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Abstract
Targeted therapies based on patients’ baseline characteristics such as biomarkers have been growing
interests for many diseases. Depending on the expression of specific biomarkers or their combina-
tions, different patient subgroups could respond differently to the same treatment. An ideal design,
especially at the proof of concept stage, should search for such subgroups and make dynamic adap-
tation as the trial goes on. When no prior knowledge is available on whether the treatment works
on the all-comer population or only works on the subgroup defined by one biomarker or several
biomarkers, it is necessary to estimate the subgroup effects adaptively based on the response out-
comes and biomarker profiles from all the treated subjects at the interim analysis. To address this
problem, we propose an adaptive subgroup-identification enrichment design, ASID, which can si-
multaneously search for predictive biomarkers, estimate the subgroups with differential treatment
effects, and modify the study entry criteria at the interim analysis. We compare the ASID with
an alternative adaptive enrichment design based on linear regression in a motivating Alzheimer’s
disease clinical trial, and demonstrate via simulation the superior performance of the ASID.
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1. Introduction

1.1 Background

For many diseases, it has become well known that there exists a heterogeneity of treatment
effects across patient subpopulations that depend on the expression of specific biomarkers
or their combinations when given the same treatment. Thus, it is essential in clinical trial
designs or clinical data analysis to take into account the potentially different treatment
effects among patient subpopulations when making a decision. For instance, breast cancer
patients with an enriched HER2 pathway were found to respond well to the medication
trastuzumab (Hudis, 2007) through pairing genetic traits with targeted treatment options,
while other subtypes of breast cancers do not. Another example is that treatments with
EGFR antibodies are not recommended for KRAS mutated colorectal cancer patients since
they are usually resistant to anti-EGFR treatment (Misale et al., 2012). Therefore, it is very
important to identify the biomarkers that have interaction effects with the treatment and are
predictive of the subgroups that are more likely to respond to the treatment.

For situations where the predictive biomarkers are not clear based on the treatment’s
mechanism or disease clinical presentation, adaptive enrichment designs have been devel-
oped to adaptively modify the eligibility rules at interim analyses in an effort to determine
the appropriate biomarkers. Patients exhibiting the desired treatment effects are referred
to as the “enriched population”. Karuri and Simon (2012) compared the treatment ver-
sus placebo by evaluating the treatment effectiveness of biomarker positive- and negative-
subgroups at an interim analysis, allowing the termination of enrollment of the biomarker
negative subgroup. Simon and Simon (2013) developed a class of adaptive enrichment de-
signs to adaptively update the eligibility criteria, while preserving the type I error. See,
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for example, Wang and Hung (2013) for more extensive reviews of adaptive enrichment
design.

Most of these enrichment designs use a set of biomarkers to pre-define subgroups and
then test if there are differential therapeutic effects on these pre-defined subgroups. How-
ever, pre-defining subgroups can be problematic if the pre-defined subgroups are not pre-
dictive of patients’ responses or treatment selections. Therefore, an enrichment design that
allows the discovery and estimation of the subgroups during the clinical trial is desired.
Sivaganesan et al. (2011) identified subgroups through a model selection procedure with
each biomarker defining classes of models. Foster et al. (2011) developed a random forest-
based algorithm to find the subgroups by searching biomarker regions where the treatment
effect is larger than the average effect on the whole population. Loh et al. (2015) proposed
a regression tree approach, GUIDE, to first decide which biomarkers to split on through
the use of χ2 tests, and then to identify subgroups with differential treatment effects. Shen
and He (2015) used a structured logistic-normal mixture model to test for the existence
of subgroups by a confirmatory statistical test. All of these methods target the subgroup
identification using the retrospective clinical trial data and have not been directly applied
to the clinical trial designs.

