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Abstract
This paper reviews the methods of established mode-detection techniques in the field of multitaper
spectrum estimation. The paper presents results of the application of these techniques to the time
series of a relative ionospheric opacity meter, an instrument used to measure fluctuations in the
opacity of the lower ionosphere to radio waves. The statistical test is robust because of two reasons.
First, extraneous measurements in the dataset are replaced by hard-rejection techniques. Second,
the test statistic is a spectrum estimator of the component process with the least signal-to-noise ratio,
and so its distribution is variance-efficient with respect to a mixture of chi-squared distributions. In
the presented analysis, the mode-detection test reveals that a fraction of the noise-like component
process of the time series is explicable by periodic phenomena of known origin. In particular, some
of the variance of this process is explained by the coupling of solar modes to the radio-emissions
opacity of the lower ionosphere.
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1. Introduction and Methodology

In the problem of mode detection, the field of statistical science is essential because those
random modal signals of a system which have low signal-to-noise ratio (SNR) explain a
significant fraction of the time-series output, but their presence is obscured by interactions
of the phenomenal and detection systems with extraneous processes.

A variety of processes which generate space-physics datasets behave periodically. It is
commonly found that harmonic oscillators occur in complicated dynamical systems, where
the small oscillations are damped, they are externally forced, and they couple with a large
number of other small oscillations of the same system. It is well established in physics that,
were the process of interest deterministic, continuous and known at all times, its Fourier
transform would reveal all the component oscillators. This is a consequence of an important
fact in dynamics: for a system of harmonic oscillators, the normal modes are precisely the
coordinates which describe its uncoupled oscillations. This mode-detection scheme is com-
plicated by several factors. For example, it was long supposed that space-physics processes
such as measurements of the interplanetary magnetic field revealed turbulent structure in
the low-SNR component processes. However, in 1995, Thomson et. al revealed that, with
mode-detection schemes which address the problem of spectral leakage, resonances were
manifest in the spectrum of the noise-like component of the signal. In particular, those
modes which statistical tests deem significant oscillate at the solar-oscillation frequencies.

When observing natural phenomena, the physicist can only control the experimental
design regarding his own detection equipment. This leads to seven complications in the
analysis.

1. The system might contain a large number of periodic phenomena, which leads to
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numerous couplings between component processes. In the time-series output, the
presence of these periodic components is obscured.

2. The record length is finite, so the discrete-time Fourier transform (DTFT) is
smoothed. The smoothed DTFT is the discrete Fourier transform (DFT).

3. At a given time index, it is often practically impossible to accurately describe the
underlying distribution of the process variable.

4. The detection modality is sensitive to signals from processes extraneous to those
containing the modal signature.

5. The variance of the random amplitudes may vary over orders of magnitude, so that,
in time-domain models, the majority of low-SNR periodicities are obscured.

6. Non-stationary processes of complicated form introduce spectral power at all fre-
quencies.

7. Periodic components are subjected to external forces, so that their frequencies and
phases shift.

This paper shows how techniques from the field of multitaper spectrum estimation can
be used to address each of these problems. The problems are addressed as follows.

1. The eigencoefficients of the DFT are defined by harmonics, that coordinate basis
which exactly describes the uncoupled oscillations of the system.

2. The eigencoefficients replace the smoothing of a discrete DFT with kernels whose
spectral leakage is substantially lower than that of the Dirichlet kernel.

3. The eigencoefficients are efficiency robust with respect to a complex normal distri-
bution.

4. Extraneous measurements are identified with quadratic discriminant analysis (QDA)
and detector flags, and are replaced by interpolation.

5. A multitaper reconstruction of the spectral peaks is used to remove the peaks of high-
SNR periodic components. This makes the distribution over frequency of the spectral
power more uniform across the principle band.

6. Multitaper reconstructions of equivalent-autoregressive (AR) and baseline-noise
transfer functions are divided out from the residual spectrum.

