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Abstract

We implement the techniques of small area estimation (SAE) to study a positively skewed
welfare indicator, consumption. A logarithmic transformation that may be problematic is usually
suggested for positively skewed data to build a model. In our study, we have developed hierarchical
Bayesian models without log-transformation. We applied our model to the Nepal Living Standards
Survey, 2003/04 consumption data, an aggregate of all food and nonfood items consumed in the
past twelve months. Since, the respondent has to recall the consumptions in the past twelve months,
we assume that data are recorded with noises. For the noisy data, we fit three special cases of gen-
eralized beta distribution of the second kind (GB2) models using the Metropolis Hastings sampler.
After fitting Bayesian models for SAE, we show how to select the most plausible model and perform
the Bayesian data analysis.

Key Words: GB2 distribution, Generalized gamma distribution, Logarithmic transformation,
Markov chain Monte Carlo, Skewed distribution

1. Introduction

Continuous and positively skewed (CPS) data, such as consumption, income, insurance,
and loss in numerous applications, are examples of size data. Such data are generally
heavy-tailed and skewed to the right. The logarithmic transformation is the most widely
used tool to meet the normality assumption for CPS size data. If we have used a trans-
formation to build a model, the usual way to get estimates back to their original scale is
to perform a back-transformation. Does back-transformation give a correct distribution of
the response variable? Furthermore, what if the normality assumption fails? Feng et al.
(2013, 2014) discussed the problems with using the logarithmic transformation for posi-
tively skewed data.

There are numerous research papers and reports which use logarithmic transformation
for skewed data to build a model. The World Bank uses the Elbers, Lanjouw, and Lanjouw
(ELL) method (2001, 2003) for small area estimation (SAE) of the poverty measures and
the response is a logarithmic transformed welfare variable. It is a nested error model that
decomposes the total error into the sum of the area error and the unit error (Battese, Harter,
and Fuller, 1988). It had already been applied in 60 countries by 2011 (The World Bank,
2013). The empirical Bayesian nested error model for SAE also uses the logarithmic trans-
formed welfare variable as the response variable (Molina and Rao 2010). The hierarchical
Bayesian model for CPS data is shown in the paper, by Molina, Nandram, and Rao in 2014.
It also uses a logarithmic transformed response variable. If there are two or more levels of
hierarchies, a multi-level model could be another choice in SAE (Nguyen et. al. 2010).

We build hierarchical Bayesian models for the CPS data without logarithmic transfor-
mation and predict the responses for both sampled and non-sampled units. We focus on
giving estimates for small areas. SAE is essential for different sectors like government
agencies, developmental partners, planners, and researchers for many purposes like devel-
opmental planning.
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We assume that the response data are recorded with noises. The noise could have been
introduced into the response data as recalling errors. We fit models with the generalized
beta distribution of the second kind (GB2), the mixture of two generalized gamma distri-
butions, where the distribution of the response variable is mixed with the distribution of its
rate parameter, both having generalized gamma distributions. We fit three special cases of
the GB2: the mixture of exponential and gamma distributions, the mixture of two gamma
distributions, and the mixture of two generalized gamma distributions. We apply our mod-
els to the welfare consumption CPS data from the second Nepal Living Standards Survey
(NLSS-II), 2003/04.

Model adequacy has been checked by a Bayesian cross-validation approach. We have
used summary statistics of the conditional predictive ordinates (CPO), the logarithm of
the pseudo-marginal likelihood (LPML) to compare models. After selection of the best fit
model, it is applied to the census data for the prediction of responses and then small area
estimates are obtained. To calculate the poverty indicators, we compare the predicted per
capita consumption against the national poverty line.

NLSS-II data are available for 3912 households enumerated in the national survey. In
NLSS-II the welfare response variable per capita consumption is the aggregate of all food
and non-food items consumed in the past twelve months. The responders had to recall all
kinds of consumptions in monetary value throughout the reference year. In addition, for
each food item the respondent had to recall the number of months consumed and quantity
consumed in the typical month, then evaluate its market value at that time. It could also be
possible that there could be bias of reporting quantity and money values of food and non-
food consumed by some households. Hence, there could be the possibility of introducing
noise in the data.

We chose nine relevant covariates, which can influence welfare status, and per capita
consumption from the NLSS-II survey for modeling. These covariates have a moderate cor-
relation with the response variable. To facilitate SAE we have population census 2001 data
with these nine covariates. They are (i) “Household size” (hhsize), (ii) “proportion of kids
aged 0 - 6 in the household” (skids6), (iii) “proportion of kids aged 7 - 14 in the household”
(skids714), (iv) “abroad migrant” (remtab), (v) “House temporary” (hutype3), (vi) “House
owned” (huown2), (vii) “proportion of households with cooking fuel LP/gas in Ward” (ck-
fuel3w), (viii) “proportion of households with land-owning females in municipality/VDC”
(pflandv), and (ix) “proportion of kids 6-16 attending school in municipality/VDC” (pschv).

We organize the paper as follows: In Section 2 we discuss the GB2 distribution as the
mixture of the exponential and gamma, the mixture of two gamma and the mixture of two
generalized gamma distributions. In Section 3 we develop hierarchical Bayesian model
and discuss parameters sampling. In Section 4, we show the application to NLSS-II and
population census data and simulation results for SAE.