There have been relatively few methodologies on adaptively estimating the subgroups
based on patients’ differential responses to treatments during interim analyses. Xu et al.
(2014) developed SUBA, a Bayesian subgroup-based adaptive design, to allocate the pa-
tients to their superior treatments using a random partition model that splits the biomarker
space by the observed biomarker’s median value, which generally is not the optimal cutoff
for a predictive biomarker. Guo et al. (2016) extended SUBA (i.e., SCUBA) by allowing the
biomarker space to be split using hyperplanes that construct linear boundaries, providing a
more flexible partition model. However, both SUBA and SCUBA focus on the subgroup
identification for patient allocations and do not modify the study entry criteria during the
trial.

1.2 A Biomarker-Driven and Subgroup-Based Enrichment Design

In this paper, we propose a class of adaptive subgroup-identification enrichment designs
(ASID), utilizing patients’ biomarker profiles and outcomes as they become available.
ASID searches for subgroups among a set of biomarkers rather than predefining subgroups
and allows the entry criteria to be modified to enroll more subjects who are more likely to
respond to the treatment, improving the chance of detecting a clinically relevant treatment
effect. ASID incorporates a flexible Bayesian model that can handle covariates of varying
forms (continuous, binary, categorical, or ordinal) and different types of outcomes (binary,
categorical, continuous, survival).

The key innovation of ASID is that the subgroups with differential treatment effects
are continuously identified, redefined and ranked based on patients’ responses data at each
interim analysis using a pre-specified algorithm where Bayesian models are incorporated.
The continuous search for a group with a differential treatment effect will lead to one time
modification of study enrollment criteria. Therefore, more patients with the characteristics
as in the identified subgroup can be enrolled to the study as the trial goes on. This design
combines the task of subgroup identification and that of ensuring adequate sample size to
learn the investigational compound’s efficacy and safety in the identified sub-population.
This is superior to the conventional approach where either two clinical trials are needed
to accomplish these tasks, or the sample size is not enough for the post-hoc identified
subgroup to inform the next step of development for the compound.
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1.3 Motivating Trial

We consider a placebo-controlled, double-blind proof-of-concept (POC) study for an inves-
tigational compound on patients with Alzheimer’s disease. The primary efficacy endpoint is
the change from baseline to final observation on the 13-item Alzheimer’s disease (AD) As-
sessment Scale – Cognitive Subscale (ADAS-cog) score. Previous research has suggested a
number of biomarkers that might predict treatment effect on AD, and these biomarkers are
apolipoprotein E (APOE)-ε4 genotype and allele status, plasma amyloid precursor protein
β (Aβ), and cerebrospinal fluid (CSF) β-site amyloid precursor protein (APP)-cleaving en-
zyme 1 (BACE1). It is plausible that the investigational compound only has a clinically
meaningful effect on a sub-population that is qualified by one of the biomarkers or a com-
bination of several biomarkers listed above. The objective of this clinical trial is to combine
the task of subgroup identification and population enrichment to gain efficiency with the
purpose of developing this investigational compound more rapidly.

In this study, patients with AD meeting entry criteria will be enrolled and equally
assigned to placebo or the investigational compound. Baseline biomarkers data will be
collected. At the pre-specified interim analysis, accumulating ADAS-cog total scores are
utilized to search for a potential subgroup with differential treatment effect following a
pre-specified algorithm. When such a subgroup is ascertained, study entry criteria will be
modified so that only the patients with the characteristics in the identified sub-population
will be enrolled to the study. This design allows population enrichment in the middle course
so that more information can be obtained for the sub-population to inform the next step of
clinical development.

This paper proceeds as follows. We first introduce the Bayesian probability model
in Section 2. The proposed ASID design is summarized in Section 3. Section 4 presents
extensive simulation studies and examines the operating characteristic of the ASID. Finally,
we conclude with a discussion in Section 5.

