
C(u,min(v, η)dC(u, v) (15)

and

K2(η) =
2

η2

∫
I(v < η)C(u, v)dC(u, v), (16)

where η = FT (τ) = pr(T < τ). It is clear that K1 = K2 = KH when τ →∞ or η = 1. The
type I truncated c-index has been investigated by Uno et al. [2011] and Wang and Long
[2016]. The type II truncated c-index has not been investigated in the literature to our
best knowledge. The equivalence of iAUC and K1 in formula (13) has been discussed in
[Heagerty and Zheng, 2005]. The main new results is the connection between cumulative
time-dependent AUC and truncated c-index in formula (14).

The proofs of the above Propostions are contained in Appendix. The relationships
between the c-index KH and time-dependent AUCs with parameters in some common
copula families are illustrated graphically in Figures 1-3.

2.3 Data generation with pre-de�ned c-index, time-dependent AUC or iAUC

Propositions 1, 2 and 3 play an essential role for simulating data with pre-de�ned c-index,
time-dependent AUC or iAUC. We use c-index as an example and other metrics can be
treated similarly. If the propose is to simulate T and X from a Clayton copula with c-
index K = k. It is easy to �nd the parameter of Clayton copula θ = θ0 from Table 1 or
solve the equation (8) numerically for θ. Then data can be generated from Clayton copula
with θ = θ0. Finally T and X can be simulated by transforming the generated data using
pre-de�ned marginal CDF of log(T ) and −X denoted as FT and FX . (e.g. T may follow
an exponential distribution and X may follow a normal distribution). Let D denote the
censoring time, the independent or conditional independent censoring time can be drawn
from a pre-de�ned distribution FD or FD|X , respectively. The algorithm is summarized as
below when censoring time is conditionally independent of event time. Figure 1 illustrates
the c-index or equivalently iAUC in formula (12) when η = 1 as a function of the parameter
in Gaussian, Clayton and Gumbel copula.

By using the same algorithm and �nding the parameter θ based on the formula for
truncated c-index (formula (15) and (16)), time-dependent AUC (formula (9) and (10)) or
iAUC (formula (11) and (12)) at a truncation time τ , the same algorithm can be used to
simulate data with any given truncated c-index, time-dependent AUC or iAUC based on a
prede�ned copula family.
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Algorithm 1 Data generation for known c-index based on a prede�ned copula family

Set values:
Set the desired concordance probability KH for predictive score X.
Set a bivariate copula families CXT (u, v | θ).
Set marginal CDF FX , FT for −X, log(T ).
Set conditional CDF FD|X for censoring time D.

Solve parameter θ from the equation (8) .
Generate random variable (U, V ) from copula CXT (u, v).
Transform data by

X = −F−1
X (U); T = exp[F−1

T (V )].

Generate censoring time D from the distribution FD|X based on X.

2.4 Data generation with multiple correlated c-index, time-dependent AUC

or iAUC

The problem of interested in about comparing multiple correlated c-index, time-dependent
AUC or iAUC to compare the prognostic accuracy for markers. Let's continue use c-index as
an example without loss of generality. An important and unmet question is how to simulate
multiple correlated c-index to evaluate proposed hypothesis testing procedures. The existing
literatures are either based on multivariate normal distribution or rely on unknown true c-
index. A further limitation is that the simulated data are commonly assumed independent
censoring.

Our uni�ed data generation framework is based on C-vine copula decomposition that
provides a graphical way to illustrate the multivariate random variables via paired copula
constructions [Joe, 1996, Aas et al., 2009, Brechmann et al., 2013]. Without loss of gener-
ality, we consider two correlated c-index with continuous predictive score X1 and X2. Let
T denote the event time. Let CX1X2T (u1, u2, v1) denote the three dimensional joint copula
for (−X1,−X2, log(T )). We further de�ne CX1T , CX2T and CX1X2|T as the paired copula
for (−X1, log(T )), (−X2, log(T )), and (−X1,−X2) conditional on T . By C-Vine copula
decomposition, the copula CX1X2T can be expressed as

CX1X2T (u1, u2, v) = CX1T (u1, v)CX2T (u2, v)CX1X2|T (u1, u2). (17)

By Proposition 1, the c-index of X1 is a function of CX1T (u1, v) and the c-index of X2 is
a function of CX2T (u2, v). The conditional copula CX1X2|T (u1, u2) controls the correlation
betweenX1 andX2. One key feature of C-Vine copula is that the paired copula CX1T (u1, v),
CX2T (u2, v) and CX1X2|T (u1, u2) are not necessarily the same. The di�erent structure
of paired copula greatly extend the distribution family beyond the multivariate normal
distributions.