2. Modeling with GB2

We use GB2 to model size (positive values) data which can also be expressed as a mixture
of two generalized gamma distributions. We exploit this property in model building. Let the
probability density function of the response variable y|α, λ, γ and the probability density
function of its rate parameter λ|ϕ, θ, γ both have the generalized gamma distribution

y|α, λ, γ ∼ GGamma(α, λ, γ),

λ|ϕ, θ, γ ∼ GGamma(ϕ, θ, γ).
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Mixing these generalized gamma densities, we get the GB2 density

f(y|α, ϕ, θ) =
∫ ∞

0
f(y|λ, α, γ) g(λ|θ, ϕ, γ) dλ

=
γ

B(αγ ,
ϕ
γ )

yα−1

θα(1 +
(y
θ

)γ
)
α+ϕ
γ

, θ, α, ϕ > 0, y > 0. (1)

We note here that the rate parameter λ of the response variable y has been integrated
out. We have developed three different mixtures of the GB2 distribution in an hierarchical
order.

Exponential-Gamma Mixture Model: The moments do not exist for a mixture of the
two exponential distributions so we use the simplest GB2 model as a mixture of the expo-
nential and gamma distributions. If the response variable Y |λ has an exponential distribu-
tion, and its rate parameter λ|α, θ has a gamma distribution, mixing these two distributions
we get GB2 density

f(y|α, θ) = α

θ(1 + y
θ )

α+1
, α, θ > 0. (2)

Mixture of two Gamma GB2 Model: Let the response variable have the gamma dis-
tribution Y |α, λ ∼ Gamma(α, λ) and its rate parameter have the gamma distribution
λ|ϕ, θ ∼ Gamma(ϕ, θ). Mixing these two gamma densities and integrating out λ, we
get the GB2 model

f(y|α, ϕ, θ) = yα−1θϕ

Γ(α)Γ(ϕ)

∫
λ
e−(θ+y)λ λα+ϕ−1dλ

=
yα−1

B(α, ϕ)
1

θα(1 + y
θ )

α+ϕ
, θ, α, ϕ > 0. (3)

Its kth moment is given by

E[Y k|α, ϕ, θ] = Γ(α+ k)

Γ(α)

Γ(ϕ− k)

Γ(ϕ)
θk. (4)

For variance to exist in this density, we need ϕ > 2. If we consider α and ϕ to be two
distinct shape parameters, they are not identifiable (see below). We consider that two rate
parameters, α and ϕ, are related linearly as, ϕ = α + 2. This also allows the variance to
exist. Considering this linear relationship between two shape parameters, we have the GB2
density function from the mixture of two gamma distributions as

f(y|α, θ) = yα−1

B(α, α+ 2)

1

θα(1 + y
θ )

2(α+1)
, θ, α > 0. (5)

Non-identifiable Parameters Let us say we have n independent samples from the gamma
distribution, Yi|λi, α ∼ Gamma(λi, α). We would like to find a maximum likelihood esti-
mate (MLE) for the parameters α, λi, i = 1, · · · , n. The likelihood function is

f(y|α,λ) =
n∏

i=1

e−λiyi yα−1

Γ(α)
λα
i , λi, α > 0, i = 1, · · · , n.
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The log-likelihood function is

∆ =
n∑

i=1

[−λiyi + (α− 1)log(yi) + αlog(λi)]− nlogΓ(α).

The maximum likelihood estimator (MLE) for λi, is λ̂i =
α
yi
, i = 1, · · · , ℓ. Substituting

the MLE of λi in the log-likelihood function gives us

∆ =
n∑

i=1

[−α+ (α− 1)log(yi) + αlog(α/yi)]− nlogΓ(α).

Taking the partial derivative with respect to α gives

∂∆

∂α
= nlog(α)− nΨ(α),

where Ψ(α) = d
dα logΓ(α). Setting ∂∆

∂α = 0, we have log(α) = Ψ(α). It has no solution.
Therefore, if each response yi has its parameter λi, i = 1, · · · , n, then the parameters
(α, λi) together are not identifiable.

Mixture of two Generalized Gamma GB2 Model: Let the response variable have the
generalized gamma distribution, Y |α, λ, γ ∼ GGamma(α, λ, γ) and let its rate parameter
also have the generalized gamma distribution, λ|ϕ, θ, γ ∼ GGamma(ϕ, θ, γ). Mixing these
two distributions and integrating out λ, we have the following GB2 density

f(y|α, ϕ, θ, γ) = γ2
yα−1θϕ

Γ(αγ )Γ(
ϕ
γ )

∫
λ
e−(θγ+yγ)λγ

λα+ϕ−1 dλ,

=
γ yα−1

B
(
α
γ ,

ϕ
γ

) 1

θα(1 + (yθ )
γ)

α+ϕ
γ

, θ, α, ϕ, γ > 0. (6)

Its kth moment is

E[Y k|α, ϕ, θ, γ] =
Γ
(
α+k
γ

)
Γ
(
α
γ

) Γ
(
ϕ−k
γ

)
Γ
(
ϕ
γ

) θk. (7)

As before, in the mixture of the two gamma distributions, we need ϕ > 2 for the variance to
exist. We assume that the two shape parameters α and ϕ are related linearly as, ϕ = α+2.
Then the GB2 density can be written as

f(y|α, θ, γ) = γyα−1

B(αγ ,
α+2
γ )

1

θα(1 + (yθ )
γ)

2(α+1)
γ

, θ, α, γ > 0. (8)

2.1 Model comparison

Bayesian cross-validation approach by Gelfand, Dey, and Chang (1992) has been used to
evaluate the adequacy of a model. The cross-validation approach involves the prediction of
subset yi of the response data y, when only the component y(i) is used. Let y be the data
vector of N × 1 and y(i) and denote the (N − 1) × 1 data vector with the ith observation
deleted. If we fit a model with y(i) and if the model fits well, then it should predict yi very
well.
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The cross-validation approach needs to find p(yi|y(i)), called the cross-validation pre-
dictive distribution or conditional predictive ordinate (CPO). We consider the CPO defined
by Box (1980) and the studies under normal distribution by Pettit (1990)

CPOi ≈
M∑
k=1

f(yi|y(i),Ω)

[ [
f(y(i)|Ω(k))

]−1∑M
k=1

[
f(y(i)|Ω(k))

]−1

]
.