7. The efficiency-robustness of the eigencoefficients improves the specificity of a sta-
tistical test to distinguish between the modal peaks and the spectrum of the baseline
noise process.

316



2. The Dataset

The Geomagnetic Laboratory of Ottawa, Canada 1, has an operational relative ionospheric
opacity meter (riometer). The riometer is connected to a radio antenna which points in
the zenithal direction to receive cosmic radio noise (Little & Leinbach, 1959). The prin-
ciple of this detection modality is that the attenuation of cosmic radio noise by the lower
ionosphere provides an index of the charge density, and so predictions can be made about
the radio-communication conditions. This is especially useful for air flights and satellite
missions in the sub-auroral regions, where space weather is a significant source of disrup-
tion to electrical systems. When the Sun is not active, the D-region, an ionospheric layer
between 50 and 90 km altitude, exhibits a radio-frequency opacity cadence which is, to a
first approximation, diurnal. Only at times when the Sun is over the horizon is the region
dense with electrons and ions of high energy-absorption cross-section at the radio frequen-
cies. The periodic voltage response which ensues is called the quiet-day curve, and it is
subject to logarithmic variations when the Sun is active. Riometer data can also be used to
develop the theory of the Earth-space environment. Detection of solar modes in a riometer
dataset would be an important discovery because it would progress an understanding of how
these modes propagate from the Sun to ground-based detection systems like seismometers
(Thomson & Vernon, 2014).

Figure 1 shows the riometer voltage series from 2011. The antenna accepts a continuous
feed, Xin = {Xin(t)}t∈R, where each Xin(t) is a random variable. The riometer accepts
the analogue signal, and it digitizes the signal in the following sequence:

1. The continuous-time signal is passed through a ∆t = 1
60 Hz sampler.

2. The decimated signal is passed through a quantizer.

3. The sampled signal is passed through a 60:1 median filter.

As seen in the figure, the ceiling is approximately 7.5 V, and, based on prior knowledge
of the temporal structure of absorption events, ∆t was chosen to reduce aliasing. The
voltage response is Xresp = {Xresp

n }n∈T, where T = {0, · · · , N − 1}, and, for δt = 1s,
Xresp
n = Xresp(n δt).

3. Background

3.1 Multitaper Spectrum Estimation

In the model of multitaper spectrum estimation, Xin is defined as that continuous-time
process whose DTFT Fourier coefficients are Xresp (Percival & Walden, 1998). When trun-
cating the DTFT to a DFT, spectral leakage results from a convolution of the DTFT with
the Dirichlet kernel. As seen in Figure 1 of Haley & Thomson, 2014, the periodogram bias
can be orders of magnitude. Spectral leakage is reduced by multiplying Xresp with each
of a set of discrete, prolate-spheroidal sequences (DPSSs), {v(k)}K−1k=0 . The DFTs of the
filtered series replace the Dirichlet kernel with that set of K kernels, whose spectral energy
concentration in the analysis band, [f −W, f +W ), of the principle alias, f , is maximum.

In 1982, Thomson created a spectrum estimator,
1The Geomagnetic Laboratory is a government laboratory of Natural Resources Canada. The riometer

system was made operational in 2009. Permission to publish results with the riometer data was granted by
Donald Danskin of the Geomagnetic Laboratory and David Thomson.
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Figure 1: The riometer voltage series. A solid, black line crosses samples at every minute
of the one-second-sampled voltage series. Isolated black dots above 6.1 V are samples
which were identified as extraneous. Black dots below 6.1 V correspond to other extrane-
ous processes, of which the calibration voltages (four, systematic, dark bands below 4 V)
contain the vast majority of such samples. The time origin is 34 seconds in to the year,
2011. Data is from the Geomagnetic Laboratory of Ottawa, Canada.

Ŝmt(f) =
1

2NW

K−1∑
k=0

1

λk
|Yk(f)|2, (1)

which, for weakly-stationary, locally-white processes is consistent and low-variance. All
λk ≈ 1, and they are the energy concentrations of the DPSSs in [f −W, f + W ). The
Yk(f) are called eigencoefficients.