To illustrate the idea, we consider a scenario for simulating two predictive score and
event time with prede�ned c-index K1 = k1 and K2 = k2 by assuming CX1T is a Gaus-
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sian copula,CX2T is a Clayton copula and CX1X2|T is a Gumbel copula. It is easy to �nd
the parameter of Gaussian and Clayton copula from Table 1 or solve the equation (8) nu-
merically.The parameter of CX1X2|T can be set di�erently to represent di�erent correlation
between X1 and X2. Then the data can be generated based on C-vine copula by using the
CDVine R package Brechmann et al. [2013]. Finally X1, X2 and T can be simulated by
transforming the generated data using pre-de�ned marginal CDF: FX1 , FX2 , and FT . The
independent or conditional independent censoring time can be drawn from a pre-de�ned
CDF FD or FD|X1,X2

respectively. The algorithm is summarized below for simulating two
correlated c-index with conditional independent censoring time.

Algorithm 2 Data generation for correlated c-indices based on prede�ned copula family

Set values:
Set the desired concordance probability KH for predictive score X1 and X2.
Set two bivariate copula families CX1T (u1, v | θ1), CX2T (u2, v | θ2).
Set a known bivariate copula for CX1,X2|Z .
Set marginal CDF FX1 , FX2 , FT for −X1, −X2 and log(T ) .
Set conditional CDF FD|X1,X2

for censoring time D.
Solve parameter θ1 and θ2 from the equation (8)
Generate random variable (U1, U2, V ) from copula CX1X2T (u1, u2, v).
Transform data via

X1 = −F−1
X1

(U); X2 = −F−1
X2

(U); T = exp[F−1
T (V )].

Generate censoring time D from the distribution FD|X1,X2
based on X1 and X2.

In addition to the independent or conditional independent censoring, the dependent cen-
soring are also common in practice. The same framework can be used to simulate multiple
correlated c-index with deponent censoring. We added the censoring time D in the C-Vine
copula decomposition. Let CX1X2DT denote the joint copula for (−X1,−X2, log(D), log(T )).
We further denote CDT as the paired copula for (D,T ) and other conditional copulas ac-
cordingly. Then the C-Vine decomposition can be written as

CX1X2DT (u1, u2, w, v) =CX1T (u1, v)CX2T (u2, v)CDT (w, v)

CX1D|T (u1, w)CX2D|T (u2, w)CX1X2|DT (u1, u2). (18)

For simplicity, if X1 and X2 are independent of censoring time D conditional on event time
T . The formula (18) can be simpli�ed as

CX1X2DT (u1, u2, w, v) = CX1T (u1, v)CX2T (u2, v)CDT (w, v)CX1X2|T (u1, u2). (19)

Note that, for independent censoring that D is independent of X1, X2, T , the formula
(18) is equivalent to the formula (17). The simulation algorithm with dependent censoring
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through formula (18) and (19) is similar to the Algorithm 2 by specifying all paired copula
and other marginal distributions. Furthermore, the algorithm can be easily extended to
multiple correlated c-index beyond two risk scores.

The same framework can be used to generate data for multiple correlated truncated c-
index (formula (15) and (16)), time-dependent AUC (formula (9) and (10) or iAUC (formula
(11) and (12)) at a truncation time τ .

2.5 Covariates generation for c-index, time-dependent AUC or iAUC

The risk score might not be directly available and require to be estimated by other covariates
or markers. Let Z denote a p-dimensional vector, and a risk score X = g(Z) where g(·) is
an unknown function that needs to be estimated. For example, linear function that assume
X = g(Z, β) = Zβ is widely used, where β is a p−dimensional parameter vector. A working
model like Cox proportional hazards (PH) model are widely used to estimate β [Uno et al.,
2011]. The working model should have a good approximation to the true model and does
not necessarily to be the true model.