2. Probability Model

2.1 Sampling Model

Assume we have a maximum sample size of N patients that are indexed by i = 1, . . . , N ,
and suppose there are T candidate treatments indexed by t = 1, . . . , T . In the motivating
AD trial, T = 2. Let zi = t denote that patient i is assigned to treatment t. There are K
biomarkers that are identified from the investigational compound’s mechanism or disease
clinical presentation. We assume that a biomarker k can be binary, ordinal, categorical, or
continuous, where k = 1, . . . ,K. Denote xi = (xi1, . . . , xiK)′ and yi to be the biomarker
profile and the response outcome of the ith patient, respectively.

Denote Ω to be the biomarker space. We say that a partition is a family of subsets
Π = {S1, · · · , Sm, · · · , SM}, where the Sm’s are mutually disjoint and their union is Ω.
Here the number of subsets M is random. The partition on the biomarker space induces a
partition of the patients. If xi ∈ Sm, we say patient i with biomarker profile xi belongs to
subgroupm. We will construct a prior probability measure for Π in the next section. Below
we consider the sampling model of yi of different types conditional on xi and Π. Let Θ
denote the parameters in the sampling model. Denote Yn = (y1, . . . , yn), Xn = {xi}ni=1,
and Zn = (z1, . . . , zn).

Binary outcomes. Let yi ∈ {0, 1} and θt,m be the response rate of patients in subgroup
m under treatment t. In this case, Θ = {θt,m}. We assume p(yi = 1 | zi = t,Π,xi ∈
Sm) = θt,m. The likelihood function is simply the product of n Bernoulli probability mass
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functions. We assign the prior θt,m | Π
iid∼ Beta(a, b), where Beta(a, b) denotes a beta

distribution with mean a/(a+ b).
Categorical outcomes. Let yi ∈ {1, 2, . . . , C}, where C is the number of outcome

categories. Denote θc,t,m to be the response rate of patients in subgroup m under treatment
t for outcome category c. We assume p(yi = c | zi = t,Π,xi ∈ Sm) = θc,t,m, where∑C

c=1 θc,t,m = 1. We assign the conjugate prior

(θ1,t,m, . . . , θC,t,m) | Π iid∼ Dirichlet(a1, . . . , aC).

Continuous outcomes. Let yi ∈ R and θt,m be the mean response of patients in sub-
group m under treatment t. We assume p(yi | zi = t,Π,xi ∈ Sm) = N(θt,m, σ

2). The
likelihood can be written as follows:

p(Yn |Xn,Zn,Θ,Π) =
T∏
t=1

M∏
m=1

∏
{i:zi=t,xi∈Sm}

(2π σ2)−1/2 exp{− 1

2σ2
(yi − θt,m)2}.

(2.1)
We assign the conjugate prior p(θt,m, σ2) = p(θt,m|σ2)p(σ2) with

p(θt,m|σ2) = N(θ0,
σ2

κ0
) and p(σ2) = IG(

ν0
2
,
SS2

0

2
),

where SS2
0 = ν0σ

2
0 .

Survival outcomes. We assume that log(yi) = x′i βt,m + εi, where βt,m denotes the
regression coefficient for patients in subgroup m under treatment t and εi ∼ N(0, σ2). We
assign the priors βt,m ∼ N(µ0,Σ0) and σ2 = IG(a0, b0).

The joint model can be written as follows,

p(Yn,Θ,Π |Xn,Zn) ∝ p(Yn |Xn,Zn,Θ,Π) p(Θ | Π) p(Π | c)p(c), (2.2)

where c denotes the parameters in the model that describes the random partition Π. We
have introduced the sampling model and the priors for Θ. In the next section, we will
discuss the prior of Π.

2.2 Prior of Partition Π

We propose a tree-type random partition on the biomarker space Ω to define random
biomarker subgroups. We build partitions via a tree of recursive splits: each node of the
tree represents a subset of Ω. The final leaves of the tree are the partitioning sets Sm. At
each node the tree is either pruned or the corresponding subset is further split into two sib-
lings. In the second case, the two siblings are defined by a plane orthogonal to a randomly
selected axis of Ω, say the axis of the k-th biomarker. In other words, through a sequence
of splits, each of which selects a biomarker k first and then splits the space of xk in half, we
generate a partition set of Ω as the collection of the resulting subsets. For the motivating
AD trial, we limit the partition to at most four biomarker subgroups, and hence no more
than two rounds of random splits in the random partition. This constraint is imposed to
limit the number of subgroups with very few patients.

