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Abstract 
Maximum Difference (MaxDiff), also known as Best-Worst Scaling, is a discrete choice 

technique widely known in marketing research for finding utilities and probabilities 

among multiple items. It was proposed by J. Louviere and widely used for finding 

utilities and preference probabilities among multiple items. It can be seen as an extension 

of the paired comparison techniques for simultaneous presentation of several items 

together to each respondent. A respondent identifies the best and the worst ones and 

estimation of utilities is usually performed in a multinomial-logit (MNL) as a discrete 

choice modeling. It produces utilities and choice probabilities of the compared items. 

This work considers how to obtain robust probability estimation adjusted to possible 

absence of some items on shelves in actual purchasing. For this aim we apply Markov 

chain modeling in form of Chapman-Kolmogorov system of differential equations and its 

steady-state solution which can be reduced to eigenproblem by a stochastic matrix and 

solved analytically. The obtained closed-form solution suggests a robust modification of 

choice probabilities with accounted cases of items non-availability. Adjustment to choice 

probability with network effects is also considered. Numerical example by marketing 

research data is used and the results are discussed. 

 

Key Words: MaxDiff, choice probability, Markov chain, Chapman-Kolmogorov 
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1. Introduction 
Maximum Difference (MaxDiff), also known as Best-Worst scaling, is a modern 

marketing research approach to evaluation probability of choice among many compared 

items. This method has been originated by Jordan Louviere (1991, 1993), and developed 

in multiple works (for instance, Marley and Louviere, 2005; Bacon et al., 2007, 2008). It 

can be seen as extension of Thurstone scaling from pairwise to simultaneous comparison 

among three or more items in a balanced plan where respondents indicate the best and 

worst items, with following estimation of choice probabilities in MNL or analytically 

(Louviere et al., 2015; Marley et al., 2008, 2016; Lipovetsky and Conklin, 2014a,b, 2015; 

Lipovetsky et al., 2015). Estimation of utilities and choice probabilities is usually 

performed in multinomial-logit (MNL) approach to the discrete choice modeling (DCM).  

The recent work (Blanchet et al., 2016) considers choice models based on Markov chains 

with states corresponding to the items and transition probability defined by the 

preferences among the items, and applies this approach to assortment optimization. As 

shown in that work, if a product/item is not available, a customer substitutes the most 

preferred by another item, and such sequential transitions are described by Markov chain 

model, where arriving probability equals the MNL choice values, and transitional 

probabilities are defined as the inflated probabilities are re-estimated by exclusion of each 
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item from their set. The aim of the current paper is to answer the question: if some items 

are not actually available, how can such a scenario change the results of estimation? 

Using transition probabilities we describe Markov chain for discrete states in the 

Chapman-Kolmogorov equations, and show that this system can be solved analytically 

and presented in the closed-form. This technique yields a robust adjustment of the choice 

probabilities to situation of absence of would-be-purchased items on shelves. 

Another interesting possibility to improve estimating of choice probability can be seen in 

accounting for possible spread and impact of opinions in social networks, when 

consumers tend to prefer the products of higher frequency and values endorsed by their 

friends and acquaintances. Some approaches using endogenous networks effects are 

described in various works (for instance, Anderson et al., 1992; Du et al., 2016; Wang 

and Wang, 2016). The current paper also includes such a consideration based on simple 

analytical adjustment. 

 

2. Markov chain and steady-states in eigenproblem 
Choice probability among several alternatives can be described by MNL model 
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where xj are predictor variables and aj are utility parameters defining probability pj of 

each j-th choice among all n of them. One of the shares (1) is usually taken as a reference 

with its parameter put to zero, for instance, a1=0. The model can be more complicated as 

in a DCM with many predictors in each exponent, or less complicated with binary 

predictors as in BWS. All the share probabilities satisfy the evident relation of their total 

                                             1...21  nppp .                                             (2) 

According to Blanchet et al. (2016) on Markov chain modeling of the choice 

probabilities, each alternative can be considered as a discrete state with arriving 

probabilities pj defined by MNL (1) and transition probabilities qij defined as follows: 
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If an i-th item is not available in assortment, the other j-th shares are renormalized by the 

total probability 1-pi, so conditional probabilities (3) describe a possible substitution of 

each i-th item by another j-th item. Each element qij measures the preference of j-th item 

over i-th item that corresponds to transition to the preferred state j from the state i. A 

matrix with intensity of transition elements qij (3) can be seen as a connected oriented 

graph with n nodes of states/items and two edges between each pair of nodes – the one 

going to state j from state i corresponds to transition intensity qij, and the other going 

from state j to state i corresponds to transition intensity qji. 

