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Abstract  

Singh and Sedory [1] have introduced the idea of sufficient bootstrapping, which is based 
on retaining only distinct individual responses from a simple random and with replacement 
sampling (SRSWR). The idea of usage of the distinct units in SRSWR at the estimation 
stage is well known from the work of Raj and Khamis [2]. Basu [3] has investigated the 
theory of distinct units under probability proportional to size and with replacement 
sampling (PPSWR). Singh [4] has studied a weighted bootstrapping in the presence of 
auxiliary information and named as saddlestrapping because there exists a saddlepoint 
based on the correlation between the study and auxiliary variable. In this paper, we extend 
the idea of distinct units in PPSWR sampling to construct a new Sufficient Weighted 
Bootstrapping. 
 
 
Key words: Bootstrapping, estimation of mean, auxiliary variable, sufficient weighted 
bootstrapping, simulation. 
 

1. Introduction  

 
Due to Efron [5, 6, 7], the bootstrapping is a computationally intensive statistical 
technique that replaces traditional algebraic derivations with databased computer 
simulation. The method is called bootstrapping because it involves resampling from the 
original data set, and hence is widely known as resampling procedure. For details, one 
could also refer to the books on bootstrapping by Efron and Tibshirani [8] and Chernick 
[9]. Casella [10] provides an introduction to the Silver Anniversary of the Bootstrap. Efron 
[11] discusses a second thought on bootstrapping. Davison et al. [12] have a critical review 
on recent developments in bootstrap methodology during the year 2003. Beran [13], Lele 
[14], Shao [15], Lahiri [16], and Politis [17] explain the impact of bootstrap on statistical 
algorithms and theory, estimating functions, sample surveys, small area estimation and 
time series, respectively. Ernst and Hutson [18] and Rueda et al. [19, 20] discuss 
application of bootstrapping for quantile estimation. Holmes [21] and Soltis and Soltis [22] 
discuss applications of bootstrapping in phylogenetic trees and phylogeny reconstruction 
respectively. Holmes et al. [23] provide an overview of a conversation on bootstrap 
between Bradley Efron and other good friends. 
 
The use of auxiliary information in survey sampling has an eminent role to improve 
methods of sample selection and use them to estimate various parameters of interest.  
______________________________ 
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Singh [4] introduced a new method called Saddlestrapping, which makes use of the 
auxiliary information correlated with the study variable as weight, constructed by means 
of the probability proportional to size and with replacement (PPSWR), to select different 
bootstrapping samples from the given original sample. To learn more about the PPSWR 
sampling one can refer to Lahiri [24], Hansen and Hurvitz [25] and Singh [26]. It appears 
that the bootstrapping method due to Efron [5] is a special case of the saddlestrapping 
method. Barbe and Bertail [27] have published a monograph on weighted bootstrapping 
which presents an account of the asymptotic behavior of the weighted bootstrap – a new 
technique and powerful statistical technique. Researchers and advanced graduate students 
studying bootstrap method will find this a valuable technical survey, which is thorough and 
rigorous. The main aim of their monograph is to answer two questions: how well does the 
generalized bootstrap work? What are the differences between all the different weighted 
schemes? Lee and Young [28] have discussed pre-pivoting by weighted bootstrap iteration. 
Johnson [29] has provided a nice introduction to bootstrapping. The Saddlestrapping [4] is 
a kind of weighted bootstrapping, which aims to see the effect of correlation between the 
study and auxiliary variable on the distributions of sample means; this kind of study has 
recently been performed by Johnson [29]. Likewise, Hesterberg [30] taught a very valuable 
course entitled, “Bootstrap methods and permutation tests” during the conference of 
Statisticians at San Antonio, TX. Sing and Sedory [1] proposed sufficient bootstrapping by 
retaining only distinct individual responses from the bootstrap samples. They demonstrated 
that the sufficient bootstrapping could have better relative efficiency than the conventional 
bootstrapping in certain situations.   
 