Consider a weakly-stationary process with spectrum, S. The Yk(f) are efficiency ro-
bust because they have high variance efficiency with respect to a complex normal distri-
bution (Martin & Thomson, 1982). In papers which describe the distribution of the Yk(f),
the assumption is made that they are each approximately zero-mean, complex-normal, with
variance, S(f). Haley & Thomson, 2014 justify this assumption by citing the central limit
theorem (CLT) of Mallows, 1967. However, the first author chooses to justify the distribu-
tional assumption based on Rosenblatt, 1961, whose central limit theorem (CLT) for linear
processes relies only on a strong mixing condition rather than the property of an indepen-
dent and identically-distributed forcing process.

In several equations of this paper, the true spectrum of the process enters as the argu-
ment of a function. Since it is impossible to acquire observations of the true spectrum, the
first author used the invariance principle of maximum-likelihood statistics, which is appli-
cable for the multitaper spectrum estimators of locally-white spectra (see Thomson 1990,
Lepage & Thomson, 2014, and Stoica & Sundin, 1999).
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3.2 The Physical Model

In the standard model of helioseismology, the Sun is assumed to exhibit spherical symmetry
and remain in a steady-state, hydrostatic equilibrium (Christensen-Dalsgaard, 2002). Thus,
solar pressure-modes (“p-modes”), which are amongst the most prominent in space-physics
datasets, are described as having the following pressure value at the space-time coordinate,
s = (r, φ, θ, t) (Christensen-Dalsgaard, 2002):

P(s) =
∑
n,l,m

cn,l,mR(r)Y m
l (θ, φ)ei2πfnlmt. (2)

The mode frequencies, fnlm, lie in the bands, [0.45, 5.10] mHz (acoustic) and
[5.1, 15.3] mHz (Thomson et. al, 2007). Pressure modes couple with the interplanetary
magnetic field (IMF) (Thomson et. al, 1995). Then, the IMF disturbances couple with the
charge density in the D-region. En route to Earth, the free oscillations of the IMF are
damped, and they also experience forcing. The driving forces may each be approximated
with an impulse series (Thornton & Marion, 2004). Thus, for {Mj}Jj=1 random modula-
tors and {µjh}J,Hj=1, h=1 ⊂ C, the modulated process at time index, n ∈ T, is (Thom-
son et. al, 2001)

Xmod
n =

J∑
j=1

Mj, n

H∑
h=1

µjhe
i2πfjhn. (3)

4. A Test for Mode Detection

4.1 The Statistical Model

At time index, n, the the process variable of Xresp is

Xresp
n =


Xsol
n , X > 6.1 V; n ∈ T \ Tcal

Xn, X ∈ [3, 6] V; n ∈ T \ Tcal
Xcal
n , X ∈ [3, 6] V; n ∈ Tcal

, (4)

where Tcal ⊂ T is the set of calibration intervals. Each calibration interval occurs for a
full minute once every hour. In this paper, the focus is on X because Xmod is one of its
component processes. It is evident that the DTFT of the input signal is a spectral mea-
sure (see Koopmans, 1974 for a review on the theory of spectral measure). This spectral
measure can be decomposed into a discrete part, the spectral function, and a continuous
part (Koopmans, 1974). Associated with the continuous part is a spectral density. As a re-
sult of this decomposition, X can be represented by a sum of two processes: a high-SNR
component process, which itself is associated with the spectral function; and a low-SNR
component process, which itself is associated with the spectral density. The low-SNR com-
ponent may itself be represented as a sum of two processes: an equivalent autoregressive
process and an equivalent error process. Then, the equivalent error process is also the sum
of two component processes. The first is a noise-like process, which has a spectrum smooth
enough that quantile estimation techniques are valid. It is called the baseline process, as it
need not necessarily be purely random noise. The second component is Xmod.
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4.2 A Statistical Test for Normal Modes