Markov chain transitions for discrete states and continuous time can be presented in 

Chapman-Kolmogorov equations defining change in probability to belong to each state Pj 

(those denoted by capital P) as linear aggregates of these probabilities weighted by 

transition intensities (Bellman, 1960). For instance, change in time of the choice 

probability P1 for the 1
st
 product adjusted to non-availability of products can be written as 

follows: 
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where the negative items correspond to P1 diminished by transitions to other states, and 

the positive ones corresponds to P1 increasing due to arrival from the other states. Using 

transition intensities qij (3) in (4) yields: 
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where (2) is accounted. Similarly the other states can be described, and the total system 

of Chapman-Kolmogorov equations is as follows: 
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As it is well-known (Bellman, 1960) the solution of a homogeneous linear system of 

differential equations with constant coefficients can be presented as  

                                   ctdiagPtP ))(exp()(   ,                                                        (7) 

where diag(.) denotes a diagonal matrix, c is a vector of constants. The vector  and 

matrix P consist of eigenvalues and columns of eigenvectors, respectively, obtained in 

solving the eigenproblem of the matrix in (6): 

                                                  PPIQ  )( ,                                                           (8) 

where I denotes the identity matrix, and Q is the matrix of transition intensities (3): 
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The solution (7) for the starting moment t=0 reduces to PcP )0( , and solving this 

linear system with respect to c yields the vector of constants )0(1PPc  , and
1P  is the 

inverted matrix of the eigenvectors (8). The vector of initial conditions can be defined by 

the arrival probabilities pj, so pP )0( , and general solution (7) of differential equations 

(6) reduces to 

                                         pPtdiagPtP 1))(exp()(   .                                         (10) 
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The expression
1))(exp( PtdiagP   in (10) is known as matrix exponent. Each 

component of the vector P(t) is a linear combination of the exponents )exp( tj  which 

behave in accordance with the specific values of j obtained in the eigenproblem (8). The 

reciprocal eigenvalues can be interpreted as the mean time of transitions among the 

states, jj t /1 . 

 

3. Steady-states choice probability in the analytical closed-form solution 
The choice probabilities Pj can be also obtained in explicit analytical closed-form 

solution. For the stabilized process with derivatives in (6) equal zero, the steady-states 

probabilities Pj can be found by solving the corresponding system of linear homogeneous 

equations: 
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which can be represented in matrix form as 

                                                            PQP  ,                                                        (12) 

where 1 , and P is a vector of unknown elements P1, P2, …, Pn. It is easy to see that 

totals in each column (9) equals one, for instance, in the 1
st
 column: 
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where the relation (2) is used. A so-called stochastic matrix has totals in each row equal 

one, so (9) is a transposed stochastic matrix. 

The equation (12) is the eigenproblem for the matrix (9), with and P its eigenvalues and 

eigenvectors. The eigenvalues of a matrix and its transposition coincide. Due to Perron-

Frobenius theory, for a stochastic non-negative matrix its main eigenvalue equals

1max  , the main eigenvector is unique and non-negative, and the same concerns a 

transposed stochastic matrix. Thus, for solving the system of homogeneous linear 

equations (11) we use the eigenproblem (12) and take the main eigenvector P as the 

vector of choice probabilities adjusted to possible non-availability of products. 

The eigenproblem (12) for 1max   reduces to the linear homogeneous equations                                                            

0)(  PIQ , with I as identity matrix. The matrix Q-I (the same used in (8)) can be 

presented as follows: 
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where prime denote transposition, so there is an outer product of two vectors minus 

diagonal matrix to keep zeros on the diagonal of the matrix (11).  