A summary statistic of the CPO′
is is the logarithm of the pseudo-marginal likelihood

(LPML) defined as

LPML =
n∑

i=1

log (CPOi) . (9)

3. Hierarchical Bayesian Models

Consider sample data with n observations, response variable yn×1, and covariate xn×p. We
have ℓ small areas, i = 1, · · · , ℓ, and each small area has j = 1, · · · , ni, observations. Let
yij and xij , i = 1 · · · , ℓ, j = 1 · · · , ni denote the response variable and the corresponding
covariates in the ith area and jth observation.

Below, we show the GB2 model as the mixture of two generalized gamma distribu-
tions. In a similar way we have built models for the mixture of the exponential and gamma
distributions and the mixture of two gamma distributions are not presented here.

3.1 Two Generalized Gamma Mixture GB2 Model

We assume that the responses yij |α, θ, γ, i = 1, · · · , n, j = 1, · · · , ni are random samples
from the GB2 distribution. We considered two shape parameters α and ϕ which are linearly
related, ϕ = α + 2. We introduce the covariates through the rate parameter by writing
ex

′
ijβ+νi and assume νi follows the normal distribution with mean zero and variance σ2.

The likelihood function is

π(y|α,β,ν) =
ℓ∏

i=1

ni∏
j=1

γ
yα−1
ij

B(αγ ,
α+2
γ )

e−α(x′
ijβ+νi)(

1 +
[
yij e

−(x′
ijβ+νi)

]γ) 2(α+1)
γ

. (10)

Let α and β have non-informative priors and γ have an informative prior. The priors
are independent. The hierarchical Bayesian GB2 model with random area effects is

yij |β, α, γ, νi
ind∼ GB2

(
α, ex

′
ijβ+νi , γ

)
, θij = ex

′
ijβ+νi , i = 1, · · · , n, j = 1, · · · , ni,

νi
iid∼ N(0, σ2),

π(β, α, σ2) ∝ 1

(1 + α)2 (1 + σ2)2

γ ∼ Gamma(S,R), where shape S and rate R are specified. (11)

Combining the likelihood in (10) and the priors in (11) via Bayes theorem, we get the joint
posterior density of α,β, γ,ν, σ2|y as
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π(α,β, γ,ν, σ2|y) ∝ f(y|α,β, γ,ν, σ2)π(ν|σ2)π(β, α, σ2)

=

[
γ gα−1

B(αγ ,
α+2
γ )

]n

e−α
∑ℓ

i=1

∑ni
j=1 x

′
ijβ

ℓ∏
i=1

 e−αniνi∏ni
j=1

(
1 +

[
yij e

−(x′
ijβ+νi)

]γ) 2(α+1)
γ


×

ℓ∏
i=1

[(
1

σ2

) 1
2

e−
ν2i
2σ2

]
× e−Rγ γS−1

(1 + α)2 (1 + σ2)2
. (12)

Let the log-likelihood function be G(α,β, γ,ν|y). For notational simplicity we write
G only, then its first- and second-order partial derivatives with respect to β and ν are

∂G

∂β
=

ℓ∑
i=1

ni∑
j=1

−α + 2(α+ 1)

[
yij e

−(x′
ijβ+νi)

]γ
1 +

[
yij e

−(x′
ijβ+νi)

]γ
xij ,

∂G

∂νi
= − αni + 2(α+ 1)

ni∑
j=1

[
yij e

−(x′
ijβ+νi)

]γ
1 +

[
yij e

−(x′
ijβ+νi)

]γ ,
∂2G

∂β2
= − 2(α+ 1)

ℓ∑
i=1

ni∑
j=1

γ

[
yij e

−(x′
ijβ+νi)

]γ
(
1 +

[
yij e

−(x′
ijβ+νi)

]γ)2 xijx
′
ij ,

∂2G

∂ν2i
= − 2(α+ 1)

ni∑
j=1

γ

[
yij e

−(x′
ijβ+νi)

]γ
(
1 +

[
yij e

−(x′
ijβ+νi)

]γ)2 ,

∂2G

∂β∂νi
= − 2(α+ 1)

ni∑
j=1

γ

[
yij e

−(x′
ijβ+νi)

]γ
(
1 +

[
yij e

−(x′
ijβ+νi)

]γ)2xij .

