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Abstract 
The National Assessment of Educational Progress (NAEP) conducts regular assessments 
in mathematics and reading among samples of students in grades 4, 8, and 12. Since the 
resulting missing data are not missing at random, nonresponse adjustments are made via a 
process of weighting class adjustments. Using 2015 NAEP data we investigated whether 
improvements could be made to the process, analyzing the relationship of student and 
school characteristics to both student achievement and nonresponse. The aim was to 
establish an effective procedure for creating weighting classes that could be used for future 
assessment cycles. We determined the appropriate variables and their relevant grouping 
and cut points through the use of conditional inference trees, creating the trees using 
recursive partitioning with inference-based splits and unbiased variable selection. We 
describe the approaches used and illustrate the procedures by showing some of our 
findings. 
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1. Introduction 

 
The National Assessment of Educational Progress (NAEP), conducted by the National 
Center for Education Statistics, is an annual survey of the knowledge and skills of U.S. 
students, and has been conducted since the early 1970s. Students are assessed at grades 4, 
8, and 12 (although not ever grade is assessed each year). The subjects assessed vary by 
year, but include reading, mathematics, science, writing, U.S. History, Civics, Geography, 
Economics, Technology and Engineering Literacy, Music, and Visual Art. Since 1990, in 
alternate years (currently odd-numbered years) assessments in reading and mathematics 
are conducted at grades 4 and 8, with sample sizes large enough to yield estimates for 
public schools at the level of state, and for certain large urban school districts. The total 
sample sizes for such assessments are of the order of 150,000 students for each grade and 
subject. 
 
NAEP uses a two-stage sample design, selecting schools and then students within each 
selected school. Nonresponse can occur at both the school and student levels, and 
weighting adjustments are made to compensate for this nonresponse. Student nonresponse 
occurs in all assessments, but is typically quite low, being of the order of 6 percent at grade 
4, 8 percent at grade 8, and 15 percent at grade 12. Nevertheless, it is well-recognized that 
students are not missing at random, and hence the nonresponse adjustments applied have 
the potential to reduce the student nonresponse bias that would otherwise be present. 
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Student nonresponse adjustments are performed by creating weighting classes, and 
inflating the weights of the responding students in each class so that the sum of the survey 
weights of the responding students in the class is equal to the sum of the original weights 
of all of the eligible students in the class. Hence, the key to reducing nonresponse bias is 
the effectiveness of creating weighting classes using variables that are related both to 
student achievement and to the likelihood of responding. These classes are routinely 
created each year, using variables that are known to be related to achievement and are 
believed, based on historical data, to be related to the propensity to respond. 
 
However, for many years there has been no evaluation of whether there are better choices 
of variables for creating weighting classes, or the way in which they are combined for this 
purpose. While regularly conducted nonresponse bias analyses consistently demonstrate 
that the current approach is somewhat effective in reducing nonresponse bias, it is not clear 
that the current procedure remains optimal for this purpose. 
 
Therefore, we have embarked upon a research project to investigate, from the ground up, 
what are the most promising variables for use in creating effective nonresponse adjustment 
classes and how those classes should be formed. In addition to a limited number of 
individual student characteristics, a sizeable number of school characteristics, for the 
school attended by each sampled student, are available. We are utilizing data from the 2015 
assessments in mathematics and reading for this research. These data contain not only the 
student and school characteristics of the responding and nonresponding students, but also 
the achievement data, in mathematics or reading, for the responding students. Thus these 
data can be used to investigate both which variables are related to student achievement 
(among respondents), as well as which are related to the propensity to respond. 
 
Both test scores and nonresponse were modeled using conditional inference trees (Hothorn 
2006), which are decision trees that are grown more conservatively than most other 
decision tree models, and more importantly, provide unbiased variable selection. The 
purpose of the test score model was to determine which variables are related to student 
achievement. In turn, the significant variables are treated as candidates in the nonresponse 
model. The use of conditional inference trees to model nonresponse was previously 
investigated by Lohr et al but was limited to a simulation study (Lohr 2015). Here we wish 
to examine how well it can be applied in a more practical situation. 
 

2. Preliminaries 

 
The 2015 assessments include tests scores in Reading and Math for grades 4, 8, and 12. 
Public schools are grouped by state, and other schools are grouped into four categories: 
Department of Defense Education Activity, Bureau of Indian Education, Catholic, and non-
Catholic private. School-level characteristics include the median household income for the 
zip code in which the school resides, the racial demographics of the school, and the 
urbanicity of the school. Also, for public schools, there is a charter school indicator 
variable. Student-level characteristics include age, gender, race, disability status, and status 
as an English language learner. 
 