Figure 1 illustrates a simple case with two rounds of splits and two continuous biomark-
ers on [−1, 1]2. In each round, for each of the current subsets, we split along a biomarker
k with probability νk or choose not to split with probability ν0,

∑K
k=0 νk = 1. If an an-

cestor subset S is split into two subsets by the kth biomarker, then the resulting subsets are
{i : xik < Thk(S)} and {i : xik ≥ Thk(S)}, where Thk(S) is the threshold by which
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the subset is being split. For example, in Figure 1, biomarker 1 is chosen in the first round
and the patients are split into U1 = {i : xi1 < 0.5} and L1 = {i : xi1 ≥ 0.5}. Here
U and L denote that the measurements are smaller and larger than the threshold, respec-
tively. In round 2, we split subgroupU1 into two new biomarker subgroups UU11 andUL11

by choosing biomarker 1 with threshold 0 and split biomarker subgroup L1 into two new
biomarker subgroups LU12 and LL12 by choosing biomarker 2 with threshold -0.2. Note
that the ordering of letters U and L are matched with the ordering of the biomarker index.
Therefore, at the end, the partition Π = {UU11, UL11, LU12, LL12}, which corresponds to
four biomarker subgroups.
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Bi
om

ar
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om

ar
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Figure 1: An illustration of Π. The example shows that with two rounds of split, the initial
space of two biomarkers is partitioned into four subsets {UU11, UL11, LU12, LL12}.

In the Appendix, we describe the detailed split rules using two rounds of splits by
taking into account various types of covariates, including continuous, binary, categorical,
and ordinal variables.

3. Trial Design

In the following discussion, we assume that the outcome is continuous, T = 2, and one
interim analysis is needed, as in the motivating AD trial. However, the ASID can be eas-
ily extended to multiple treatments and multiple interim analyses. At the interim analy-
sis, we would like to discover the regions in the biomarker space Ω in which the patients
will benefit from the treatment. Since a random distribution is proposed on the partition,
summarizing a distribution over random partitions and discovering the subgroups become
challenging. To address this problem, we report the subgroups with differential treatment
effects as follows.

Assume n patients have been treated and their responses have been observed before
the interim analysis. Denote Dn = {Yn,Xn,Zn}. In the biomarker space Ω, we select
Dk grid points on biomarker k, and then take the Cartesian product of the grids across
all K biomarkers. For example, if biomarker k is continuous on [-1, 1], we can choose
Dk = 20 equally spaced points on [-1, 1]; if biomarker k is binary, then Dk = 2. Each grid
point d represents a possible biomarker profile. In the MCMC samples, the bth iteration
after burn-in generates a posterior sample {Θ(b),Π(b), c(b)}, which defines a partition set
Π(b) = {S(b)

1 , . . . , S
(b)

M(b)} and their corresponding response parameters. For each grid point

d with biomarker profile xd, we can find the subgroup S(b)
m it belongs to, and the response

parameter θ(b)t,d = θ
(b)
t,m if zi = t and xd ∈ S

(b)
m .

In the motivating AD trial, we assume that t = 0 represents placebo and t = 1 rep-
resents the investigational compound. Denote q(b)d = θ

(b)
1,d − θ

(b)
0,d, then the posterior prob-

ability of the treatment effect of grid d with biomarker xd larger than the low reference
value (LRV) can be computed as δd = 1

B

∑B
b=1 I{q

(b)
d ≥ LRV}. Here LRV represents a
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clinically meaningful minimum increment and B is the number of MCMC iterations after
burn-in.

The ASID will be conducted as follows.

• Start the trial. The first n patients are equally randomized to the placebo and the
investigational compound.