By the convolution theorem, the DFT of the multiplication of the equivalent error process
with the k’th DPSS is Y err

k (f) = Y base
k (f) + Y mod

k (f), where, point-wise f ,

Y mod
k (f) =

J∑
j=1

H∑
h=1

µjhMjk(f − fjh). (5)

Assuming that the Mjk are sufficiently narrow-band, define the estimator,

Ĥmt(f) =
Ŝ(err,mt)(f)

2Ŝ(base,mt)(f)
, (6)

where Ŝ(err,mt)(f) is a multitaper estimator for the spectrum of the equivalent error pro-
cess and Ŝ(base,mt)(f) is a multitaper estimator for the spectrum of the baseline pro-
cess. Invoking Rosenblatt’s CLT, and defining the µjh and Mjk appropriately (see Thom-
son, et. al, 2001),

2K Ĥmt(f) ∼


χ2
nc; 2K,λ, f = fjh, f = fjh

χ2
c; 2K , otherwise.

(7)

Thus, Ĥmt(f) has a χ2
mix; ε; 2K;λ mixture distribution, with the mixture parameter, ε, defin-

ing the percentage of non-central chi-squared samples, and the non-centrality parameter
denoted by λ. The null hypothesis of the statistical test for normal modes is that, at the
principle alias, f , no mode is present and the distribution of the power is χ2

c; 2K .

5. Data Analysis

An analysis was performed on the first 60 days of the voltage series to test for the pres-
ence of periodicities with the solar-oscillation frequencies. The section length was chosen
for three reasons. First, compared with other sections of the voltage series, the number of
extraneous measurements in the first sixty days is low (see Figure 1). Second, the quiet-
day curve of the first section is more coherent than it is in the other sections of the record.
Third, solar-oscillation frequencies vary as a function of solar activity, so that, over the
course of twenty days, a fraction of mode frequencies shift more than one Rayleigh reso-
lution (Thomson et. al, 2007). The 2011 solar-flux series from the Penticton Observatory
suggests that this was a year where, with solar activity on the rise, mode shift was not
minimal2.

5.1 Data Preparation

In Figure 1, Xsol and Xcal measurements are, respectively, seen as: black dots above 6.1 V;
and dark, concentrated bands of dots. Replacing these measurements with reconstructions
of X prevents the extraneous sample observations from contaminating the spectrum esti-
mate of X. This data-cleaning step is necessary because it makes the multitaper estimate
for the spectrum of X resistant (Martin, &Ṫhomson, 1982). To remove the extraneous mea-
surements, a hard-rejection scheme was implemented. The riometer dataset includes flags

2Data provided by Ken Tapping at the Dominion Radio Astrophysical Observatory of Natural Resources
Canada, in Okanagan Falls, British Columbia, Canada. Permission was granted by David Thomson to publish
results based on this dataset.
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to indicate when calibrations were performed. Identifying Xsol measurements required
classification techniques to decide if certain clusters of 6.1 V up-crossings could be at-
tributed to solar radio signals. The series of 6.1 V up-crossings was interpolated using a
QDA fit for five classes of daily number density. An overlay of the occurrence durations
of solar-burst events with the fitted density profile shows that there exists a high degree of
correlation between density class and burst type3. As a result, a significant fraction of the
6.1 V up-crossing measurements were identified as Xcal measurements.

For both Xsol and Xcal measurements, replacement reconstructions were determined
using the method of good-neighbours outlined in Appendix A of Thomson et. al, 2001.
For a data gap of length, Ngap, the frequency mesh for the fast Fourier transform

(FFT) had M =
[
2blog2(5Ngap)c+1

]
points. The time-bandwidth parameter was cho-

sen to be 5NgapW = 3, and K = 5 tapers were used4. At each replacement in-
terval of the voltage series, left and right neighbour series were used to test the model
fit. Box plots of the jackknifed, arc-tangent transformation of magnitude-squared coher-
ence show that, for most reconstructions, the transformation agrees with the standard nor-
mal (Brockwell & Davis, 2013). Also, the Kolmogorov-Smirnov test tends to show agree-
ment with 70% confidence. In addition, jackknifed, multitaper estimates of phase offset
show no clear signs of structure, and tend about zero.