Using the first-order Taylor’s series approximation for

(
yi e

−(x′
iβ+νi)

)γ

1+
(
yi e

−(x′
i
β+νi)

)γ at β = 0, the

approximate MLE of β is

β∗|α, γ,ν =

[∑ℓ
i=1

∑ni
j=1

γ (yij e−νi)
γ

(1+(yij e−νi)
γ
)
2 (xix

′
i)

]−1(∑ℓ
i=1

∑ni
j=1

(
(yij e−νi)

γ

1+(yij e−νi)
γ − α

2(α+1)

)
xij

)
. (13)

Similarly, using the first-order Taylor’s series approximation at νi = 0, we have the MLE
of νi given by

ν∗i |α, γ,β =

∑ni
j=1

γ

(
yij e

−x′
ijβ

)γ

(
1+

(
yij e

−x′
ij

β
)γ)2

−1 ∑ni
j=1

 (
yij e

−x′
ijβ

)γ

1+

(
yij e

−x′
ij

β
)γ − αni

2(α+1)

 . (14)

Let the gradient vectors be ∇G(τ∗) = (g′
ν , g

′
β)

′, where gν =
(

∂G
∂ν1

· · · ∂G
∂νℓ

)′|ν=ν∗, β=β∗

and gβ =
( ∂G

∂β0
· · · ∂G

∂βp

)′|ν=ν∗, β=β∗ and the Hessian matrix be H evaluated at the ap-
proximate mode values β∗ and ν∗. Then using the second-order Taylor’s series approxi-
mation, we can write the approximated likelihood function as

f(y|β,α, ν) ≈ e[G(τ∗)+ 1
2
(∇G(τ∗))′ (−H(τ∗))−1 ∇G(τ∗)]

× (2π)
p+ℓ
2

∣∣(−H(τ∗))−1
∣∣ 12 N

[
τ∗ + (−H(τ ∗))−1∇G(τ∗), (−H(τ ∗))−1

]
,
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where N denotes the multivariate normal distribution for the parameter set τ = (β′, ν′)′.
Following the multivariate normal approximation theorem we can write(

ν

β

)
∼ N

{(
µ∗
ν

µ∗
β

)
,

(
Σ11 Σ12

Σ′
12 Σ22

)}
,

where the Hessian matrix is H = −
(
A11 A12

A′
12 A22

)
. Let us denote

Cαγ(τ
∗) = e[G(τ∗)+ 1

2
(∇G(τ∗))′ (−H(τ∗))−1 ∇G(τ∗)] ∣∣(−H(τ∗))−1

∣∣ 12 .
By applying the multivariate normal approximation theorem we can write the approxi-

mate joint posterior density as

f(β,α, ν,σ2|y)

∝ Cαγ(τ
∗)×N

(
µ∗
β, Σ22

)
×N

(
µ∗
ν +Σ12Σ

−1
22 (β − µ∗

β), Σ11 − Σ12Σ
−1
22 Σ

′
12

)
×N

(
0, σ2Iℓ

)
× e−Rγ γS−1

(1 + α)2 (1 + σ2)2

= Cαγ(τ
∗)× e−Rγ γS−1

(1 + α)2 (1 + σ2)2
× |A11|

1
2

|Σ22|
1
2 |σ2Iℓ|

1
2

× e−
1
2 [(β−µ∗

β)
′ Σ−1

22 (β−µ∗
β)]

× e
− 1

2

[
(µ∗

ν−A−1
11 A12(β−µ∗

β))
′A11

(
(A11+(σ2Iℓ)

−1
)−1

(σ2Iℓ)
−1

(µ∗
ν−A−1

11 A12(β−µ∗
β))

]
(15)

× e
− 1

2

[[
ν−(A11+(σ2Iℓ)

−1)
−1

(A11µ∗
ν−A12(β−µ∗

β))
]′
(A11+(σ2Iℓ)

−1)
[
ν−(A11+(σ2Iℓ)

−1)
−1

(A11µ∗
ν−A12(β−µ∗

β))
]]
.

From the above joint posterior density function (15), we see that ν has the multivariate
normal distribution

ν|β, α, σ2 ∼ N
[(
A11 + (σ2Iℓ)

−1
)−1

(A11µ
∗
ν −A12(β − µ∗

β)),
(
A11 + (σ2Iℓ)

−1
)−1

]
. (16)

There are numerous small areas. Integrating out ν, we have the joint density function
of β, α, γ, σ2|y as follows:

f(β, α, γ, σ2|y)

∝ Cαγ(τ
∗)× e−Rγ γS−1

(1 + α)2 (1 + σ2)2
×

|A11|
1
2
∣∣A11 + (σ2Iℓ)

−1
∣∣− 1

2

|Σ22|
1
2 |σ2Iℓ|

1
2

× e−
1
2 [(β−µ∗

β)
′ Σ−1

22 (β−µ∗
β)]

× e−
1
2 [(β−µ̃β)

′Σ̃(β−µ̃β)− µ̃′
βΣ̃µ̃β +(µ∗

ν+A−1
11 A12µ∗

β)
′S(µ∗

ν+A−1
11 A12µ∗

β)],

where S = A11

(
A11 + (σ2Iℓ)

−1
)−1

(σ2Iℓ)
−1,

µ̃β = (A′
12A

−1
11 SA

−1
11 A12)

−1A′
12A

−1
11 Sµ

∗
ν + µ∗

β,

Σ̃β = A′
12A

−1
11 SA

−1
11 A12.