In this paper, we extend the idea of distinct units in PPSWR sampling to construct a new 
Sufficient Weighted Bootstrapping (SWB). The main objectives are to compare the means 
of various bootstrapping methods, empirically, and investigate the relative efficiency of the 
sufficient weighted bootstrapping over conventional bootstrapping due to Efron [5], 
recently proposed sufficient bootstrapping due to Singh and Sedory [1] and saddlestrapping 
due to Singh [4].  
 

2. Proposed Methods 

 

Let 𝑌 and 𝑋 be the study and auxiliary variables in a finite population Ω of 𝑁 units 
having positive linear correlation with each other. Consider the problem of estimation of 
population mean 𝑌̅ =

1

𝑁
∑ 𝑦𝑖𝑖∈Ω  of the study variable 𝑦 while using information on the 

auxiliary variable 𝑥. Note that the distribution of the study variable 𝑌 will depend on the 
value of its correlation with the auxiliary variable 𝑋. 
 
Let 𝑠𝑛 =  {(𝑦𝑖 , 𝑥𝑖): 𝑖 =  1, 2, . . . , 𝑛} be a random sample of size 𝑛 taken from the 
population Ω by using any sampling scheme among the list of 50 sampling schemes 
available in Brewer and Hanif [31].  
Let 𝑦̅ =

1

𝑛
∑ 𝑦𝑘𝑘∈𝑠𝑛

 be the mean of the original sample and  

𝑠𝑦
2 =

1

𝑛 − 1
∑ (𝑦𝑘 − 𝑦̅)2

𝑘∈𝑠𝑛

 

be the sample variance of the original sample. 

Let 𝑠𝑏 =  {(𝑦𝑏𝑖
): 𝑖 =  1, 2, . . . , 𝑛; 𝑏 = 1, 2, … , 𝑛𝑛}, be the 𝑏th bootstrap sample from the 

original sample 𝑠𝑛 and 
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𝑝𝑖 =
𝑥𝑖

∑ 𝑥𝑖𝑖∈𝑆𝑛

  

be the probability of selecting the 𝑖th unit from the original sample 𝑠𝑛. 
 
We define a new estimation method using only unique values of 𝑦𝑖 from the bootstrap 
sample with 𝑖th unit of 𝑌 chosen with the weight 𝑝𝑖. This method is termed as a sufficient 
weighted bootstrap method, and the estimate of 𝑦̅ is given by 

𝑦̅𝑠𝑤𝑏 =
1

𝑛𝜈
∑

𝑦𝑖

𝑝𝑖
𝑖∈s𝜈

                                                                                                              (1) 
where s𝜈 is the weighted sufficient bootstrapping sample of 𝜈 distinct units of 𝑌 in s𝑏 and 
𝑦̅𝑠𝑤𝑏 is the mean of the sufficient weighted bootstrap sample of size 𝜈.  
 
Singh [4] used 𝑝𝑖 as weights to select 𝑖th unit from the original sample and called such a 
method as saddlestrapping or weighted bootstrapping where all units of a given bootstrap 
sample s𝑏 are kept.  
 
Now, we provide some properties of the sufficient weighted bootstrap mean 𝑦̅𝑠𝑤𝑏 as 
theorems and particular cases of the theorems as lemmas. 
 
Theorem 1: The sufficient weighted bootstrap sample mean 𝑦̅𝑠𝑤𝑏 =

1

𝑛𝜈
∑ 𝑦𝑖/𝑝𝑖𝑖∈s𝜈

 is 
unbiased for the mean of the original sample for the study variable 𝑌. 
Proof: Let 𝜋𝑖

∗ = 𝜈𝑝𝑖, 𝑖 = 1, 2, …, 𝜈 be the induced inclusion probability for a given 
sufficient bootstrap sample. 
Let 𝐸2 denote the expected value over all possible sufficient weighted bootstrap samples, 
each of size 𝜈 ≥ 1. 
Let 𝐸1 be the expected value of selecting 𝑛 distinct units, from the given original sample 
𝑠𝑛 of 𝑛 distinct units. 
The estimator 𝑦̅𝑠𝑤𝑏 can be written as  