We considered a parametric transformation X = g(Z, β), where the form of the function
g(·, β) is known e.g. g(Z, β) = Zβ. Without loss of generality, we assume the �rst covariates
Z1 is a continuous random variable. Let Z(−1) denote the rest of covariates excluding the
�rst covariate Z1. Then we have

X = g(Z1, Z(−1), β). (20)

We assume that Z1 → X is a one to one map in probability one for any Z(−1) and β. For
illustration, we consider the linear function X = Zβ = Z1β1 + Z(−1)β(−1), where β1 6= 0
and β(−1) are the parameter vector after removing β1. Then we have

Z1 =
1

β
[X − Z(−1)β(−1)]. (21)

To generate the covariates for a risk score, we can �rst simulated risk score X with
desired predictive metric. Secondly Z(−1) can be simulated from a pre-de�ned distribution.
After we set the parameter β, we can create Z1 by using the formula (21). The algorithm is
summarized as below by using c-index as an example. The same framework as in Algorithm
2 can be used to generate multiple correlated c-index with covariates.

3. Numerical Illustration

In this section, we conducted numerical studies to illustrate the performance of the proposed
data generation framework for AUC and c-index. Let π = Pr(T < t0.5) = 0.5 and Y =
I(T < t0.5). We illustrate the Algorithm 2 to simulate binary outcome Y with known AUC.
HereX1 and X2 are two correlated risk scores. Let copula of (−X1, log T ) be a Gaussian
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Algorithm 3 Data generation for given c-index with multiple covariates based on pre-
de�ned copula family

Set values:
Set the desired concordance probability KH for predictive score X.
Set the function X = g(Z, β) with known parameter β.
Set the distribution of Z(−1).

Generate X, T and D based on the algorithm 1.
Generate Z(−1) from the de�ned distribution.
Generate Z1 by solving equation (21).

copula with parameter ρ and the copula of (−X2, log T ) a Clayton copula with parameter
θ. The conditional copula (−X1,−X2) | T is a Gumbel copula with parameter φ. To
achieve desired AUC = 0.75, the parameter ρ = 0.54 and θ = 1.16 were solved numerically
by using the equation (9) when π = 0.5 for Gaussian and Clayton copulas. The data was
simulated by using the R package simuCPP that implement the proposed algorithms in this
paper with N = 100 samples and φ =1, 1.5, 3, 5, and 10. Finally, we estimate the AUC
empirically by

ÂUC =

∑
i6=j I(Xi > Xj , Yi = 1, Yj = 0)∑

i6=j I(Yi = 1, Yj = 0)
.

The whole procedure was repeated 1, 000 times and the results were summarized in Table
(2). From Table (2), it is clear that the estimators ÂUC for both X1 and X2 equal to 0.75.
The Kendall's concordance correlation between X1 and X2 is controlled by parameter φ
in the conditional copula (X1, X2) | T . Speci�cally, a larger value of φ provides a higher
value of Kendall's concordance correlation between X1 and X2. It is worth to note that the
simulated AUC is equivalent to the cumulative time dependent AUC in formula (5) with a
cut-point at t0.5.

φ ÂUCX1(sd) ÂUCX2(sd) Kendall's correlation between X1 and X2(sd)

1 0.75(0.05) 0.75(0.05) 0.19(0.07)
1.5 0.75(0.05) 0.75(0.05) 0.44(0.06)
3 0.75(0.05) 0.75(0.05) 0.69(0.04)
5 0.75(0.05) 0.75(0.05) 0.79(0.02)
10 0.75(0.05) 0.75(0.05) 0.85(0.02)

Table 2: Simulation results for correlated scores X1, X2 such that AUC = 0.75

We further illustrate the Algorithm 2 to simulate time-to-event outcome T with known
c-index. Similarly, let the copula of (−X1, log(T )) be a Gaussian copula with parameter ρ
and the copula of (−X2, log(T )) a Clayton copula with parameter θ. The conditional copula
(−X1,−X2) | T is a Gumbel copula with parameter φ. To achieve the desired concordance
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probability KH = 0.75, Table (1) infers that ρ = 0.71 and θ = 2 for Gaussian and Clayton
copulas. Data were generated with N = 100 samples and φ =1, 1.5, 3, 5, and 10. The
c-index can be empirically estimated by

K̂H =

∑
i6=j I(Xi < Xj , Ti > Tj)∑

i6=j I(Xi < Xj)
.