From the above joint density of β, α, γ, σ2|y we notice that β has a multivariate normal
distribution

β|α, γ, σ2,y ∼ N

[(
Σ−1
22 + Σ̃β

)−1 (
Σ−1
22 µ

∗
β + Σ̃βµ̃β

)
,
(
Σ−1
22 + Σ̃β

)−1
]
. (17)

Integrating out β from the above joint density function, we get the joint density of α, γ, σ2|y
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π(α, γ, σ2|y)

∝ Cαγ(τ
∗)

e−Rγ γS−1

(1 + α)2 (1 + σ2)2

|A11|
1
2

∣∣A11 + (σ2Iℓ)
−1

∣∣− 1
2

∣∣∣Σ−1
22 + Σ̃β

∣∣∣− 1
2

|Σ22|
1
2 |σ2Iℓ|

1
2

× e
− 1

2

[
(µ∗

β−µ̃β)
′Σ−1

22 (Σ
−1
22 +Σ̃βµ̃β)

−1
Σ̃β(µ

∗
β−µ̃β)

]
(18)

× e−
1
2 [−µ̃′

βΣ̃βµ̃β+(µ∗
ν+A−1

11 A12µ∗
β)

′S(µ∗
ν+A−1

11 A12µ∗
β)].

3.2 Approximation of Likelihood

The proposed models in this paper have posterior densities and conditional posterior den-
sities in complex form, which makes parameter drawing tedious. To ease these difficulties,
we have used the second-order Taylor’s series approximation that will help us by providing
approximated multivariate normal distribution for a large set of parameters. For more see
Nandram, Fu and Manandhar (2017). Below, we provide the important results applicable
for approximation.

Lemma: Let π(τ ) be the unimodal density function. Then, τ has an approximately
multivariate normal distribution

τ ∼ N
{
τ ∗ −H−1g, −H−1

}
, (19)

where τ ∗, g, and H are the mode values, the gradient vector, and the Hessian matrix re-
spectively of log π(τ ).

Multivariate Normal Approximation Theorem

Theorem 1. Suppose ∆ = G(τ ) is the log-likelihood function of unimodal density for the
given data, response yij with corresponding covariates xij , i = 1, · · · , ℓ, j = 1, · · · , ni.
Let τ can be written as (β′,ν ′)′, then the joint posterior density of the parameters can be
approximated by a multivariate normal density. Furthermore, the marginal density of β
and the conditional density of ν|β can be approximated by multivariate normal densities.

Proof. Given the log-likelihood function of τ and ∆ = G(τ ), let us write τ =

(
ν

β

)
,

with the corresponding gradient vectors g =

(
gν
gβ

)
and Hessian matrix H , evaluated at

the mode
(
ν∗

β∗

)
, then we have

g =
( ∂∆

∂ν1
· · · ∂∆

∂νℓ
∂∆
∂β0

· · · ∂∆
∂βp

)′|ν=ν∗, β=β∗ ,

gν =
(

∂∆
∂ν1

· · · ∂∆
∂νℓ

)′|ν=ν∗, β=β∗ , gβ =
( ∂∆

∂β0
· · · ∂∆

∂βp

)′|ν=ν∗, β=β∗ ,

and

H = −
(
A11 A12

A′
12 A22

)
, (20)

where

A11 = −


∂2∆
∂ν12

· · · 0

:
. . . :

0 · · · ∂2∆
∂νℓ2

, A12 = −


∂2∆

∂ν1∂β0
· · · ∂2∆

∂ν1∂βp

:
. . . :

∂2∆
∂νℓ∂β0

· · · ∂2∆
∂νℓ∂βp

, A22 =


∂2∆
∂β2

0
· · · ∂2∆

∂β0∂βp

:
. . . :

∂2∆
∂β0∂βp

· · · ∂2∆
∂β2

p

.
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From the above Lemma, the multivariate normal approximation for the unimodal func-
tion, we have (

ν

β

)
∼ N

{
τ ∗ −H−1g,−H−1

}
, τ ∗ =

(
ν∗

β∗

)
,

where τ ∗ is the approximated mode, g and H are the gradient vector and the Hessian matrix
evaluated at (ν∗,β∗) respectively. Then the approximated multivariate normal distribution
of τ can be written as(
ν

β

)
∼ N

{(
ν∗

β∗

)
+

(
A11 A12

A′
12 A22

)−1( gν
gβ

)
,

(
A11 A12

A′
12 A22

)−1
}
, which can be simplified as(

ν

β

)
∼ N

{(
µ∗
ν

µ∗
β

)
,

(
Σ11 Σ12

Σ′
12 Σ22

)}
, (21)

where µ∗
ν = ν∗ +Σ11gν +Σ12gβ, and

µ∗
β = β∗ +Σ′

12gν +Σ22gβ.

Now applying the multivariate normal theorem, we have

β|y ∼ N
(
µ∗
β, Σ22

)
, and (22)

ν|β, y ∼ N
(
µ∗
ν +Σ12Σ

−1
22 (β − µ∗

β), Σ11 − Σ12Σ
−1
22 Σ

′
12

)
. (23)

3.3 Sampling from Joint Posterior Density

We have chosen the shape and rate parameters S = R = 1 for our prior distribution
γ ∼ Gamma(S,R). Grid sampling and the Metropolis–Hastings sampling algorithm are
used for drawing samples. For the Metropolis–Hastings algorithm, we use a multivariate t-
distribution as our proposal distribution. We take d = 3 degrees of freedom so that variance
will exist.

(i) We borrow α and γ from the previous model, two generalized gamma mixture GB2
model without random area effects νi. From these samples we pick a set of 100
quantiles by keeping the variable α and then γ in ascending order.