𝑦̅𝑠𝑤𝑏 =
1

𝑛𝜈
∑

𝑦𝑖

𝑝𝑖
𝑖∈s𝜈

=
1

𝑛
∑

𝑦𝑖

𝜈𝑝𝑖
𝑖∈s𝜈

=
1

𝑛
∑

𝑦𝑖

𝜋𝑖
∗

𝑖∈s𝜈

 

Taking expected value on both sides we have 

𝐸(𝑦̅𝑠𝑤𝑏) = 𝐸1𝐸2 [
1

𝑛
∑

𝑦𝑖

𝜋𝑖
∗

𝑖∈s𝜈

] = 𝐸1 [
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

] = 𝐸1[𝑦̅𝑛] = 𝑦̅𝑛 

which proves the unbiasedness of the weighted sufficient bootstrap sample mean. 
 

Theorem 2: The variance of the sufficient weighted bootstrap sample mean 𝑦̅𝑠𝑤𝑏 for fixed 
𝜈 ≥ 2 is given by 

𝑉(𝑦̅𝑠𝑤𝑏) =
1

2𝑛2
∑ ∑(𝜋𝑖

∗𝜋𝑗
∗ − 𝜋𝑖𝑗

∗ )

∈s𝑛𝑖≠𝑗

(
𝑦𝑖

𝜋𝑖
∗ −

𝑦𝑗

𝜋𝑗
∗)

2

 

Proof:  Let 𝜋𝑖𝑗
∗ = 𝑃[(𝑖, 𝑗) ∈ s𝜈] be the induced inclusion probabilities for the two distinct 

units to be included in the sufficient bootstrap sample s𝜈. 
Let 𝑉2 be the variance over all possible sufficient weighted bootstrap samples s𝜈, each of 
size 𝜈 ≥ 2. Note that if 𝜈 = 1, then 𝑉(𝑦̅𝑠𝑤𝑏) = 0. 
The variance of the estimator 𝑦̅𝑠𝑤𝑏 for fixed 𝜈 ≥ 2 is given by 
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𝑉(𝑦̅𝑠𝑤𝑏) = 𝐸1𝑉2 [
1

𝑛𝜈
∑

𝑦𝑖

𝑝𝑖
𝑖∈s𝜈

] + 𝑉1𝐸2 [
1

𝑛𝜈
∑

𝑦𝑖

𝑝𝑖
𝑖∈s𝜈

] 

              = 𝐸1𝑉2 [
1

𝑛
∑

𝑦𝑖

𝜋𝑖
∗

𝑖∈s𝜈

] + 𝑉1𝐸2 [
1

𝑛
∑

𝑦𝑖

𝜋𝑖
∗

𝑖∈s𝜈

] 

                                                     = 𝐸1 [
1

2𝑛2
∑ ∑(𝜋𝑖

∗𝜋𝑗
∗ − 𝜋𝑖𝑗

∗ )

∈s𝑛 𝑖≠𝑗

(
𝑦𝑖

𝜋𝑖
∗ −

𝑦𝑗

𝜋𝑗
∗)

2

] + 𝑉1 [
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

] 

                  =
1

2𝑛2
∑ ∑(𝜋𝑖

∗𝜋𝑗
∗ − 𝜋𝑖𝑗

∗ )

∈s𝑛𝑖≠𝑗

(
𝑦𝑖

𝜋𝑖
∗ −

𝑦𝑗

𝜋𝑗
∗)

2

+ 0 

 
where 𝑉1 [

1

𝑛
∑ 𝑦𝑖𝑖∈s𝑛

] = 0 because 𝑉1 is the variance over all possible sample of 𝑛 distinct  
units out of 𝑛 distinct units in sample s𝑛. Hence the theorem. 
 