• At the interim analysis, if there exists a subgroup ∆ that is a convex hull (Graham,
1972), the smallest convex set that contains {d : δd ≥ ξ} for some threshold ξ, we
restrict the entry into the clinical trial to only patients with x ∈ ∆. If ∆ = ∅, we stop
the trial.

• If ∆ 6= ∅, we continue to recruit additional N −n patients equally randomized to the
placebo and the investigational compound with the biomarkers x ∈ ∆.

4. Simulation Studies

4.1 Simulation Setup

We conducted simulation studies based on the motivating AD trial to evaluate the perfor-
mance of the proposed ASID design. In each trial, the maximum sample size wasN = 140
patients and LRV = 2.37. We assumed that K = 4 baseline biomarkers were available for
each patient and p(νk) = 1/5, k = 0, 1, . . . , 4, indicating a uniform prior on the biomarker
selection. The priors on the parameters in c were introduced in the Appendix. As a run-in
phase, n = 80 patients were equally randomized to the placebo and the investigational
compound. In scenarios 1-3, we generated xik from Uniform(−1, 1), i = 1, . . . , n and
k = 1, . . . , 4. In scenario 4, we consider three continuous biomarkers generated from
Uniform(−1, 1) and one binary biomarker generated from Bernoulli(0.5). For the pro-
posed subgroup report, we fixed the parameter ξ = 0.9 based on extensive sensitivity
analysis (not shown here).

For comparisons, we implemented an alternative design for each simulated trial, a
linear regression (LR) design. Under the LR design, the outcomes were modeled as a
Bayesian linear regression considering all main effects and the interaction effects between
the treatment and the biomarkers: yi | zi,xi = β0 + β1zi + αxi + γzixi + εi, where

εi
iid∼ N(0, σ2). We assumed non-informative conjugate priors, 1/σ2 ∼ Gamma(0.1, 0.1)

and (β0, β1,α,γ) ∼ MN(0, 20I), where Gamma(a, b) denotes a gamma distribution
with mean a/b andMN(µ,Σ) denotes a multivariate normal distribution with mean µ and
covariance Σ. The posterior samples were obtained by a Gibbs sampling procedure. We
computed q(b)d = E(yi | zi = 1,xd)− E(yi | zi = 0,xd).

We considered four scenarios and simulated 100 trials for each scenario. In scenario 1,
we assumed yi = 0.75 + 0.25I(zi = 1) + 3.5I(xi1 > −0.4)I(zi = 1) + εi. In scenario 2,
the outcomes yi’s are generated from yi = 0.75 + 0.25I(zi = 1) + 3.5I(xi1 < 0.4, xi2 >
−0.4)I(zi = 1) + εi. In scenario 3, yi = 0.75 + 0.25I(zi = 1) + 3.5I(xi1 = 1, xi2 >
−0.4)I(zi = 1) + εi. In scenario 4, we assumed yi = 0.75 + 0.25I(zi = 1) + 1.5I(xi1 =
1, xi2 > −0.4)I(zi = 1) + εi. Here εi ∼ N(0, 1). Define the true effective subgroup as
So = {i : [E(yi | zi = 1,xi) − E(yi | zi = 0,xi)] > LRV}. The left column of Figure
2 show the simulated true effective subgroups in blue color for scenario 1-3. In scenario 4,
the true effective subgroup is ∅.
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Figure 2: Left column: true effective subgroups in blue for scenarios 1-3 in the simulation.
Middle column: the posterior estimated subgroups represented by grid points in blue under
the ASID. Right column: the posterior estimated subgroups represented by grid points in
blue under the LR design.

