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Abstract
When selecting a comparison group for an observational study, accurate measures of bal-

ance between the treatment group and the matched comparisons are essential. The omnibus
test (Hansen and Bowers 2008) complements covariate-specific assessments with a test of si-
multaneous covariate balance. However, in practice the omnibus test and covariate-specific
diagnostics often disagree. Attempting to reconcile these differences, we conduct a simu-
lation study investigating the omnibus test’s power and type I error rates under different
data-generating scenarios. Across scenarios, the test’s power and type I error rates align
with theoretical expectations, with one consistent exception: data sets containing pre-
dominantly binary variables. We synthesize these findings, including a comparison of the
omnibus test and covariate-specific assessments across scenarios, to offer practical guidance
for balance diagnostics.
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1. Introduction

When estimating causal effects from non-experimental studies, it is typical to de-
velop a comparison group to represent the counterfactual: the outcomes we would
have observed from the treatment group in the absence of the intervention. For this
counterfactual to hold, the treatment and comparison groups must be well-balanced
on the characteristics of interest in the study. It is therefore essential to assess bal-
ance rigorously to ensure valid causal inferences.

A rigorous balance assessment examines both univariate balance – whether the
treatment and comparison groups are well-matched on each characteristic individu-
ally – and multivariate balance – whether the treatment and comparison groups are
well-matched across characteristics. Common univariate metrics include standard-
ized differences, which measure the difference in means between the treatment and
comparison groups on the standard deviation scale, tests of the hypothesis that the
difference in means between the treatment and comparison groups is equal to zero,
and tests of the hypothesis that the difference in means between the treatment and
comparison groups falls within some practically negligible range. The omnibus test
of Hansen and Bowers, which tests whether the difference in means between the
treatment and comparison groups falls outside the expected range across all linear
combinations of the matching characteristics, is a common multivariate diagnostic.

Univariate and multivariate diagnostics are not mutually exclusive but rather
complementary; univariate diagnostics identify possible imbalances on individual
characteristics, while multivariate diagnostics guard against scenarios where the
treatment and comparison groups are well-matched on each individual characteris-
tic but not across characteristics. However, in practice the two types of diagnostic
may not agree; in particular, the omnibus test may reject, implying imbalance,
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when all standardized differences are quite low, implying the reverse.

At first blush, we may simply dismiss the results of the omnibus test; without
any evidence of imbalance on individual characteristics, we cannot pinpoint the
variable or variables responsible for the conflicting result. We may also conclude
that the omnibus test sets too high a standard by aiming for balance on all linear
combinations of the matching characteristics, not all of which, perhaps, are relevant
to the problem at hand. Despite these misalignments between the test’s design and
its practical applications, it serves as a crucial safeguard against pernicious scenar-
ios where bias lurks beneath the surface of an apparently well-balanced sample.

To reconcile these conflicting signals, we must gain a deeper theoretical and
practical understanding of the omnibus test. In this paper we aim to address both
points, with greater emphasis on the latter. In a first section we will summarize the
omnibus test and outline its theoretical underpinnings. In a second section we will
develop a simulation study designed to assess the test’s empirical properties. In a
third section we will summarize the results of the simulation study and in a fourth
section we will offer guidelines for practitioners based on these results.

2. The Omnibus Test of Hansen and Bowers

In their 2008 paper, Hansen and Bowers develop an alternative to traditional meth-
ods of assessing balance. They begin by examining two traditional approaches,
standardized differences and a joint significance test of all relevant characteristics,
and finding both wanting. The standardized difference approach produces a list –
possibly a long list – of standardized differences and corresponding p-values rather
than a single summary statistic. Given that the p-values are likely correlated, it is
not immediately clear how to determine whether the sample is balanced based on
this information. A joint hypothesis test, by contrast, does produce a single test
statistic, but Hansen and Bowers demonstrate by simulation that this statistic is
not reliable. In small samples, the joint hypothesis test’s Type I error rates are
unacceptably high, and Hansen and Bowers conclude after further simulations that
deviance tests remain unreliable even with eleven times as many observations as
covariates.

As an alternative to these traditional tools, Hansen and Bowers take a fresh look
at balance assessments, starting from a simple measure of the difference in means
on a single covariate under a single treatment assignment:

dp(z,x) =
ztx

ztm
− (1− z)tx

(1− z)tm

In this equation, z is a vector indicating treatment assignment for each obser-
vation and x is a vector of the same dimension giving the covariate value for each
observation. Throughout, Hansen and Bowers emphasize the importance of assess-
ing balance when treatment assignment arises through a clustered design, so they
also include m, a vector of cluster sizes.