Lemma 1: If we let 𝜋𝑖

∗ =
𝜈

𝑛
 and 𝜋𝑖𝑗

∗ =
𝜈(𝜈−1)

𝑛(𝑛−1)
, then 

𝑉𝑆𝑅𝑆(𝑦̅𝑠𝑤𝑏) = (
1

𝜈
−

1

𝑛
) 𝑠𝑦

2 
Proof:. Note that 

𝜋𝑖
∗𝜋𝑗

∗ − 𝜋𝑖𝑗
∗ = (

𝜈

𝑛
)

2

−
𝜈(𝜈 − 1)

𝑛(𝑛 − 1)
= (

𝜈

𝑛
) [

𝜈

𝑛
−

𝜈 − 1

𝑛 − 1
] = (

𝜈

𝑛
) (

𝑛 − 𝜈

𝑛(𝑛 − 1)
) 

So, 

𝑉(𝑦̅𝑠𝑤𝑏) =
1

2𝑛2

𝑛 − 𝜈

𝜈(𝑛 − 1)
∑ ∑(𝑦𝑖 − 𝑦𝑗)

2

∈𝑠𝑛𝑖≠𝑗

 

             =
1 −

𝜈
𝑛

2𝑛𝜈(𝑛 − 1)
∑ ∑(𝑦𝑖 − 𝑦𝑗)

2

∈𝑠𝑛𝑖≠𝑗

 

                           = (
1

𝜈
−

1

𝑛
)

1

2𝑛(𝑛 − 1)
∑ ∑(𝑦𝑖 − 𝑦𝑗)

2

∈𝑠𝑛𝑖≠𝑗

 

              = (
1

𝜈
−

1

𝑛
) 𝑠𝑦

2                                    
where 

𝑠𝑦
2 =

1

2𝑛(𝑛 − 1)
∑ ∑(𝑦𝑖 − 𝑦𝑗)

2

∈𝑠𝑛𝑖≠𝑗

=
1

𝑛 − 1
∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

, 

which proves the lemma. 
 
It appears that 𝑉𝑆𝑅𝑆(𝑦̅𝑠𝑤𝑏) is same as the variance of the sufficient bootstrap sample mean, 
𝑉(𝑦̅𝑠𝑏), derived by Singh and Sedory [1]. 
 
Lemma 2: If we let 𝜋𝑖

∗ = 𝜈𝑝𝑖 and 𝜋𝑖𝑗
∗ = 𝜈(𝜈 − 1)𝑝𝑖𝑝𝑗, then 

𝑉(𝑦̅𝑠𝑤𝑏) = (
1

2𝑛2
) (

1

𝜈
) ∑ ∑ 𝑝𝑖𝑝𝑗 (

𝑦𝑖

𝑝𝑖
−

𝑦𝑗

𝑝𝑗
)

2

∈s𝑛𝑖≠𝑗

      

Proof: By writing 𝜋𝑖
∗ = 𝜈𝑝𝑖 and 𝜋𝑖𝑗

∗ = 𝜈(𝜈 − 1)𝑝𝑖𝑝𝑗, we have 
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𝑉(𝑦̅𝑠𝑤𝑏) =
1

2𝑛2
∑ ∑(𝜈𝑝𝑖𝜈𝑝𝑗 − 𝜈(𝜈 − 1)𝑝𝑖𝑝𝑗) (

𝑦𝑖

𝜈𝑝𝑖
−

𝑦𝑗

𝜈𝑝𝑗
)

2

∈s𝑛𝑖≠𝑗

 

=
1

2𝑛2
∑ ∑

1

𝜈
(

𝑦𝑖

𝑝𝑖
−

𝑦𝑗

𝑝𝑗
)

2

𝑝𝑖𝑝𝑗

∈s𝑛𝑖≠𝑗

               

 

= (
1

2𝑛2
) (

1

𝜈
) ∑ ∑ 𝑝𝑖𝑝𝑗 (

𝑦𝑖

𝑝𝑖
−

𝑦𝑗

𝑝𝑗
)

2

∈s𝑛𝑖≠𝑗

      

 
Note that this result is not true in case of distinct units for traditional PPSWR sampling. 
For example, one can see Desraj [32] and Adhikary [33]. We show through simulation that 
𝑉(𝑦̅𝑠𝑤𝑏) is minimum. 
 