4.2 Simulation Results

We first report the subgroup finding at the interim analysis. Denote δhd to be the posterior
probability of the treatment effect of grid point d with biomarker profile xd larger than
LRV in trial h, h = 1, . . . , 100. We computed ∆̂ = {d : 1

100

∑100
h=1 δ

h
d ≥ ξ}. The middle

column of Figure 2 shows the posterior estimate subgroup ∆̂ under the ASID, represented
by the grid points in blue for scenarios 1-3. As shown in Figure 2, the effective subgroups
identified by the ASID have a large overlap with the simulation truth. Scenario 4 is a
NULL case, there is no effective subgroup. The ASID identified ∆̂ = ∅, which matches
the simulation truth. The right column of Figure 2 plots the posterior estimated subgroup by
the LR design, which performs much worse than the ASID. For scenario 4, the LR design
also recovers the simulated truth.

In addition, we report the sensitivity (true positive rate) and specificity (true negative
rate) of the subgroup finding as the operating characteristics of the ASID and the LR design:
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1) True positive rate =
∑
{d:xd∈So}

∑100
h=1 I(xd ∈ ∆̂)/(|So| × 100), where |So| is the

number of grid points in the simulated true effective subgroup; 2) True negative rate =∑
{d:xd /∈So}

∑100
h=1 I(xd /∈ ∆̂)/(|Ω \ So| × 100). As shown in Table 1(a), both the ASID

and the LR design achieve high specificity, but the ASID achieves much higher sensitivity
compared to the LR design.

Sensitivity Specificity
Scenario ASID LR ASID LR

1 0.91 0.54 1.00 1.00
2 0.90 0.38 0.99 0.98
3 0.87 0.00 1.00 1.00

(a)
OMT

Scenario ASID WO
1 3.75 2.74
2 3.74 1.93
3 3.71 1.51

(b)

Table 1: (a): The operating characteristics of the ASID and the LR designs. (b): The
overall mean treatment effect of the ASID and the WO design.

Lastly, we study the ASID efficacy by comparing the proposed enrichment design with
the design without the enrichment procedure. That means, we do not modify the study
entry criteria during the interim analysis. We call this design the WO design. Denote
yhi and zhi to be the response and treatment assignment for patient i in the hth simulated
trial, h = 1, . . . , 100, we define the overall mean treatment effect (OMT) as OMT =
1

100

∑100
h=1

(∑N
i=n+1 y

h
i I(z

h
i =1)∑N

i=n+1 I(z
h
i =1)

−
∑N

i=n+1 y
h
i I(z

h
i =0)∑N

i=n+1 I(z
h
i =0)

)
, which is the mean response differences

between the investigational compound and the placebo after the interim analysis. As shown
in Table 1(b), the ASID yields higher OMT compared to the WO design.

5. Conclusion

We demonstrated the importance of identifying subgroups and modifying the study entry
criteria in an adaptive enrichment design when there exist subgroups with differential treat-
ment effects. The key contributions of the ASID include the construction of the random
partition model that allows a flexible algorithm to explore subgroups and the modification
of study entry criteria at the interim analysis. As shown in the simulation studies, the ASID
can successfully recover the simulated effective subgroups. Compared to the alternative
LR design, the ASID achieves much better sensitivity.

The proposed ASID focuses on the study entry criteria at the interim analysis by identi-
fying subgroups of patients with differential treatment effects. One could easily add to the
ASID an adaptive patient allocation algorithm to assign patients to their superior treatments
and a final recommendation of a suitable patient population for a follow-up trial. As one
future research direction, when a large number of biomarkers are available, we can extend
the ASID to incorporate variable selection.
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Appendix

Below we describe the split rules for determining a partition of the biomarker space using
the example of two rounds of splits and various types of covariates, including continuous,
binary, categorical, and ordinal variables.

1. In the first split, we select biomarker k with probability νk, k = 1, . . . ,K, and
choose to split or not to split with probability ν0. We assume νk = 1

K+1 , indicating
a uniform prior. Then we choose threshold ck to split the biomarker space into two
subgroups Uk and Lk. The prior of p(ck) differs depending on what type of variable
the biomarker is.

(a) If biomarker k is binary, the split will be deterministic and we denote Uk =
{i : xik = 0} and Lk = {i : xik = 1}. Therefore p(ck) = 1.