The time-series was decimated to two-minute sampling using a 120:1 decimation filter.
It was constructed using a linear fit in Slepian functions of the rectangular function, itself
defined point-wise f to be u

(
f
120

)
. A benefit of this technique is that there is a limit on

the complexity of the fit, since the number of available Slepian functions is bounded by
the filter length. Filter design was based on the criteria outlined by Koopmans, 1974: that
the frequency response of the filter have low integrated mean-squared error and be non-
negative definite. The integrated squared error of the fit is 0.016, while only 0.08% of the
energy of the transfer function is from the imaginary component.

5.2 Estimation of the Baseline Spectrum: Whitening Techniques

In the remainder of this section, note that, for all mentioned multitaper estimates, the time-
bandwidth parameter was set to 5.

Using a multitaper estimate, the variance of the reconstructed series is approximately
18.93 V2. Most of this variance is due to the process mean, which from a multitaper
estimate, is approximately 4.3 V (for a discussion on multitaper mean estimation, see
Burr, 2012). As a result, the mean estimate was subtracted from the reconstructed volt-
age series. The variance of the zero-mean component is dominated by the other high-SNR
periodic components. Figure 2 shows a multitaper estimate of the spectrum of the voltage
series. The five, high-SNR spectral peaks appear at integral multiples of the sidereal-day
frequency, which means that the time dependence of the quiet-day curve is more compli-
cated than a diurnal phenomenon. Also, it appears that the rapid fluctuations in the p-mode
bands are structured.

Where line components were significant at the 99.9% level of the F2, 16 harmonic F-
distribution, multitaper estimates of the peaks were subtracted from the original eigenco-
efficients. The resulting spectrum estimate yields a residual-process variance estimate of
0.044 V2. The multitaper estimate of the residual-process dynamic range is 7.64 orders of

3Data was acquired from the 2011 burst lists of Monstein, 2017. Permission was granted by Christian
Monstein of ETH Zürich to publish results based on this data.

4For the remainder of the paper, M is defined as this operation with different record lengths in place of
5Ngap.
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Figure 2: A multitaper estimate of the spectrum for the interpolated, one-minute deci-
mated voltage series, after it has been cleaned of extraneous measurements using a hard
rejection technique. Parameters for multitaper spectrum estimation were set to NW = 5

and M =
[
2blog2(N)c+1

]
, where N = 38877.

magnitude. Using techniques from Thomson et. al, 2001, the spectrum estimate was di-
vided by an AR-4 transfer function, which yields a multitaper dynamic-range estimate of
3.6 orders of magnitude for the equivalent error process. The multitaper variance estimate
for the equivalent error process is 6.6× 10−3 V2.

Optical observations show that, over one-microhertz intervals in the 2-3 mHz band, p-
modes have a regular, 100-modes/microhertz density (Thomson et. al, 2007). As a result,
Thomson, et al, 1995 anticipated that, under the alternative hypothesis of solar-mode sinu-
soids in the equivalent error process, the spectrum of this component should be frequency-
homogeneous, in the sense that all powers are samples of the mixture distribution defined
by Equation 7. To obtain a piecewise-constant estimate associated with Ŝ(mt, base), the first
author implemented the quantile technique of Thomson et al., 2001. For N = 38, 875,
an M = 38, 876-point FFT mesh was partitioned into 108.1µHz bands, each contain-
ing effectively containing one hundred independent samples (Thomson, 2013). Using as an
objective function the mean-squared error for empirical quantiles, a grid search was per-
formed to find an optimal (λ, ε) pair. The theoretical mean-squared error equation was
derived from Kendall & Stuart, 1979, and the grid for the parameter space was 100 points
on a side. For (λ∗, ε∗) = (20, 0.4), the optimal percentile is 5%. Thus, for each 108.1µHz
interval, the estimate of the spectrum for the equivalent error process was divided by the
fifth of 100 the ordered samples of that interval.
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5.3 Results of the Mode-Detection Test