Although Hansen and Bowers derived the omnibus test to assess balance in a
block-randomized design, the notion of clusters is also applicable when evaluating
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a matched comparison group for an observational study. The matching process cre-
ates sets of one or more treatment units matched to one or more comparison units;
as in a block-randomized design, if the matching was successful we can conceive of
treatment as randomly assigned within each matched set.

So Hansen and Bowers extend the simple difference-in-means metric dp(z,x) to
d(Z,x), which both accounts for clustering and places dp(z,x) in the context of its
randomization distribution. To conduct such a randomization test, we conceive of z
as a realization drawn from the set of possible treatment assignments Z and write:

d(Z,x) =
B∑
b=1

wb

[
Zt
bxb

mtb
− (1− Zb)

txb

mb −mtb

]
Here we introduce additional notation: b ∈ {1, 2, . . . , B} denotes a block, or

matched set in the observational case; mtb represents the expected number of treated
units in cluster b, while mb −mtb represents the number of untreated units in the
same cluster. Likewise, xb represents the vector of x-values for the units in block b.

Hansen and Bowers note that under the relevant central limit theorems d(Z,x)
converges to a Normal distribution in large samples. Extending this univariate
statistic to the multivariate case, then, we have

d2(z; x1, . . . ,xk) := [d(z,x1), . . . , d(z,xk)] ·

Cov
d(Z,x1)

. . .
d(Z,xk)


−1 d(z,x1)

. . .
d(z,xk)


As desired, this test produces a single summary statistic and corresponding p-

value that describe the difference in means across all linear combinations of the
characteristics included in the balance assessment. Because the univariate compo-
nents d(Z,x1), . . . , d(Z,xk) ∼ Normal, d2(z; x1, . . . ,xk) ∼ χ2, where the degrees of
freedom are equal to the rank of the variance-covariance matrix. This approximate
distribution facilitates derivation of p-values and thus rejection or non-rejection of
the hypothesis that the difference in means across all linear combinations of char-
acteristics falls within the expected range.

Based on the properties of this test, Hansen and Bowers assert that the χ2 ap-
proximation is relatively reliable even in small samples. They also claim that the
test is robust to expansion of the set of characteristics to examine; assessing balance
on additional characteristics will not lead the test falsely to reject the null hypoth-
esis of good balance.

3. A Simulation Study

Hansen and Bowers advocate for their test on the theoretical grounds described
above, under the assumption that the characteristics x1, . . . ,xk are normally dis-
tributed. In practice, however, the data used to select a comparison group, and thus
used to assess post-matching balance, may deviate substantially from the test’s the-
oretical expectations. In fact, as already noted, in practice the omnibus test often
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contradicts the findings of other univariate diagnostic measures like standardized
differences; uniformly low standardized differences imply that balance is good across
all covariates, while a low omnibus test p-value implies the opposite.

In this study we seek to investigate the performance of the omnibus test empir-
ically, determining whether such contradictions are more likely to arise in certain
scenarios such as data sets with many observations, data sets with many character-
istics, or data sets that violate the test’s assumptions to varying degrees.

3.1 Simulation Parameters

We identified four primary data characteristics that could plausibly contribute to
the performance of the omnibus test:

• Number of observations n ∈ {100, 250, 500, 1000, 10000}

• Number of variables p ∈ {10, 25, 50, 100}

• True difference in means d ∈ {0, 0.5, 1, 2} on the standard deviation scale,
constant across variables

• Distributional composition

The first three simulation parameters, n, p, and s, are straight-forward; the latter
less so. The fourth parameter governs the probability distributions used to gener-
ate the simulated data, which we seek to vary to determine whether, for example,
skewed or binary data, which violate the test’s normality assumption but which we
often observe in practice, alter the test’s behavior.

To assess the test’s vulnerability to non-normal data, we constructed seven types
of data sets based on the proportions of variables generated according to three distri-
butions: normal, representing the expected data type; gamma, representing highly
skewed data that is ubiquitous in financial, health care, and other applications; and
binary, representing crucial background characteristics like gender. We present the
seven distributional types in Table 1.