3. Evaluation of the Proposed Methods 

 
In order to evaluate the performance of the sufficient weighted bootstrapping, in this 
section, we first undertake a graphical comparison among means of bootstrapping samples 
(mboot), weighted bootstrapping samples (mwboot), sufficient bootstrapping samples 
(msboot) and sufficient weighted bootstrapping samples (mswboot) for varying values of 
correlation between the study variable 𝑦 and the auxiliary variable 𝑥 in the given original 
sample. Secondly, to evaluate the performance numerically, we investigate the relative 
efficiency of sufficient weighted bootstrapping mean compared to bootstrapping, sufficient 
bootstrapping and weighted bootstrapping means. 

To control the correlation between the study variable 𝑦 and the auxiliary variable 𝑥 in the 
given original sample, we follow the technique similar to Singh et al. [34]. We generate 𝑛 
independent pairs of random numbers 𝑦𝑖

∗ and 𝑥𝑖
∗, (say), 𝑖 =  1, 2, . . . , 𝑛 from the standard 

normal distribution by using the rnorm() function available in R. For fixed values  of  𝜎𝑦= 
15, 𝜎𝑥= 10, 𝜇𝑦= 415, and 𝜇𝑥= 335, chosen arbitrarily, we generated transformed variables 
𝑦𝑖  and 𝑥𝑖 as follows: 

𝑦𝑖 = 𝜇𝑦 + √𝜎𝑦
2(1 − 𝜌𝑥𝑦

2 )𝑦𝑖
∗ + 𝜌𝑥𝑦 𝜎𝑦𝑥𝑖

∗                                                             (2) 

𝑥𝑖 = 𝜇𝑥 +  𝜎𝑥𝑥𝑖
∗                                                                (3) 

for different values of the population correlation coefficient 𝜌𝑥𝑦 between the study variable 
𝑌 and the auxiliary variable 𝑋 to form original sample 𝑠𝑛 =  {(𝑦𝑖 , 𝑥𝑖): 𝑖 =  1, 2, . . . , 𝑛}. For 
graphical comparisons, and numeric comparisons using the relative efficiency, we consider 
the population correlation coefficient 𝜌𝑥𝑦 between 𝑥 and 𝑦, to be 0.65, 0.70, 0.75, 0.80, 
0.85, 0.90 and 0.95, chosen arbitrarily, for samples of sizes  𝑛 =10, 15, 20, 30, 50 and 100, 
chosen arbitrarily as well. Given an original sample 𝑠𝑛 of size 𝑛, with the specified values 
of means, standard deviations and correlations, we generate 𝑀 = 50, 000 resamples of size 
𝑛 from 𝑠𝑛.  

The relative efficiency of the sufficient weighted bootstrap sample mean over 𝑀 = 50,000 
resamples is computed using the following formula: 

𝑟𝑒(𝑠𝑤𝑏, 𝑏) =
𝜎̂𝑏

𝜎̂𝑠𝑤𝑏
× 100 
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𝑟𝑒(𝑠𝑤𝑏, 𝑠𝑏) =
𝜎̂𝑠𝑏

𝜎̂𝑠𝑤𝑏
× 100 

𝑟𝑒(𝑠𝑤𝑏, 𝑤𝑏) =
𝜎̂𝑤𝑏

𝜎̂𝑠𝑤𝑏
× 100 

where 

𝜎̂𝑠𝑤𝑏 = {
1

𝑀 − 1
∑(𝑦̅(𝑠𝑤𝑏)𝑖

− 𝑦̿𝑠𝑤𝑏)
2

𝑀

𝑖=1

}

1/2

 

𝜎̂𝑏 = {
1

𝑀 − 1
∑(𝑦̅(𝑏)𝑖

− 𝑦̿𝑏)
2

𝑀

𝑖=1

}

1/2

 

𝜎̂𝑠𝑏 = {
1

𝑀 − 1
∑(𝑦̅(𝑠𝑏)𝑖

− 𝑦̿𝑠𝑏)
2

𝑀

𝑖=1

}

1/2

 

𝜎̂𝑤𝑏 = {
1

𝑀 − 1
∑(𝑦̅(𝑤𝑏)𝑖

− 𝑦̿𝑤𝑏)
2

𝑀

𝑖=1

}

1/2

 

𝑟𝑒(𝑠𝑤𝑏,.) is the relative efficiency of mean of sufficient weighted bootstrapping sample as 
compared to bootstrapping/ sufficient bootstrapping/ weighted bootstrapping sample 
means. 