The result of post-whitening is a multitaper estimate of the standardized spectrum, a sec-
tion of which is presented in Figure 3. Included in the plot are lines at the p-mode fre-
quencies of Broomhall et. al, 2009. The figure is to be compared with Figure 4 of Thom-
son & Vernon, 2015, which itself shows a standardized median spectrum of the time series
for the north component of seismic velocity. That time series was obtained from Black
Forest Observatory (BFO). Several of the peaks in the riometer spectrum which align with
the BFO peaks also happen to be significant at the 99.9% level of the χ2

18 distribution. The
p1, 10 mode is prominent in both spectra, and, in Figure 3, it is the left prong of a notice-
able triplet. The splitting of this triplet is caused by a modulation of the mode with the
12 h harmonic of the quiet-day Fourier series. The mode also appears to couple with the
8 h quiet-day harmonic, producing two symmetric peaks on either side of the triplet compo-
nent. In both spectra, peak structure is similar around the p1, 15 and p0, 16 modes, suggesting
similar degrees of coupling of solar modes with both the D-region charge density and the
seismic velocity.

Figure 3: Pre- and post-whitened multitaper estimate of the spectrum, standardized to unit
value at the 5% level of the central chi-squared distribution with 18 degrees of freedom.
The lower, red, horizontal line marks the unit baseline, while the upper, red, horizontal line
marks the 99.9% level of the central chi-squared distribution. Red, labeled, vertical lines
mark p-mode frequencies from Broomhall et. al, 2009. Labels are of the form, “(l, n)”, for
l and n respectively the polar and radial order of the solar modes.
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6. Conclusion

Established techniques of robust multitaper spectrum estimation were used to create a
mode-detection test. The result was a discovery of periodic behaviour in the low-SNR
component process of a riometer voltage series. Close agreement between mode detections
in this paper and those of Broomhall et. al, 2009 and Thomson & Vernon, 2015 suggests
that p-mode oscillations couple with the D-region opacity fluctuatations. The splitting of
some of these spectral peaks is conspicuous evidence for the modulation of a sinusoid by
the quiet-day Fourier series. Thus, at the 99.9% level of a central chi-squared distribution
with 18 degrees of freedom, there is observational evidence to suggest that the p1, 10 and
p1, 15 modes influence D-region opacity. It is evident from the plot of the standardized
spectrum that a significant fraction of the power lies above the 99.9% level of the null dis-
tribution. This justifies rejecting the null hypothesis of the noise-like component process
being purely random.

7. Acknowledgments

The first author is grateful to Dr. David Thomson and Mrs. Maja-Lisa Thomson for their
generous support and hours providing advice and direction during the course of this re-
search.

Lenin Arango Castillo of the Economics Department of Queen’s helped to improve
the quality of this paper, and has participated in valuable discussions about the theory of
multitaper spectrum estimation and the research process.

This work was supported by NSERC, CANSSI, Bonneyville Power Authority, and
Queen’s University. Dr. Thomson, the official holder of the grants and contracts, provided
research and conference funding to advance this research project.

Dr. Devon Lin and Dr. Glen Takahara, on the supervisory committee of the first author,
have provided significant guidance about the methodology which should be used in the
riometer analysis.

At the Geomagnetic Laboratory of Natural Resources Canada, Dr. Donald Danskin
and Dr. Robyn Fiori, were generous in providing a large amount of data for analysis.
Dr. Danskin has provided a significant amount of advice, and has provided concrete goals
for what this analysis is meant to achieve in furthering the advancement of the physics
of riometers and ionospheric phenomena. Dr. Christian Monstein (Department of Physics,
ETH Zürich), and Dr. Ken Tapping (Dominion Radio Astrophysical Observatory of Natural
Resources Canada) provided datasets to help with different stages of the analysis.