Table 1: Distributional Composition of Simulated Data Sets

Type Normal Gamma Binary

A 20% 0% 80%
B 20% 40% 40%
C 20% 80% 0%
D 60% 0% 40%
E 60% 20% 20%
F 60% 40% 0%
G 100 % 0% 0%

In data sets of type A, for example, 20% of the variables are generated accord-
ing to a normal distribution and 80% of the variables are generated from a binary
distribution.
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3.2 Simulation Structure and Execution

Each combination of these simulation parameters defines a simulation scenario. To
ensure stability in the simulated data set, we exclude scenarios where the number of
observations is less than ten times the number of variables, i.e. n < 10p, which gives
392 distinct scenarios. We perform 1,000 iterations for each simulation scenario; for
each iteration, we record both the omnibus test p-value and the standardized dif-
ference in means for each variable in the simulated data set.

In each iteration of the simulation, we simulate a data set according to the
parameters, drawing n observations to represent each of p variables, proportionally
from the distributions determined by the distributional composition parameter. For
example, if n = 1000, p = 25, and the distributional type is A, we create 5 normally
distributed variables and 20 binary variables, each with 1000 observations.

If the true difference in means d in the given iteration is zero, we generate a single
data set with n observations and p variables, each of which has mean zero. We then
randomly assign a binary treatment vector to classify observations as treatments or
comparisons and perform the omnibus test comparing variable means by treatment
assignment. To produce the desired number of iterations, we simply permute the
treatment assignment 1,000 times and re-calculate the omnibus test p-value and
standardized differences for each fresh permutation.

If the true difference in means d > 0, we generate n
2 observations for each vari-

able in the manner described above and assign these observations to the treatment
group, then generate the remaining n

2 observations assigned to the comparison group
from distributions with a mean of d standard deviations, where standard deviation
is defined according to the distribution of the variable. We calculate the omnibus
test p-value and variable-specific standardized differences based on this treatment
assignment. Unlike in the d = 0 case, however, we cannot simply permute the treat-
ment assignment lest we randomly create a data set with d = 0. We must simulate
a new data set for each iteration when d > 0.

We coded and executed the simulation in R, using Hansen and Bowers’ package
{RItools} to calculate both the omnibus test and standardized differences.

4. Results

When examining the results of the simulation, we focused on two general areas: its
overall properties, such as Type I error and power, and scenarios in which contra-
dictions with univariate balance diagnostics were most likely.

4.1 Overall Properties

4.1.1 Type I Error

We assessed the omnibus test’s Type I error rate by inspecting the results of the
simulations in which the true difference in means between the treatment and com-
parison groups was set to 0. In these simulations, any omnibus test p-value < 0.05
represents a Type I error.
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This question is of particular interest because detractors of the test commonly
cite its over-sensitivity to large sample sizes. In the popular conception, the om-
nibus test is more likely to reject when the sample is large, even if the differences in
means across variables are negligible. Thus, we would expect to see a higher Type
I error rate in larger samples than in smaller ones.

However, as we see in Figure 1, the Type I error rate is quite consistent across
scenarios, with no evident patterns based on sample size or distributional composi-
tion.

Figure 1: Type I Error Rate by Sample Size and Distributional Composition

In this figure, each panel represents a given sample size, ranging from 100 on
the left to 10000 on the right. In each panel, the x-axis specifies the distributional
composition of the data and the y-axis represents the proportion of p-values below
0.05. The dashed horizontal line marks the expected Type I error rate of 0.05, and
for all sample sizes, the Type I error rates largely fall at or below this line. Counter
to expectation, then, the omnibus test has the expected Type I error rate at all
sample sizes investigated.

4.1.2 Power

Conversely, we might wish to learn about the test’s power in different simulation
scenarios. If the test is overpowered at large sample sizes, we might observe the
behavior described in which the test rejects the null hypothesis of good balance even
when the differences in means are minuscule.

We assessed the test’s power by calculating the proportion of iterations in which
the omnibus test p-value is less than 0.05 in simulation scenarios where the true
difference in means is greater than zero. In Figure 2 we plot the probability of
correctly rejecting the null for each true difference in means, sample size, and dis-
tributional composition.

As in Figure 1, each panel in this figure represents a different sample size, from
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Figure 2: Power by True Difference in Means, Sample Size, and Distributional
Composition

lowest on the left to highest on the right. In each panel, the x-axis represents the
true difference in means on the standard deviation scale, while the y-axis repre-
sents the proportion of iterations in which we observed a p-value less than 0.05.
Different-colored lines represent data sets of different distributional types. The
dashed horizontal line at 95% serves as a reference.

Power is extremely high across all sample sizes and is quite consistent across
data sets of different types. In the first panel, corresponding to data sets with only
100 observations, we see slightly lower power for data sets of types B (20% nor-
mal, 40% Gamma, 40% binary) and D (60% normal, 40% binary) when the true
difference in means is only 0.5 standard deviations, but in the remaining panels the
magnitude of the difference in means does not affect the test’s power.