(ii) We draw σ2|α, γ,y using the grid sampling method with density function given by

π(σ2|α, γ,y) ∝ 1

(1 + σ2)2

|A11|
1
2

∣∣A11 + (σ2Iℓ)
−1

∣∣− 1
2

∣∣∣Σ−1
22 + Σ̃β

∣∣∣− 1
2

|Σ22|
1
2 |σ2Iℓ|

1
2

× e
− 1

2

[
(µ∗

β−µ̃β)
′Σ−1

22 (Σ
−1
22 +Σ̃β)

−1
Σ̃β(µ

∗
β−µ̃β)

]
× e−

1
2 [−µ̃′

βΣ̃βµ̃β+(µ∗
ν+A−1

11 A12µ∗
β)

′S(µ∗
ν+A−1

11 A12µ∗
β)]. (24)

The domain of σ2 is (0,∞). So we transform σ2 into η which has range (0, 1),
σ2 = η

1−η . We took 100 grid values of η and computed transformed probability
π(η|α,y) from (24). For each set of quantile values of α and γ we draw η and then
transform it back to σ2.

(iii) Using the information α, γ and σ2|α, γ drawn above, we can draw β|α, γ, σ2,y. The
Metropolis–Hastings algorithm is then used to draw β, α, γ, σ2|y jointly. The pro-
posal distributions are t-distributions. The proposal density for log(α, γ, σ2)|y is the
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multivariate t-distribution with d degrees of freedom, log(α, γ, σ2) ∼ td(µln,Σln),
where µln and Σln are estimated from the above step. The proposal distribution for
β|α, γ, σ2,y is a multivariate t-distribution with d degrees of freedom with corre-
sponding mean and covariance matrix as in equation (17). The target density is as
follows

π(β, α, γ, σ2|y)

∝ γS−1

(1 + α)2 (1 + σ2)2

[
γ gα−1

B(αγ ,
α+2
γ )

]n

e−(α
∑ℓ

i=1

∑ni
j=1 x

′
ijβ+Rγ)

×
ℓ∏

i=1

∫
νi

e−αniνi∏ni
j=1

(
1 +

[
yij e

−(x′
ijβ+νi)

]γ) 2(α+1)
γ

(
1

σ2

) 1
2

e−
ν2i
2σ2 dνi

 .

This integration is not in simple form. We apply a numerical integration. We divide
the integration domain into m equal intervals [tk, tk−1]

π(β, α, γ, σ2|y)

∝ γS−1

(1 + α)2 (1 + σ2)2

[
γ gα−1

B(αγ ,
α+2
γ )

]n

e−(α
∑ℓ

i=1

∑ni
j=1 x

′
ijβ+Rγ)

×
ℓ∏

i=1

 m∑
k=1

e−niẑkσ∏ni
j=1

(
1 +

[
yij e

−(x′
ijβ+ẑkσ)

]γ) 2(α+1)
γ

× (Φ(tk)− Φ(tk−1))

 .

(iv) Parameters νi|β, α, γ, σ2 are drawn using the Metropolis–Hastings algorithm. The
proposal density is a t-distribution with d degrees of freedom. We take the mean and
variance for the proposal from the samples of νi while drawing (β, α, γ, σ2) in the
above step. The target density is

π(νi|β, α, γ, σ2) ∝ e
−
(
αniνi+

ν2i
2σ2

)
∏ni

j=1

(
1 +

[
yij e

−(x′
ijβ+νi)

]γ) 2(α+1)
γ

, i = 1, · · · , ℓ.

We keep the samples νi from the Metropolis–Hastings algorithm if the acceptance
rate lies between 0.25 and 0.50, otherwise we discard them and sample again using
the grid sampling method in the second attempt.

3.4 Prediction

After drawing all parameters from the GB2 distribution model as mentioned above, we
predict the responses as follows.

(i) Find the rate parameters θ. We calculate the rate parameter using the information on
random area effect νi and β as follows

θij = ex
′
ijβ+νi .
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(ii) Draw shape parameters λ. In the GB2 distribution let us consider a transformation
t = (θλ)γ . This gives (θλ)γ ∼ Gamma

(
α+2
γ , 1

)
. Say, we draw a random sample

G1 from this distribution, and then we can calculate λ as follows

G1 = (θλ)γ ∼ Gamma
(
α+ 2

γ
, 1

)
, λij =

G
1
γ

1

θij
.

(iii) Predict responses. In the GB2 distribution we consider a transformation t = (λy)γ .

This gives (λy)γ ∼ Gamma
(
α
γ , 1

)
. Say we draw a random sample G2 from this

distribution; then we can predict ŷ as follows:

G2 = (λijy)
γ ∼ Gamma

(
α

γ
, 1

)
, ŷij =

G
1
γ

2

λij
.

4. Application and Simulation

We have sampled the parameters using the grid sampling and the MCMC Metropolis–
Hastings (MH) sampling method. We have applied the MH algorithm more than once;
however we have tabulated the acceptance rates for the final MH algorithm only. For all
the fitted models, we have taken a set of 2100 samples, “burn-in” 100 samples and thinning
interval of one. The final set has 1000 samples. For model-comparison purposes, we have
calculated LPML values. The larger the value of LPML the better the model.

Table 1 presents LPML values for GB2 models This table shows, that the mixture
of the exponential and gamma models have much smaller LPML values compared to the
mixture of two gamma and the mixture of two generalized gamma GB2 models. Therefore
obviously the mixture of two gammas or the mixture of two generalized gammas GB2
model fits better in NLSS-II consumption data. The selected best fitted model is GB2 as
a mixture of two generalized gamma distributions. For stratum two, the LPML values for
GB2 models, the mixture of exponential and gamma, two gamma, and two generalized
gamma distributions models are respectively -741.5, -614.7, and -591.8.