The whole procedure was repeated 1, 000 times and the results are summarized in Table
3. From Table 3, it is clear that the estimators K̂H for both X1 and X2 equal to 0.75 in
all scenarios. The Kendall's concordance correlation between X1 and X2 are controlled by
parameter φ in the conditional copula (−X1,−X2) | T . Speci�cally, the larger value of φ
provides a higher value of Kendall's concordance correlation between X1 and X2.

φ K̂H(X1)(sd) K̂H(X2)(sd) Kendall's correlation between X1 and X2 (sd)

1 0.75(0.03) 0.75(0.03) 0.33(0.06)
1.5 0.75(0.02) 0.75(0.03) 0.53(0.05)
3 0.75(0.02) 0.75(0.03) 0.73(0.03)
5 0.75(0.02) 0.75(0.03) 0.80(0.02)
10 0.75(0.03) 0.75(0.03) 0.85(0.02)

Table 3: Simulation results for correlated scores X1, X2 such that KH = 0.75.

4. Figures
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Figure 1: The relationship between KH and copula parameter in Gaussian, Clayton and
Gumbel copulas

625



0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Gaussian Copula

Parameter

A
U

C

0 5 10 15 20 25

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Clayton

Parameter
A

U
C

2 4 6 8 10

0.
6

0.
7

0.
8

0.
9

1.
0

Gumbel

Parameter

A
U

C

π 0.2 0.5 0.8

Figure 2: The relationship between cumulative time-dependent AUC, AUCC(π) and cop-
ula parameter in Gaussian, Clayton and Gumbel copulas, when π equal to 0.2, 0.5 and
0.8

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

Gaussian Copula

Parameter

A
U

C

0 5 10 15 20 25

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Clayton

Parameter

A
U

C

2 4 6 8 10

0.
6

0.
7

0.
8

0.
9

Gumbel

Parameter

A
U

C

π 0.2 0.5 0.8

Figure 3: The relationship between incident time-dependent AUC, AUCI(π) and copula
parameter in Gaussian, Clayton and Gumbel copulas, when π equal to 0.2, 0.5 and 0.8

5. Discussion

In this paper, we proposed a uni�ed copula based framework to generate data for mul-
tiple correlated risk scores with pre-de�ned predictive metrics. By using the relationship
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between predictive metrics and copula, the uni�ed simulation framework and algorithm
have multiple bene�ts. 1) The algorithm starts from pre-assigned accuracy value. 2) The
algorithm can conveniently control the correlation between risk scores. 3) The algorithm is
�exible by choosing di�erent kinds of copula to re�ect diverse association structure. 4) The
algorithm allows the risk score to be a function of other covariates. 5) The algorithm allows
di�erent kinds of censoring type including independent censoring, conditional independent
consoring and dependent censoring. As shown in Han et al. [2017], making conclusions on
non-parametric methods using numerical evaluation based only on multivariate normal dis-
tribution could result in biased conclusion. The proposed general framework largely extend
the distribution family beyond multivariate normal distribution to evaluate non-parametric
or semi-parametric estimation and hypothesis testing method for predictive metrics.

The framework works both for time-to-event outcomes and binary outcomes as illus-
trated in Section 3. Even through the focous of this paper is on c-index, time-dependent
AUC and iAUC, the same framework can be applied to other predictive metrics as long as
a relationship between the metric and copula can be constructed. Furthermore, we show
that the copula theory is of fundamental importance to investigate predictive metrics. The
relationship between predictive metrics can be veri�ed by using copula. The area deserves
further systematic investigation.
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7. Appendix

7.1 Introduction to Copulas

For any bivariate random variables X = (X1, X2) with a joint cumulative distribution
function (CDF) F (x1, x2), Sklar's theorem [Sklar, 1959] ensures that every bivariate CDF
can be written as

F (x1, x2) = C(F1(x1), F2(x2)),

where F1, F2 are marginal CDF of X1 and X2, respectively, and the function C(·, ·) a bivari-
ate probability distribution with uniform marginal probability distributions, called a copula.
We provide a short introduction to bivariate copulas for completeness. A comprehensive
introduction to copula and its properties can be found in Nelsen [2007].