Some degree of preprocessing was needed to reduce potentially spurious information in 
the data. For one, the urbanicity variable includes thirteen categories. Excluding one 
category, DoD International, these can be grouped into four larger categories: city, suburb, 
town, and rural, each containing three sub-categories based on size, e.g., large city, midsize 
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city, and small city. For each of these four categories, we examined whether or not it was 
worthwhile to collapse the sub-categories. This was done by comparing the test scores 
between the sub-categories using an appropriate test. If each sub-category had at least ten 
observations, they were compared using an F-test; otherwise, a permutation test was 
performed. In both cases, sub-categories were combined if the p-value was greater than 
.05.  
 
Another variable that we examined was the age of the student in months at the time the test 
was taken. This is a discrete interval variable, which we further discretized into two 
categories: younger vs. older. The cutoff used to determine which of the two categories a 
student is a member of was found by fitting a conditional inference tree that regresses age 
on test. This is equivalent to selecting the cutoff which minimizes the p-value of a 
permutation test for comparing the younger vs older students in terms of test scores. 
 

3. Methodology 

 
In this study, we created nonresponse adjustment classes through the application of a 
conditional inference tree learning algorithm. Candidate variables were pre-selected by 
examining their ability to predict student achievement. Class imbalance was addressed via 
a two-step procedure where we fit a conditional inference tree on a balanced sampled to 
determine the adjustment classes, followed by an estimation of propensities within each 
class using the original unbalanced sample. 
 

3.1 Conditional Inference Trees for Nonresponse Modeling 
Decision tree learning is a popular methodology in both regression and classification and 
is known to be reasonably flexible, providing good predictive power in many situations. In 
contrast to many “black box” methods that are popular in the machine learning community, 
they are generally considered to be highly interpretable, which was a driving factor in our 
decision to use decision trees to model nonresponse. In particular, the resulting model 
consists of a number of classes defined by various cutoffs points across numerical 
covariates as well membership in categories for categorical variables, and in most cases, 
predictions are taken to be constant within each class. Trees are fit by recursively splitting 
across covariates, maximizing a measure of the difference in responses between the 
resulting classes. The method was originally developed to tame the combinatorial 
explosion of possible interaction effects when adding variables to a model (Morgan 1963). 
Different tree learning algorithms are defined by how they measure differences in response, 
whether they split on one variable at a time versus multiple variables, the handling of 
missing data, stopping criteria, etc. 
 
The most popular decision tree learning algorithms are CHAID (Magidson 1994) and C4.5 
(Quinlan 1996). However, these algorithms, along with most decision tree learning 
algorithms, have a number of drawbacks. For one, there is a tendency toward overfitting, 
where spurious trends are fit in the lower levels of the tree resulting in large trees with high 
variance. To manage this issue, pruning algorithms are often applied to produce smaller 
trees that represent the salient features in the data model while hopefully excluding 
spurious trends. Another common drawback of many decision tree algorithms is variable 
selection bias. Since trees seek to maximize the difference in responses between classes by 
examining all possible splits, they favor variables for which there are many ways to split 
unless the specific learning algorithm controls for this. These variables mainly include 
categorical variables with many categories. Additionally, if missingness is treated as an 
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additional category in lieu of imputation or case deletion, the algorithms will sometimes 
favor covariates with more missing values. 
 
Conditional inference trees were introduced by Hothorn et al in an attempt to address these 
concerns (Hothorn 2006).  The first step of the algorithm is to perform an omnibus test that 
is the basis for the algorithm’s stopping criterion.  This tests against the null hypothesis 
that the covariates are independent of the response conditional on the currently grown tree, 
and if the p-value is above a user-specified threshold, no further splits are made. If the p-
value is small, the variable with the strongest association with the response is selected. 
Split points are determined by maximizing the test statistic of a permutation test. 
 
The omnibus test is a built-in stopping criterion, and when properly applied, precludes the 
need for pruning, and the use of permutation tests provides unbiased variable selection. 
There are other candidate tree algorithms that provide the same or similar guarantees. The 
most comparable algorithm is GUIDE (Loh 2002), which also provides unbiased variable 
selection and early stopping. The primary difference is its use of chi-square tests instead of 
permutation tests. However, simulations performed by other authors provide good 
indication that conditional inference trees offer superior predictive performance on average 
(Hothorn 2006). 
 