𝑦̅(.)𝑖
 is the mean of the 𝑖th bootstrap/ sufficient bootstrap/ weighted bootstrap/ sufficient 

weighted bootstrap sample of the original sample. 

𝑦̿(.) is the mean of 𝑀 (=50,000) bootstrap/ sufficient bootstrap/ weighted bootstrap/ 
sufficient weighted bootstrap sample means. 

𝜎̂(.) is the estimate of standard error of bootstrap/ sufficient bootstrap/ weighted bootstrap/ 
sufficient weighted bootstrap sample means over 𝑀 (=50,000) samples from the original 
sample. 

The sample R code used for the estimation and simulation of results is provided in the 
Appendix. 

3.1 Graphical Comparisons 

It appears that the simulated results are less sensitive to the sample sizes than to the values 
of correlation between the study and auxiliary variables. Therefore, in Figures 1-4, we 
provide normal density curves drawn using the means and standard deviations of the 
simulated bootstrap, sufficient bootstrap, weighted bootstrap and sufficient weighted 
bootstrap sample means, for sample sizes varying at n=10, 15, 20, 30, 50 and 100 and 
correlation between the study and auxiliary variables varying at  𝜌 = 0.65, 0.75, 0.85 and 
0.95. Other values of correlation in the range 0.65 ≤ 𝜌 ≤ 0.95 utilized in the study provide 
the similar pattern as reported in Figures 1-4.  

In all simulations, the bootstrapping sample means seem to have the widest spread and 
sufficient weighted bootstrap sample means seem to have the least spread. Overall, spread 
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of the sufficient weighted bootstrap sample means (mswboot) over 50,000 resamples are 
less than the means due to bootstrap (mboot), sufficient bootstrap (msboot) and weighted 
bootstrap sample means (mwboot).  

We exclude reporting histograms of the simulated sample means because four histograms 
added together provide overlapping and non-distinctive images that do not provide 
adequate information about the spread of the distribution of respective means. 

Figure 1: Estimated normal density of simulated mboot, msboot, mwboot and mswboot 
for varying sample size with the population correlation 𝜌 = 0.65. 
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Figure 2: Estimated normal density of simulated mboot, msboot, mwboot and mswboot 
for varying sample size with the population correlation 𝜌 = 0.75. 
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Figure 3: Estimated normal density of simulated mboot, msboot, mwboot and mswboot 
for varying sample size with the population correlation 𝜌 = 0.85. 
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Figure 4: Estimated normal density of simulated mboot, msboot, mwboot and mswboot 
for varying sample size with the population correlation 𝜌 = 0.95. 
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3.2 Relative Efficiency Comparison 

In Table 1, we provide the simulated relative efficiency of mean of the sufficient weighted 
bootstrap sample as compared to bootstrap, sufficient bootstrap and weighted bootstrap 
sample means for varying values of the positive correlation between study and auxiliary 
variables and sample sizes.   

Table 1: Estimated relative efficiency of mean of the sufficient weighted bootstrap sample 
compared to the means of bootstrap, sufficient bootstrap and weighed bootstrap samples 
for varying values of the population correlation between study and auxiliary variables and 
sample sizes. 

𝜌  𝑛 𝑟 𝑟𝑒(𝑠𝑤𝑏, 𝑏) 𝑟𝑒(𝑠𝑤𝑏, 𝑠𝑏) 𝑟𝑒(𝑠𝑤𝑏, 𝑤𝑏) 
𝜌 = 0.65      

 10 0.537 131.88 105.11 125.27 
 15 0.877 264.72 208.08 128.03 

 20 0.541 139.34 108.63 128.62 
 30 0.801 211.66 164.18 129.25 
 50 0.527 139.57 106.49 130.04 
 100 0.637 157.93 121.12 130.89 