De�nition: A bivariate copula is a bivariate function C(·, ·) whose domain is [0, 1]2

with the following properties:

1. For every u, v in [0, 1],
C(u, 0) = 0 = C(0, v)

and
C(u, 1) = u and C(1, v) = v;

2. For every u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

There are several important and widely investigated copula families. If two continuous
random variables are independent, they have product copula de�ned as

C(u, v) = uv. (22)

If two continuous random variables (X1, X2) follow a bivariate normal distribution with
correlation coe�cient ρ, they have the Gaussian copula:

C(u, v) =
1

2π
√

1− ρ2

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
exp

[
−(s2 − 2ρst+ t2)

2(1− ρ2)

]
dsdt, (23)

(with ρ 6= −1, or 1) where Φ is the CDF of the standard normal distribution. Here
ρ = cor(X1, X2) is the Pearson correlation between X1 and X2.

There is another important class of copula called the Archimedean copula that includes
several important copula families [Nelsen, 2007]. With a continuous, strictly decreasing
generating function ϕ(·) from [0, 1] to [0,∞] such that ϕ(1) = 0, an Archimedean copula
has the form

C(u, v) = ϕ−1(ϕ(u) + ϕ(v)). (24)
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Theorem 4.1.4 in Nelsen [2007] ensures that formula (24) is a copula if and only if ϕ is
convex. The Archimedean copula is commonly used in practice mainly for three reasons:
(1) Archimedean copulas are easy to construct by specifying the generating function. (2)
There are a large variety of copula families that belong to the Archimedean copula class.
(3) the Archimedean copula has many nice properties as discussed in Nelsen [2007] that
can help researchers to investigate the theoretical properties.
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Figure 4: The density of Gaussian (ρ = 0.5), Clayton (θ = 0.5) and Gumbel (θ = 2)
copulas

Important Archimedean copulas include Clayton copula [Clayton, 1978, Oakes, 1982],
Gumbel copula [Gumbel, 1960]. Both of Clayton and Gumbel copula are extended from
bivariate exponential distributions. Clayton copula has generating function ϕθ(t) = (t−θ −
1)/θ and de�ned as

C(u, v) =
[
max

(
u−θ + v−θ − 1, 0

)]−1/θ
, (25)

where θ is in [−1,∞) except 0. The relationship between Clayton copula parameter θ and
Kendall's τ is τ = θ/(θ + 2).

Gumbel copula has generating function ϕθ(t) = (− log t)θ and de�ned as

C(u, v) = exp

[
−
(

(− log(u))θ + (− log(v)θ
)1/θ

]
(26)

where θ is in [1,∞). The relationship between Gumbel copula parameter θ and Kendall's
τ is τ = 1 − 1/θ. In Figure 4, we show the density functions of Gaussian, Clayton and
Gumbel copulas.

7.2 Proof of propositions

We prove the Proposition 2 and 4 in this appendix.
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Proof. of Proposition 2. We �rst consider cumulative time-dependent AUC. Let pXT =
Pr(X1 > X2, T1 ≤ t, T1 > t), where t is a cut-point. By Bayes theorem and independence
of two observations, we have

AUC =
pXT

π(1− π)
, (27)

where π = Pr(T ≤ t). Let FX denote the CDF of −X and FT denote the CDF of log(T ).
Let U1 = FX(−X1) and U2 = FX(−X2), V1 = FT (log(T1)) and V2 = FT (log(T2)), we have

π = Pr(T ≤ t) = FT (log(t))

By the condition of theorem and we have

pXY = pr(U2 > U1, V1 ≤ FT (log(t)), V2 > FT (log(t)))

= pr(U2 > U1, V1 ≤ π, V2 > π).

Notice that the copula of (X1, T1) and (X2, T2) are

CXT (u, v) = pr(U1 < u, V1 < v) = pr(U2 < u, V2 < v)

We have

pXT =

∫
I(v > π)pr(U1 < u, V1 < π)dCXT (u, v)

=

∫
I(v > π)CXT (u, π)dCXT (u, v). (28)

By formula (27) we get the conclusion for cumulative time-dependent AUC as

AUCC(t) = AUCC(π) =
1

π(1− π)

∫
I(v > π)C(u, π)dC(u, v). (29)

Similarly, we consider AUCI(t) as below.