(b) If biomarker k is continuous, denote Uk = {i : xik ≤ ck} and Lk = {i : xik >
ck}. We assume p(ck) = Uniform(min{xik}Ni=1,max{xik}Ni=1).

(c) If biomarker k is ordinal, let Vk denote the number of labels that biomarker k
has. Let ck denote the endpoint of the left partition, e.g., if Vk = 5 and ck = 3,
the left partition is {1, 2, 3} and the right partition is {4, 5}. In this way we
denote Uk = {i : xik ≤ ck} and Lk = {i : xik > ck}. Moreover, if ck = Vk,
it is equivalent to not splitting, which has been considered with probability ν0.
Therefore, we assume that p(ck) = 1

Vk−1 .

(d) If biomarker k is categorical, let Vk denote the number of categories corre-
sponding to biomarker k. Let ck denote the elements in one subset Uk. The
remaining elements are stored in the other subset Lk. The ck are elements of
the powerset of {1, 2, · · · , Vk} without the empty-set or the full set. There are
hence 2Vk − 2 options for ck. Note that the choice of ck is symmetric: we may
flip ck and its complement while also exchanging k1 and k2, the biomarkers
chosen to split on in the second round of splits, without any change. Thus,
p(ck) = 2

2Vk−2 .

2. In the second split, in the subset Uk, we choose biomarker k1 with probability
p(k1) = 1

K+1 since we can split along any biomarker k1 or choose not to split.
Then we choose threshold ck1 to split the subgroup Uk into two subgroups UUkk1

and ULkk1 . In the subset Lk, we choose biomarker k2 with probability p(k2) = 1
K+1

since we can split along any biomarker k2 or choose not to split. Then we choose
threshold ck2 to split the subgroup Lk into two subgroups LUkk2 and LLkk2 . Here,
p(ck1) and p(ck2) differ depending on what type of variable the biomarker is and the
values obtained for ck1 and ck2 .

(a) If biomarker k1 is continuous, denote UUkk1 = {i : xi ∈ Uk and xik1 ≤ ck1}
and ULkk1 = {i : xi ∈ Uk and xik1 > ck1}. We have p(ck1) = 1

2 if k1 6= k;
p(ck1) = 1

ck+1 if k1 = k.
If biomarker k2 is continuous, denote LUkk2 = {i : xi ∈ Lk and xik1 ≤ ck1}
and LLkk2 = {i : xi ∈ Lk and xik1 > ck1}. We have p(ck2) = 1

2 if k2 6= k;
p(ck2) = 1

1−ck if k2 = k.

(b) If ck1 is binary, denote UUkk1 = {i : xi ∈ Uk, and xik1 = 0} and ULkk1 =
{i : xi ∈ Uk, and xik1 = 1} with p(ck1) = 1.
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If ck2 is binary, denote LUkk2 = {i : xi ∈ Lk, and xik2 = 0} and LLkk2 =
{i : xi ∈ Lk, and xik2 = 1} with p(ck2) = 1.

(c) If ck1 is ordinal, we let ck1 denote the left endpoint of the second split within
the left partition, and if ck2 is ordinal, we let ck2 analogously denote the left
endpoint within the right partition. We have p(ck1) = 1

Vk1
−1 if k1 6= k;

p(ck1) = 1
ck

if k1 = k. Also, p(ck2) = 1
Vk2
−1 if k2 6= k; p(ck2) = 1

Vk−ck
if k2 = k.

(d) If ck1 is categorical, we let ck1 denote one subset of the split within the subset
Uk.
If ck2 is categorical, we let ck2 denote one subset of the split within the subset
Lk. We have p(ck1) = 2

2
Vk1−2

if k1 6= k; p(ck1) = 2
2|ck|−2 if k1 = k. Also,

p(ck2) = 2

2
Vk2−2

if k2 6= k; p(ck2) = 2
2Vk−|ck|−2 if k2 = k.
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