3.1.1 Conditional Inference Tree Implementations 
Analyses were performed using the R statistical language/environment. There are multiple 
packages available for R that implement conditional inference trees, the first of which was 
party, which was followed by partykit (Hothorn 2015). A newer package, rpms 
(Toth 2017), provides an implementation that accounts for complex survey designs. Unlike 
party and partykit, rpms supports probability-weighted samples. Although the 
feature was not used in our study, rpms also allows the user to fit regressions on leaf nodes, 
whereas party and partykit assume constant predictions within leaf nodes. Yet 
party and partykit do offer a few advantages. These packages support regression 
and classification, whereas rpms only supports regression. Further, party and 
partykit handle missing covariates via surrogate splits, where cases with missing 
values for a covariate which is split upon are classified by examining another covariate, the 
surrogate. In rpms, cases with missing covariates are deleted, which reduces the effective 
sample size and may lead to bias. None of these packages handle missing response 
variables, nor do they allow user-specified loss functions. 
 
In this study, we used the rpms package primarily because it supports probability-
weighted samples, which was a key component in handling the class imbalance problem 
that will be discussed in Section 3.3. 
 
3.2 Variable Selection 
When modeling nonresponse, it is generally important to exclude variables that are 
independent of the response variable (test scores in our case). Otherwise, their inclusion 
will inflate the variance of the nonresponse-adjusted model predictions without a 
corresponding reduction in bias. As such, we first sought to determine which variables 
were notably predictive of student test scores. As with nonresponse, test scores were 
modeled using conditional inference trees, and variables that were not selected by the 
algorithm for the test score model were necessarily omitted from the nonresponse model. 
Due to expectations from prior experience, exceptions were made for gender and student 
race, which were always allowed entry into the nonresponse model, although the tree 
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algorithm associated with the nonresponse model was allowed to throw these variables 
out if it was determined that they were uninformative with respect to response propensity. 
 
It should be noted that we were not overly concerned about the ability of this model to 
predict test scores. Our goal here was simply to determine, within a consistent 
framework, which variables have a significant relationship with student achievement. 
One reason we used decision trees for the test score model was that it allows us to detect 
variables which may have a strong interaction effect but a weak main effect. 
Additionally, decision trees tend to exclude covariates that are confounded with other 
covariates. In general, this exclusion is desired, as it reduces variance without a large 
increase in bias. However, there may be cases where two covariates are confounded with 
respect to test scores but not with respect to the response indicator, in which case the 
variable would be unfairly excluded by our procedure. For this reason, in future work we 
will consider examining covariates in isolation from other covariates. 
 
The test score model was fit only on students who responded. Since the data was not 
missing at random, this introduced some bias in test score estimation, but we were 
hesitant to use imputation lest we introduce trends that are merely relics of our imputation 
methodology, and since our purpose here was variable selection, bias in estimating test 
scores was not a major concern. 
 
As an additional step, we considered using a variable selection procedure to filter out 
highly uninformative variables before fitting the response model. We used random 
forests, which are commonly used for this purpose (Breiman 2001, Genuer 2010). 
However, we found that their use had little impact on results, as they would generally 
omit the same variables that would have been omitted by the conditional inference tree 
anyway, and so they were not used in the final model. However, this may be because we 
used CART-based random forests. In the future, it may be worth evaluating the utility of 
random forests based on conditional inference trees (cforests) for the purpose of variable 
selection. 
 
3.3 Addressing Class Imbalance 
Student response rates are very high, over 90% in most cases. That is, we have a highly 
imbalanced response indicator variable. In such cases, models often aggressively try to 
correctly predict the majority class to maximize accuracy at the cost of a high 
misclassification rate for the minority class. This is known as the “class imbalance” 
problem. If one is merely interested in overall accuracy, then this “problem” is not 
actually an issue. A model may tend toward a constant prediction, placing all respondents 
into the majority class, but this simply indicates that a constant prediction provides the 
highest accuracy given the constraints of the model. Either this accuracy suffices for 
one’s purposes, or it serves as indication that an alternative model should be considered. 
However, in our case, this does not complement our goal of minimizing nonresponse 
bias, so the class imbalance problem was addressed. 
 
Class imbalance may be addressed in one of several ways. Oversampling the minority 
class or undersampling the majority class are commonly used techniques. These 
techniques are unfortunately problematic for conditional inference trees since they affect 
the test statistics, and current implementations do not adjust for the artificial 
increase/decrease in sample size, which in turn affects the significance tests used by the 
conditional inference tree algorithm. It may be possible to correct this bias by adjusting 
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the significance level of the test, but we have found that it is very difficult to fine-tune, 
and it may introduce some numerical instability. 
 