The orange lines, which track the power for data sets of distributional type A
(20% normal, 80% binary), diverge markedly from this pattern. Although power is
quite high – over 90% – for all combinations of sample size and true difference in
means, it increases sharply as the magnitude of the difference in means increases.
This steep slope is most evident in simulation scenarios with comparatively small
data sets and attenuates as the sample size increases. For small data sets with
many binary variables, then, the omnibus test less reliably detects small differences
in means.

4.2 Contradictions between Omnibus Test and Standardized Differ-
ences

Understanding the general properties of the omnibus test deepens our appreciation
of its reliability without necessarily offering insight into specific practical situations.
In particular, in practice we often observe contradictions between the omnibus test
and standardized differences or other univariate measures of balance. We seek to
reconcile those contradictions by probing more deeply into the simulation scenarios
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most likely to produce them.

To determine what scenarios are most likely to result in contradictions between
the omnibus test and standardized differences, we first sought to summarize stan-
dardized differences across the variables assessed. We applied two criteria:

• Relaxed Criterion: at least 85% of standardized differences are < 0.25 and
at least 60% are < 0.1 in absolute value

• Strict Criterion: at least 90% of standardized differences are < 0.25 and at
least 70% are < 0.1 in absolute value

These criteria are necessarily somewhat arbitrary, since the thresholds deter-
mining adequate balance will vary based on the application. However, standardized
differences of less than 0.25 are generally understood to represent acceptable bal-
ance (see, for example, Stuart 2010), while standardized differences of less than 0.10
represent good balance.

We wish to determine whether any simulation iterations in which the omnibus
test rejects the null hypothesis – that is, in which the omnibus test indicates im-
balance – meet either of these two criteria. We tabulate the scenarios in Table
2.

Table 2: Simulations by Omnibus Test Significance and Standardized Difference
Criteria

Omnibus test Criterion Met Criterion Not Met

Relaxed Criterion

Does not reject 86% 14%
Rejects 2% 98%

Strict Criterion

Does not reject 76% 24%
Rejects 1% 99%

As Table 2 shows, in the vast majority of cases the omnibus test and standard-
ized differences reach the same conclusion. Nonetheless, balance meets the relaxed
criterion in about 2 percent of cases where the omnibus test rejects, while balance
meets the strict criterion in about 1 percent of cases where the omnibus test rejects.
We seek to identify any patterns that might aid the practitioner in deciphering these
contradictions when they arise in practice.

In Figure 3 we plot the proportion of contradictory cases based on the strict
criterion by distributional composition and true difference in means; although we
do not show the corresponding plot based on the relaxed criterion, the over-arching
trend is the same in both cases.
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Figure 3: Proportion of Contradictory Simulations by True Difference in Means
and Distributional Composition, Strict Criterion

In this figure, each panel represents a different true difference in means, from
zero – scenarios where the standardized difference criterion has successfully iden-
tified good balance – to two standard deviations. On the y-axis of each panel we
show the proportion of contradictory simulations of that type; the x-axis gives the
distributional type of the data. For most data set types, 100% of contradictory
simulations appear in the left-most panel, where the true difference in means is
equal to zero. In these cases, the contradiction arises through a Type I error, so the
interpretation based on standardized differences is correct.

These results, then, seem to bear out the conventional conception that standard-
ized differences are a more reliable barometer of balance than the omnibus test. For
distributions of type A – where 80% of the variables are binary – we reach exactly
the opposite conclusion; in these cases, contradictions between the omnibus test
and the standardized difference criteria are more likely when the true difference in
means is greater than zero. Thus, for data sets with primarily binary variables, the
omnibus test may be more a more reliable balance diagnostic than standardized
differences.

The pattern of results in Figure 3 suggests that for data sets with primarily
binary variables, these contradictions are more likely when the true difference in
means is relatively small – on the order of 0.5 standard deviations. Other factors,
like the sample size or the number of variables in the balance assessment, may
also contribute to the observed patterns. We plot the number of contradictory
simulations for data sets of type A by each of these factors in Figure 4.
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Figure 4: Breakdown of Contradictory Simulations of Distributional Type A

In this figure, the columns represent the number of variables in the data set,
ranging from 10 on the left to 100 on the right, while the rows represent the num-
ber of observations in the data set, from 250 on the top to 10000 on the bottom.
The y-axis gives the number of simulations and the x-axis gives the true difference
in means. We observe immediately that the contradictory simulations are concen-
trated in the first column, where the number of variables in the balance assessment
is quite low, and toward the bottom, where the number of observations is large.