Table 2 presents the parameters-assignment results. It provides the MH sampler accep-
tance rate for parameters, Geweke convergence diagnostic test, and effective sample sizes.
The acceptance rate for parameters (α, γ,β, σ2) for models are provided. This table has
every p-value greater than 0.05. The effective sample sizes for all parameters are unity
except a few which have less (about 0.80 to 0.90), and a few are a little larger than unity.

Table 1: LPML values for three GB2 models

Stratum
GB2 Models

Exponential-Gamma Gamma-Gamma GGamma-GGamma
1 -487.6 -195.2 -173.9
2 -741.5 -614.7 -591.8
3 -509.6 -383.2 -362.1
4 -1479.3 -809.4 -756.3
5 -530.8 -372.5 -349.0
6 -1766.2 -1063.5 -1008.0
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Now, we show the trace and correlation plots. The trace plots for parameters are shown
for the Mountains stratum (stratum one). The trace plots for parameters alpha, gamma,
sigma square, and vector of beta coefficients are shown from Figure 1 to Figure 13. The
correlation plots for parameters alpha, gamma, sigma square, and vector of beta coefficients
are shown from Figure 14 to Figure 26. The trace and correlation plots for other strata are
also similar and not shown here.

We have applied models to the welfare per capita consumption data with nine covariates
from NLSS-II. To facilitate SAE, we have nine covariates both in the NLSS-II and the
population census, and their consistencies were checked prior to use. Poverty indicators
have been calculated using the poverty threshold of an average of 7,696 Nepalese rupees
per capita per year in 2003, adjusted for spatial price variation as reported in NLSS-II
documents. It is the same poverty threshold used in SAE of Poverty, Nepal (Haslett et al.,
2006).

We present the SAE of poverty indicators (poverty incidence, poverty gap, and poverty
severity) by applying the selected mixture of two generalized gamma (GB2) models in the
2001 Population Census data. We have given the district level estimates for Mountains
stratum as an example. Estimates for all other strata can be calculated similarly. The small
area estimations for VDC/Municipalities and for wards are also done in a similar way and
not tabulated here.

4.1 Family of Poverty Measures

Let Eij be the welfare measure for the jth unit of the ith area, i = 1, · · · , A, j =
1, · · · , Ni. The family of poverty measures for small area i given the predetermined poverty
threshold z > 0 is given by

Pαi =
1

Ni

Ni∑
j=1

(
z − Eij

z

)α

I (Eij < z) , α ≥ 0, i = 1, · · · , A, (25)

where, I(Eij < z) is an indicator function (Foster, Greer, & Thorbecke, 1984). For,
α = 0,P0i gives poverty incidence, the proportion of poor, P1i, (α = 1) gives the poverty
gap and P2i, (α = 2) gives the poverty severity. The larger the value of the parameter α the
greater emphasis given to the poorest poor.

4.2 Small Area Estimation

For SAE, first we get the area effects, νi, i = 1 · · · , L. We draw the random area effects
from the Bayesian bootstrap sampling method with prior Dirichlet(0) given all other param-
eters. Once we draw the random area effects, νi, we predict the responses in the population
census data as follows:

Prediction

(i) Find the rate parameters
θij = ex

′
ijβ+νi .

(ii) Draw shape parameter λ. In GB2 distribution consider a transformation t = (θλ)γ .

This gives (θλ)γ ∼ Gamma
(
α+2
γ , 1

)
. If we draw a random sample G1 from this

distribution, then we can calculate λ as

G1 = (θλ)γ ∼ Gamma
(
α+ 2

γ
, 1

)
, λij =

G
1
γ

1

θij
.
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(iii) Predict responses. In the GB2 distribution consider a transformation t = (λy)γ .

This gives (λy)γ ∼ Gamma
(
α
γ , 1

)
. If we draw a random sample G2 from this

distribution, then we can predict ŷ as

G2 = (λy)γ ∼ Gamma
(
α

γ
, 1

)
, ŷij =

G
1
γ

2

λij
.

After predicting the responses, the family of poverty measures for small area i with
poverty threshold of z is given by Pαi, equation (25).

4.3 Small Area Estimation at District Level

We provide the SAE for poverty indicators at the district level for the Mountains stratum
as an example. We have also estimated indicators in municipalities/VDC level and ward
levels but are not tabulated here; there are large numbers of those small areas. We have
mapped the poverty indicators at the district level. It would be better to provide maps of
these indicators in the municipality/VDC level. [Unfortunately we do not have shape files
in the municipality/VDC level for mapping.]

Table 3 provides Mountains stratum district level poverty indicators, their standard er-
rors and highest posterior density intervals at district levels. The poverty rate estimate
is 0.364 (SE 0.035), poverty gap estimate is 0.102 (SE 0.013) and poverty severity esti-
mate is 0.041 (SE 0.006) at the Mountatins stratum. There are seven districts which have
higher poverty incidences than average stratum incidences. Poverty rates in those dis-
tricts are: Mustang 0.411 (SE 0.036), Sankhuwasabha 0.393 (SE 0.036), Taplejung 0.391
(SE 0.036), Rasuwa 0.387 (SE 0.036), Darchula 0.384 (SE 0.038), Manang 0.379 (SE
0.038), and Kalikot 0.376 (SE 0.037). The four largest poverty gaps estimated districts
are Mustang 0.132 (SE 0.014), Rasuwa 0.117 (SE 0.014), Taplejung 0.112 (SE 0.014) and
Sankhuwasabha 0.112 (SE 0.014). Similarly four largest poverty severities estimated dis-
tricts are Mustang 0.063 (SE 0.007), Rasuwa 0.051 (SE 0.007), Taplejung 0.045 (SE 0.007),
and Sankhuwasabha 0.045 (SE 0.007).