Another option is to use a loss function that accounts for class imbalance. Common 
choices are balanced accuracy and the F1 score. Given time constraints, we were not able 
to implement a conditional inference tree under these loss functions, but it is certainly an 
option for future work. 
 
Yet another option is to apply weights to our sample in a manner that balances the two 
classes but does not affect the sample size with respect to the significance tests. We chose 
this option, but one drawback is that it leads to propensity estimates that are biased 
toward .5, which is to be expected under a sample weighted in this manner. To address 
this issue, we used a weighted sample to build a tree and attain adjustment classes and 
then used an unweighted sample to estimate the propensity within each adjustment class. 
This allows us to properly capture features of the minority class, non-respondents in our 
case, without strongly biasing our propensity estimates. 
 
3.4 Clustering of States 
Initial results from the nonresponse model were not promising. Separate models were fit 
for each state and private school class, and the vast majority of them were constant, i.e., 
no variables were determined to be significantly related to nonresponse. One possible 
solution was to instead fit a single model instead of separate models for each, thus 
increasing the effective sample size for the model. However, we did not necessarily want 
to preclude the use of state-level information, so the state variable was included as a 
covariate in the model. Unfortunately, it was computationally infeasible to get a model 
fit, likely due to the great number of possible ways to split on the state variable. As an 
alternative, we modeled nonresponse by fitting a conditional inference tree where we 
regressed the state variable on the response indicator. There were still just as many ways 
to split on that variable, but the regression was not complicated by other covariates. The 
resulting cells were clusters of states. This state cluster variable was then used as a 
covariate in the nonresponse model that includes all other covariates. This reduced the 
number of categories for state in the model, which in turn allowed us to fit the model in a 
reasonable amount of time. 
 
Separate models were fit for the six state-subject combinations. For each, between 3 and 
10 state clusters were identified. 

4. Results 

 
In this section, we examine which variables are key with respect to student achievement 
and nonresponse. Additionally, we evaluate the effect our nonresponse model has on 
sample balance in lieu of examining error in propensity estimation, since we cannot directly 
observe propensities. 
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4.1 Test Score Model Evaluation 

 
Although predictive power of our test score model was not our goal, we did attempt to 
verify the reasonableness of the test score model. Figure 1 compares actual vs. predicted 
test scores for our model. For this figure, separate models are fit for each state (for public 
schools) and private school classification. The plots show that the models seem to slightly 
overestimate low scores and underestimate high scores, but overall it indicates that the 
models are reasonable enough for our purpose. 
 

 
Figure 1: Actual vs. predicted test scores 
 
 
We also wanted to examine the degree of consistency in which variables were retained by 
the test score model. However, with only six models, this was difficult to examine. One 
possible solution is resampling. However, a simpler alternative is to fit separate models for 
each state and examine how often each variable is kept by the models. Unlike the 
nonresponse models, which were often constant when separate models were fit for each 
state, reasonably sized models for test scores were consistently found across states. Upon 
examination, we discovered that all student-level characteristics, with the exception of age, 
were included in every test score model, indicating that they are significant predictors of 
test scores. Student age was retained in 84% percent of models. Median income and 
urbanicity were each retained in 68% of models, not necessarily together. Individual racial 
demographics (at the school level) were retained 50-60% of the time, although in every 
case at least on racial demographic variable was retained. Charter status was only included 
for 60% of models for public schools.  
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4.2 Nonresponse Model Evaluation 

 
As previously mentioned, we fit six separate nonresponse models, one for each 
grade/subject combination. To determine which variables are key in predicting 
nonresponse, we examined which variables were included in each model, as well as which 
variable appeared at the root of the tree. Table 1 shows these results. The Racial 
Demographics row combines all of the school-level racial demographic variables. 
Variables that do not appear in this table, e.g., gender, were not selected by any of the six 
models. 
 
 

Table 1. Key Variables in Nonresponse Models 

Variable # of models # of times as root 

State Cluster 6 5 
Disability Status 6 1 
Racial Demographics 5 0 
Student Race 2 0 
ELL Status 1 0 
Median Income 1 0 

 
 
One can see that state, disability status, and racial variables are by far the most relevant 
variables by this measure. The trees were all fairly small, including only a handful of 
variables, so we felt assured that we likely did not overfit the data, although underfitting is 
a possibility.  
 