𝜌 = 0.70      
 10 0.611 144.03 114.74 125.25 
 15 0.896 281.12 221.06 128.01 

 20 0.610 150.93 117.69 128.61 
 30 0.835 232.52 180.39 129.24 
 50 0.596 150.50 114.86 130.11 
 100 0.694 172.34 132.21 130.89 

𝜌 = 0.75      
 10 0.684 160.36 127.69 125.23 
 15 0.914 299.31 235.45 127.97 

 20 0.679 166.31 129.71 128.60 
 30 0.866 257.55 199.83 129.23 
 50 0.665 165.02 126.01 130.20 
 100 0.750 190.91 146.50 130.89 

𝜌 = 0.80      
 10 0.755 183.30 145.89 125.22 
 15 0.931 320.31 252.07 127.91 

 20 0.748 187.71 146.41 128.58 
 30 0.895 288.53 223.89 129.22 
 50 0.735 185.25 141.56 130.31 
 100 0.805 215.91 165.74 130.88 
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Table 1: Continued 

𝜌  𝑛 𝑟 𝑟𝑒(𝑠𝑤𝑏, 𝑏) 𝑟𝑒(𝑠𝑤𝑏, 𝑠𝑏) 𝑟𝑒(𝑠𝑤𝑏, 𝑤𝑏) 
𝜌 = 0.85      

 10 0.824 217.87 173.31 125.20 
 15 0.948 346.13 272.50 127.83 

 20 0.816 219.62 171.31 128.55 
 30 0.923 328.69 255.07 129.18 
 50 0.805 215.50 164.85 130.45 
 100 0.858 251.76 193.30 130.85 

𝜌 = 0.90      
 10 0.889 276.31 219.70 125.19 
 15 0.965 381.35 300.35 127.69 

 20 0.882 272.99 212.93 128.51 
 30 0.950 384.82 298.66 129.12 
 50 0.874 266.35 204.05 130.64 
 100 0.908 308.76 237.12 130.80 

𝜌 = 0.95      
 10 0.948 400.07 318.00 125.24 
 15 0.982 440.07 346.77 127.48 

 20 0.944 384.82 300.11 128.41 
 30 0.975 475.63 369.15 129.02 
 50 0.940 374.15 287.22 130.92 
 100 0.956 419.00 321.79 130.66 

 

On the basis of the results presented in Table 1, it is evident that the estimate of mean of 
the sufficient weighted bootstrap sample is more efficient compared to the means of 
bootstrap, sufficient bootstrap and weighted bootstrap samples. The estimates of relative 
efficiency are sensitive to the degree of positive correlation between the study and auxiliary 
variables. The relative efficiency shows an increasing trend with the increase of positive 
correlation between the study and auxiliary variables. For example, when 𝜌 =0.65 and 
 𝑛 = 10, the relative efficiency of mean of the sufficient weighted bootstrap sample 
compared to the means of bootstrap, sufficient bootstrap and weighted bootstrap samples 
are 131.88%, 105.11% and 125.27%, respectively. On the other hand, when 𝜌 =0.95 and 
 𝑛 = 10, the relative efficiency of mean of the sufficient weighted bootstrap sample 
compared to the means of bootstrap, sufficient bootstrap and weighted bootstrap samples 
are 400.07%, 318% and 125.24%, respectively. The relative efficiency of sufficient 
weighted bootstrap sample mean compared to the weighted bootstrap sample mean is 
relatively more stable compared to the other versions of underlying bootstrap sample 
means for varying correlation. 
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4. Concluding Remarks 

Theoretically, the mean of sufficient weighted bootstrap sample is unbiased estimate of the 
original sample mean of the study variable. For estimating mean of the study variable in 
the presence of the auxiliary variable with higher positive correlation, the sufficient 
weighted bootstrap mean provides higher relative efficiency compared to bootstrap, 
sufficient bootstrap and weighted bootstrap sample means. The simulation results suggest 
that the relative efficiency of mean of the sufficient weighted bootstrap sample is sensitive 
to the increase of positive correlation between the study and auxiliary variables. It also 
appears that the relative efficiency of sufficient weighted bootstrap sample mean compared 
to the weighted bootstrap mean is more stable with the increase of the population 
correlation between the study and auxiliary variables. 
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Appendix: Sample R Program used in Computation and Simulations 