For solving a system of homogeneous linear equations we can put one of the unknown 

parameters in the vector P to be a constant, for instance, P1=1. Then skipping the first 

equation we reduce (11) to the nonhomogeneous system of equations of the n-1 order: 
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where nP :2  denotes the vector P without the 1
st
 element. To solve this matrix equation 

with respect to the vector nP :2  we need to invert the matrix of the structure (15). For this 

aim we apply the known Sherman-Morrison formula 
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with which the inversion of the matrix at the left-hand side (15) yields: 
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Then solution of the system (15) is: 
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Combining the first element P1=1 with the vector (18) yields the total vector of adjusted 

choice probabilities: 
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Normalizing it by the total equal one we represent (19) as follows: 
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Thus, having an initial set of MNL probabilities pj we use the formula (20) for estimating 

the values Pj adjusted for accounting a possible non-availability of any product.  
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In choice-based conjoint estimations with probabilities defined via MNL (1), the robust 

values can be obtained by (20) which yields probabilities in explicit form: 
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4. Accounting for network effects 

It is also possible to improve estimation of individual and average choice probabilities 

taking into account the impact of opinions in social network when consumers tend to 

choose the products of higher total preference. Adjustment to the aggregated probability 

can be performed in a simple analytical approach as follows. With utility parameters aj of 

the MNL model (1) we can estimate change in individual choice probabilities due to 

networks effects as proportional to the aggregated probability of items:  
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where v denotes the individual observations (v=1, 2,…, N – total base size), and the 

aggregated probability for each j-th item is 
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Re-estimation of the total probabilities adjusted to network effects yields: 
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Then using jp~  (24) in place of jp  in (20) produces the choice probability estimates 

adjusted by network effects and by possible non-availability of the products.  

 

5. Numerical Example 

For numerical illustration we use a real marketing research project for MaxDiff 

prioritizing seventeen items where 3,062 respondents saw four items in ten tasks for 

choosing the best and worst items – more detail are given in Lipovetsky and Conklin 

(2014a,b) where this dataset was used. Table 1 presents original MaxDiff solution and its 

robust adjustment Pj (20). The adjustment mostly concerns the bigger elements in the 

original solution and makes it smoother. The last two columns present solution (24) with 

networks accounted, and its robust adjustment (20) as well. As expected, the adjustment 

for network effects increases the bigger elements in the vectors in comparison with those 

in the previous columns. The results in the last column define the analytical solution 

accounted for the network effects and conditioned on possible items non-availability. 

 

419



Table 1. MaxDiff choice probability (% in total): solutions original and adjusted to items 

non-availability, also with network effects and that adjusted to items non-availability. 

 

 

MaxDiff 

analytical pj 

Robust 

adjustment 

Pj 

With 

networks  

effects pj 

Robust adjustment 

with networks  

effects Pj   

1 4.79 5.15 4.50 4.94   

2 3.07 3.36 2.83 3.17   

3 25.65 21.55 28.89 23.64   

4 6.92 7.28 6.64 7.13   

5 6.61 6.98 6.31 6.81   

6 1.58 1.76 1.43 1.63   

7 4.75 5.11 4.46 4.90   

8 2.62 2.88 2.41 2.71   

9 6.10 6.47 5.80 6.29   

10 4.13 4.48 3.86 4.27   

11 1.09 1.22 0.99 1.13   

12 6.78 7.14 6.49 6.98   

13 14.26 13.82 14.61 14.36   

14 2.37 2.62 2.17 2.44   

15 2.85 3.13 2.63 2.94   

16 2.87 3.15 2.65 2.97   

17 3.57 3.89 3.31 3.69   

 

6. Summary 

The work describes choice probability modeling conditional on some items non-

availability. Using transition probabilities defined from multinomial-logit modeling in a 

Markov chain, we show that the problem can be solved analytically and presented in the 

closed-form. This technique yields a robust adjustment of the probabilities obtained by 

MaxDiff in a scenario of absence of some products on shelves. Adjustment to choice 

probability with network effects is also considered. The methods are illustrated on the 

MaxDiff data but can be applied to other discrete choice problems in their multinomial-

logit models completed by Markov chain modeling. The considered analytical solution 

can be useful in various marketing research problems. More detail on it is given in 

Lipovetsky and Conklin (2018). 
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