We also examined how well propensity adjustments using inverse propensity weighting 
balance different auxiliary variables between respondents and the full sample. If they are 
balanced, this does not guarantee that we have corrected for bias with respect to test scores. 
Regardless, we feel that it can give use some clue as to the potential validity of our 
methodology. For example, suppose that the ratio of males to females in the full sample is 
.5, but the ratio among respondents is .8. A propensity method that properly accounts for 
this imbalance should estimate higher propensities for males than females on average. 
Under inverse propensity weighting, the males who responded will receive less weight than 
the females who responded, balancing the ratio toward .5. If the propensity-adjusted gender 
ratio among respondents deviates significantly from that, this may indicate some remaining 
bias in the estimation of test scores if gender is a confounding variable. 
 
Table 2 shows the ratio of propensity-adjusted means for respondents over the means for 
the full sample. In this table, the tree-based weighting classes are compared against 
previously used weighting classes. Ratios closer to one than in the alternative class 
adjustment are bolded. 
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Table 2. Examination of Sample Balance 

Variable Cond. Inference Trees Prev. Adjustment Classes 

Median Income 0.99 0.97 
% Native American 0.98 0.97 
% Asian 0.95 0.94 
% African-American 0.97 0.96 
% Pacific Islander 0.98 0.98 
% Hispanic 1.01 1.01 
% 2 or more races 1.00 0.99 

 
 
There does not seem to be a huge difference in this respect between the two sets of 
adjustment classes, but conditional inference trees are at least comparable to the previously 
used classes and may be slightly better. Similar statistics were calculated for each level of 
each categorical variable. They are too numerous to list here, but similar results can be 
found: our method provided slightly better balance, though the difference was generally 
not large. This indicates a modest improvement overall.  One exception to this is student 
race, which is less balanced under our methodology. This is a point of concern and warrants 
further investigation. 

 

5. Summary 

 
In this study, we revisited the creation of weighting classes for student nonresponse in the 
National Assessment of Educational Progress. Decision trees were selected due to their 
high interpretability and their ability to capture the most salient interaction effects. More 
specifically, a conditional inference tree algorithm was used to determine weighting classes 
due to a number of desirable features, particularly unbiased variable selection. Prior to 
modeling nonresponse, we modeled student achievement in order to determine what 
variables are predictive of test scores.  Class imbalance was addressed via the use of 
probability weighting during the estimation of nonresponse adjustment cells but an 
unweighted sample during propensity estimation within classes. States were clustered and 
then used as a predictor. The clustering noticeably improved the models over fitting 
separate models to each state or ignoring the state variable. 
 
Results indicate the nonresponse model shows very modest improvement over previously 
used nonresponse adjustment classes when examining balance across covariates. Key 
variables include disability status, school-level racial variables, and state cluster. 
 

6. Future Work 

 
While our results do indicate some modest improvement over previously used weighting 
classes, there is still certainly room for improvement. Firstly, the stopping criteria for the 
conditional inference trees needs more examination. In particular, we may attempt to 
optimize the alpha level of the permutation tests used with the conditional inference trees. 
We took special care to prevent overfitting; however, is our suspicion that we may, in fact, 
be underfitting, and it would be worth investigating the impact of higher alpha values on 
predictive power.  Alternatively, it is worth investigating other possible stopping criteria 
and splitting criteria. The use of p-values provides unbiased variable selection, but it is not 
statistical significance itself that we are concerned about. Rather, we are concerned about 
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the reduction in nonresponse bias. This cannot be directly measured; however, a more 
direct measure of predictive power would serve as a preferable surrogate over statistical 
significance. For stopping criteria, cross-validation could be used to adjust the alpha 
parameter to maximize predictive power under the constraints of the model, but this is a 
computationally intensive process, and more direct alternatives may exist. 
 
Although we saw improvements in sample balance on average, previously used adjustment 
classes better balanced student racial characteristics than did the methodology described 
herein, which is concerning for reasons previously described. To address this, we may force 
racial characteristics into the model or consider an alternative model, possibly one that 
directly addresses sample balance, such as in propensity matching methods. 
 
State-level information is not available in all years, so a single model that would exclude 
state clusters will need to be developed. Since the state cluster was a key variable in our 
model, special care will be needed to develop a reasonable model in its absence. 
 
In the future, variance estimation will be performed, and resampling methods will be used 
to evaluate the stability of the models. 
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