AUCI(t) = Pr(X1 > X2 | T1 = t, T2 > t)

= Pr(U2 > U1 | V1 = π, V2 > π)

= lim
δ→0

Pr(U2 > U1, V1 ∈ (π, π + δ), V2 > π)

Pr(V1 ∈ (π, π + δ))Pr(V2 < π)

= lim
δ→0

1

(1− π)δ

∫
I(v > π)Pr(U1 < u, V1 ∈ (π, π + δ))dCXT (u, v)

=
1

(1− π)

∫
I(v > π) lim

δ→0

CXT (u, π + δ)− CXT (u, π)

δ
dCXT (u, v)

=
1

1− π

∫
I(v > π)

∂C(u, π)

∂π
dC(u, v).
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Therefore, we have

AUCI(t) = AUCI(π) =
1

1− π

∫
I(u > π)

∂C(u, π)

∂π
dC(u, v).

Proof. of Proposition 4. We �rst show formula (15) and (16) hold. Let FX denote the
CDF of −X and FT denote the CDF of log(T ). Let U1 = FX(−X1) and U2 = FX(−X2),
V1 = FT (log(T1)) and V2 = FT (log(T2)). We �rst consider K1.

Pr(X1 > X2 | T2 > T1, T1 < τ) =
Pr(U2 > U1, V2 > V1, V1 < η)

Pr(V2 > V1, V1 < η)
(30)

Notice that

Pr(V2 > V1, U2 > U1, U1 < η) =

∫
Pr(U1 < u, V1 < min(v, η))dCXT (u, v)

=

∫
CXT (u,min(v, η))dCXT (u, v), (31)

and

Pr(V2 > V1, V1 < η) =
1

2
(η − η2). (32)

Combining equation (30), (31) and (32) we have

K1 =
2

1− (1− η)2

∫
CXT (u,min(v, η))dCXT (u, v).

Similarly we consider K2(τ).

Pr(X1 > X2 | T2 > T1, T2 < η) = Pr(U2 > U1 | V2 > V1, V2 < η)

=
Pr(U2 > U1, V2 > V1, V2 < η)

Pr(V2 > V1, V2 < τ)
(33)

Notice that

Pr(U2 > U1, V2 > V1, V2 < η) =

∫
I(v < η)Pr(U1 < u, V1 < v)dCXT (u, v)

=

∫
I(v < η)CXT (u, v)dCXT (u, v). (34)

and

Pr(V2 > V1, V2 < η) =

∫
I(v < η)pr(V1 < v)dv

=

∫
I(v < η)vdv

=
1

2
η2 (35)
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Combining equation (33), (34) and (35) we have

K2(τ) =
2

η2

∫
I(v < η)CXT (u, v)dCXT (u, v).

We show formula (13) hold by insert the weight function w(t) = 2fT (t)(1−π)/(1−S2
T (τ))

into formula (11) and notice that ST (t) = pr(T > t) = 1− η by de�nition. So

iAUC(τ) =

∫ [∫
π∈[0,1]

2I[min(v, FT (τ)) > π]

1− S2
T (τ)

dC(u, π)

]
dC(u, v)

=
2

1− (1− η)2

∫
CXT (u,min(v, FT (τ))dCXT (u, v)

= K1(τ).

Now we prove the formula (14). Let pXT = Pr(X1 > X2, T1 ≤ t, T2 > t), as shown in
formula (28) we have

pXT (π) =

∫
I(v > π)CXT (u, π)dCXT (u, v)

Then we have

∂pXT (π)

∂π
=

∫
I(v > π)

∂CXT (u, π)

∂π
dCXT (u, v)−

∫
u
C(u, π)dC(u, π). (36)

By taking integration at two sides in (0, η), we have

pXT (η) =

∫ ∫
π
I(π < min(v, η))

∂CXT (u, π)

∂π
dπdCXT (u, v)−∫

u,v
I(π < η)CXT (u, π)dCXT (u, π).

=

∫
CXT (u,min(v, η))dCXT (u, v)−

∫
u,v
I(π < η)CXT (u, π)dCXT (u, π)

By formula (27) and (29), we have

pXT (η) = AUCC(η)η(1− η).

Combining formula (15) and (16) we have

AUCC(η)η(1− η) =
1− (1− η)2

2
K1(η)− η2

2
K2(η).

By de�nition we have ST (t) = pr(T > t) = 1− η, we get the conclusion that

AUCC(τ) =
K1(τ)[1 + ST (τ)]−K2(t)[1− ST (t)]

2ST (τ)
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