set.seed(12345); 
R=50000;  #replications of samples from the original sample 
sigmay=15 #sd of y 
sigmax=10; #sd of x 
muy=415; #mean of y 
mux=335; #mean of x 
rho=0.90; #correlation between y and x 
n=c(10,15,20,30,50,100); 
k=length(n); 
tiff(file = "C:/Users/kislam/Desktop/A/gp90.tiff") 
par(mfrow = c(3, 2)) 
for (j in 1:k){ 
ystar=rnorm(n[j]); #y* sample fron N(0,1)distribution 
xstar=rnorm(n[j]); #x* sample fron N(0,1)distribution 
y=muy+sqrt(sigmay^2*(1-rho^2))*ystar+rho*sigmay*xstar; # study variable y  
x=mux+sigmax*xstar; # auxiliary variable x       
corr=round(cor(x,y),digits=3); #correlation in generated sample sn 
p=x/sum(x); #pi, prob proportioanl to sample size of auxiliary variable x 
os=data.frame(y,p) #origianl sample with yi and pi values as a data.frame 
mboot=c(); #empty storage for the means of bootstrap samples 
mwboot=c(); #empty storage for the means of weighted bootstrap samples 
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msboot=c(); #empty storage for the means of sufficient bootstrap samples 
mswboot=c(); #empty storage for the means of sufficient weighted bootstrap samples 
#mboot, mwboot, msboot, mswboot will get updated in the following loop for each 
values of R; 
for (i in 1:R){ 
indx=sample(1:n[j], n[j], rep=T);  #indx for bootstrap sample 
suf_indx=unique(indx); #indx for sufficient bootstrap sample    
boot=os[indx,] ; #bootstrap sample 
mboot[i]=mean(boot$y); # mean of bootstrap sample 
mwboot[i]=(1/n[j]^2)*sum(boot$y/boot$p);  #mean of weighted bootstrap sample 
suf_boot=os[suf_indx,] #sufficient bootstrap sample 
nu=nrow(suf_boot); #sufficient bootstrap sample size 
msboot[i]=mean(suf_boot$y);   # mean of sufficient bootstrap sample 
mswboot[i]=(1/(n[j]*nu))*sum(suf_boot$y/suf_boot$p); # mean of weighted sufficient 
bootstrap sample 
} 
meanb=mean(mboot) # overall mean of means of bootstrap samples 
sdb=sd(mboot) # SD of means of bootstrap samples 
meansb=mean(msboot) # overall mean of means of sufficient bootstrap samples 
sdsb=sd(msboot) # SD of means of sufficient bootstrap samples 
meanwb=mean(mwboot) # overall mean of means of weighted bootstrap samples 
sdwb=sd(mwboot) # SD of means of weighted bootstrap samples 
meanswb=mean(mswboot) # overall mean of means of sufficient weighted bootstrap 
samples 
sdswb=sd(mswboot) # SD of means of sufficient weighted bootstrap samples 
RE=c(rho, n[j],corr,sdb/sdswb*100, sdsb/sdswb*100, sdwb/sdswb*100)  
# vector of relative efficiencies; 
print(RE) # printing relative efficiency of underlying methods; 
colors <- c("gold","red", "black", "blue") 
labels <- colors 
curve(dnorm(x, meanswb, sdswb), xlim=range(mboot), col="gold", lwd=2, xlab= 
"Means", ylab= "Density",main=paste("r=", corr,"and", "n=",n[j])) 
curve(dnorm(x, meanb, sdb), add=TRUE, col="red", lwd=1) 
curve(dnorm(x, meansb, sdsb), add=TRUE, col="black", lwd=2) 
curve(dnorm(x, meanwb, sdwb), add=TRUE, col="blue", lwd=2) 
curve(dnorm(x, meanswb, sdswb), add=TRUE, col="gold", lwd=2) 
legend("topright", legend=c("mswboot","mboot","mwboot","msboot"), lables, 
fill=colors) 
} 
dev.off() 
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