As the number of variables increases, Type I errors – cases where the true dif-
ference in means is zero – predominate. We note that we do not see evidence of
contradictory simulations when the sample size is small, perhaps because, as already
discussed, the omnibus test is not as well-powered for smaller data sets containing
primarily binary variables.

Even for data sets containing primarily binary variables, contradictions between
the omnibus test and standardized differences are most likely to be Type I errors if
the balance assessment covers a moderate to large number of variables. When the
balance assessment covers a large data set with comparatively few variables, how-
ever, the reverse is true: contradictions between the omnibus test and standardized
differences are more likely to denote true imbalances.

5. Discussion

Through this simulation study, we have confirmed that the omnibus test’s theo-
retical claims hold in practice: the test has the expected Type I error rate of 5%
regardless of sample size and boasts power well above 90% across data sets of differ-
ent sizes and distributional types. In fact, lending credence to popular conception,
the test may be overpowered for large sample sizes; power approaches 100% even
for comparatively small differences in means when the sample size is large. Further
work could investigate the smallest detectable difference in treatment and compar-
ison group means at different sample sizes to aid practitioners in calibrating their
interpretation of omnibus test results.
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These simulations also shed further light on scenarios in which the omnibus test
contradicts the conclusions of other univariate balance metrics. In particular, we
are interested in scenarios where univariate measures, like standardized differences,
imply good balance across all the relevant variables, but the omnibus test rejects.
Our simulations show, first, that these contradictions are very rare – no more than
2 percent of cases in which the omnibus test rejects. Second, for most data set
types, these contradictions arise through Type I errors, so standardized differences
provide a more reliable indication of the quality of balance in the matched sample.

Data sets comprising primarily binary variables are the exception to this rule.
For such data sets, the omnibus test and standardized differences are most likely to
conflict when the true difference in means is greater than zero, so the omnibus test
most accurately describes the balance in the sample. These misleading standardized
differences are most likely to occur when the data set is large and when the balance
assessment covers relatively few variables. When the balance assessment covers 25
or more variables, disagreement between the two diagnostics is most likely to be a
Type I error.

5.1 Limitations and Extensions

In these simulations, we made several simplifying assumptions that limit the extent
to which the simulated data sets mimic data practitioners are likely to encounter.
First, we generated each variable in the data set independently at random, while
in reality variables are likely to be correlated – in a health care setting, for exam-
ple, we would expect to see relationships between a patient’s age and medical risk.
Second, the true difference in treatment and comparison group means was constant
across all variables in each simulated data set. In practice, matching may achieve
better balance on some variables than on others. Finally, though the omnibus test’s
ability to assess balance on all linear combinations of variables recommends it as
a crucial supplement to univariate diagnostics, we induced imbalance within rather
than across variables.

Extensions of this work should investigate more complex scenarios allowing for
varying degrees of correlation among variables and varying degrees of balance on
different subsets of variables. Crucially, future work should also examine scenarios
in which matching achieves balance within each variable but not across variables,
since it is in these cases that the omnibus test earns its keep.

5.2 Conclusions: Guidance for Practitioners

These results point to guidelines for statisticians and policymakers interpreting
balance diagnostics. The omnibus test’s empirical properties are very strong, rec-
ommending it as a supplement to conventional univariate diagnostic measures. In
situations where these two types of diagnostics contradict each other, Type I error
is the most likely explanation, so univariate measures should take precedence unless
most of the variables included in the balance assessment are binary. For data sets
with comparatively few, predominantly binary variables, contradictions between the
omnibus test and standardized differences are more likely to occur when the treat-
ment and comparison groups are in fact imbalanced. In these cases, the omnibus
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test is more likely to depict the sample balance accurately.

These guidelines do not, however, address some of the fundamental practical
concerns with the omnibus test. When evaluating balance based on standardized
differences, practitioners and subject-matter experts can apply their judgment and
expertise in determining what variables are most important and what magnitude
of difference is meaningful for each variable. The omnibus test, which weights each
variable and each linear combination of variables equally, lacks this flexibility. Mar-
rying the theoretical and empirical strengths of the omnibus test with the flexibility
of the univariate diagnostics, a weighted version of the omnibus test, through which
users could prioritize individual variables and their linear combinations, would rep-
resent a substantial addition to the diagnostic toolbox.
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