4.4 Simulation Study

In the census data, covariates are available, but it does not have responses. We simulate
the response values in the census data with a multivariate linear regression using the nine
covariates as we have used for the model building. To simulate responses in the census, we
fit the multivariate linear regression model with these nine covariates in NLSS-II data with
log-transformed responses

log(yij) = x′
ijβ + eij , i = 1, · · · , ℓ, j = 1, · · · , ni.

Then we predict simulated responses in the census data

y
(s)
ij = ex

′
ij β̂+êij , i = 1, · · · ,L, j = 1, · · · , Ni,

where êij are generated from the assumption that residuals are distributed normally.
After generating simulated responses in the census data, we draw samples of size n

from the census data with simulated responses. We picked the same wards for the simulated
sample as in the NLSS-II data and the same number of households (12 households) by
systematic random sampling as it was done in the NLSS-II. There are four Wards of NLSS-
II (Mountains stratum), two wards from the Dolakha (ward codes 2200606 and 2204407)
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district and one ward from the Sankhuwasabha (ward code 901303) and Kalikot (ward code
6400401) districts, where the 2001 population census was unable to enumerate because of
a Maoist insurgency at that time in those wards. For those wards where census data are not
available, we randomly replace with the next ward from the same district. So in total we
have 384 households from 32 wards in our simulated samples, as in NLSS-II.

We fit our selected model to the simulated sample data and predict the responses in the
census data. If the models fit well, then they should predict the poverty indicators well.
We have calculated the three poverty indicators for both simulated responses and predicted
responses.

Figures 30 through 38 show diagonal plots of the poverty indicators from the simulation
study in district, municipality/VDC and ward levels. The census poverty indicators are
calculated from the simulated responses and the predicted poverty indicators are calculated
from the model we have fitted. We have also provided the linear relationship between
census simulated indicators and model predicted indicators with their R2 values in their
respective plots.

Figure 30 contains simulation study poverty incidences for the district level. The R2

value of the linear relationship is 0.926. Figure 31 is simulation study poverty incidences
for municipality/VDC level. The R2 value of the linear relationship is 0.843. Figure 32 is
simulation study poverty incidences at the ward level. The R2 values of the linear relation-
ship is 0.659.

Figures 33 through 35 show diagonal plots of the poverty gaps from the simulated re-
sponses versus predicted poverty gaps from the fitted models in district, municipality/VDC
and ward levels. We have also provided the linear relationship between the simulated re-
sponse gaps in the census data and predicted responses gap by the fitted model with the R2

values in their respective plots. Figures 36 through 38 show diagonal plots of the poverty
severities from the simulated responses in the census data versus predicted poverty severi-
ties from the fitted model in district, municipality/VDC and ward levels. We have provided
the linear relationship value R2. In Figure 36, severities at the district level, there are some
observations below the diagonal line, though it is up-lifted.

5. Concluding Remarks

We propose the GB2 models for the noisy responses. We assume that in our responses, the
noise has been introduced as recalling errors. We have fitted three hierarchical Bayesian
models and the mixture of two generalized gamma GB2 model has been selected as the
best model. Our response variable is CPS and the logarithmic transformation is suggest.
However, to avoid the problem due to logarithmic transformation, we have fitted the models
without a logarithmic transformation.

We have applied our models to the CPS consumption data from NLSS-II, 2003/04
survey and provided the estimates for small areas. SAE estimation is needed for planning
and research purposes. To provide the SAE we have used population census data, 2001
where we do have information of the covariates but not the responses. We have predicted
the responses in the census data using the best fitted model.
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Figure 1: Alpha
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Figure 2: Gamma
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Figure 3: Sigma Square
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Figure 4: Beta0
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Figure 5: Beta1
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Figure 6: Beta2
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Figure 7: Beta3
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Figure 8: Beta4
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Figure 9: Beta5
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Figure 10: Beta6
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Figure 11: Beta7
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Figure 12: Beta8
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Figure 13: Beta9
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Figure 14: Alpha
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Figure 15: Gamma
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Figure 16: Sigma Square
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Figure 17: Beta0
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Figure 18: Beta1
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Figure 19: Beta2
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Figure 20: Beta3
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Figure 21: Beta4
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Figure 22: Beta5
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Figure 23: Beta6
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Figure 24: Beta7
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Figure 25: Beta8
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Figure 26: Beta9
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Figure 27: Poverty incidence (P0) at the district level (Mountains stratum)
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Figure 28: Poverty gap (P1) at the district level (Mountains stratum)
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Figure 29: Poverty severity (P2) at the district level (Mountains stratum)
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Figure 30: Poverty incidences in the simulation study by district (Mountains stratum)
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Figure 31: Poverty incidences in the simulation study by municipality/VDC (Mountains stratum)
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Figure 32: Poverty incidences in the simulation study by ward (Mountains stratum)
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Figure 33: Poverty gaps in the simulation study by district (Mountains stratum)
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Figure 34: Poverty gaps in the simulation study by municipality/VDC (Mountains stratum)
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Figure 35: Poverty gaps in the simulation study by ward (Mountains stratum)
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Figure 36: Poverty severities in the simulation study by district (Mountains stratum)
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Figure 37: Poverty severities in the simulation study by municipality/VDC (Mountains stratum)
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Figure 38: Poverty severities in the simulation study by ward (Mountains stratum)
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