Members of Dr. Thomson’s research group provided significant input in helping to im-
prove this analysis. Kind thanks to David Reigert, Aaron Springford, Emily Somerset,
and Claire Boteler. Dr. Charlotte Haley, Dr. Wesley Burr, Dr. Karim Rahim, and Dr. Joshua
Pohlkamp-Hart have provided valuable advice about progressing the analysis.

324



REFERENCES

Broomhall, A. M., Chaplin, W. J., Elsworth, Y., & Fletcher, S. T. (2008). The visibility of low-frequency solar
acoustic modes. Astronomische Nachrichten, 329(5), 461-469.

Brockwell, P. J., & Davis, R. A. (2013). Time series: theory and methods. Springer Science & Business Media.
Burr, W. S. (2012). Air Pollution and Health: Time Series Tools and Analysis (Doctoral dissertation).
Christensen-Dalsgaard, J. (2002). Helioseismology. Reviews of Modern Physics, 74(4), 1073.
Durbin, J. (1973). Distribution theory for tests based on the sample distribution function. Society for Industrial

and Applied Mathematics.
Kendall, M. G., Stuart, A. (1979). The advanced theory of statistics (Vol. 2, Fourth edition). New York:

Macmillan Publishing CO., INC.
Koopmans, L. H. (1974). The spectral analysis of time series. New York: Academic press.
Korzennik, Sylvain, “Table of mode parameters”, Updated 2017, Viewed 2017, https://www.cfa.

harvard.edu/~sylvain/research/tables/
Lepage, K. Q., & Thomson, D. J. (2014). Reduced mean-square error quadratic inverse spectrum estimator.

IEEE Transactions on Signal Processing, 62(11), 2958-2972.
Little, C. G., & Leinbach, H. (1959). The riometer-a device for the continuous measurement of ionospheric

absorption. Proceedings of the IRE, 47(2), 315-320.
Mallows, C. L. (1967). Linear processes are nearly Gaussian. Journal of Applied Probability, 4(2), 313-329.
Thornton, S. T. & Marion, J. B. (2004). Classical dynamics of particles and systems. Academic Press.
Martin, R. D., & Thomson, D. J. (1982). Robust-resistant spectrum estimation. Proceedings of the IEEE,

70(9), 1097-1115.
Monstein, Christian, “e-Callisto International Network of Solar Radio Spectrometers”, Updated 2017, Viewed

2017, http://soleil80.cs.technik.fhnw.ch/solarradio/data/BurstLists/
Percival, D. B., & Walden, A. T. (1998). Spectral analysis for physical applications. Cambridge University

Press.
Rosenblatt, M. (1961). Some comments on narrow band-pass filters. Quarterly of Applied Mathematics, 18(4),

387-393.
Slepian, D. (1983). Some comments on Fourier analysis, uncertainty and modeling. SIAM review, 25(3),

379-393.
Stoica, P., & Sundin, T. (1999). On nonparametric spectral estimation. Circuits, Systems and Signal Process-

ing, 18(2), 169-181.
Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70(9), 1055-

1096.
Thomson, D. J. (1990). Quadratic-inverse spectrum estimates: applications to palaeoclimatology. Philosoph-

ical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
332(1627), 539-597.

Thomson, D. J., Maclennan, C. G., & Lanzerotti, L. J. (1995). Propagation of solar oscillations through the
interplanetary medium. Nature, 376(6536), 139.

Thomson, D. J., Lanzerotti, L. J., & Maclennan, C. G. (2001). Interplanetary magnetic field: Statistical prop-
erties and discrete modes. Journal of Geophysical Research: Space Physics, 106(A8), 15941-15962.

Thomson, D. J., Lanzerotti, L. J., Vernon, F. L., Lessard, M. R., & Smith, L. T. (2007). Solar modal structure
of the engineering environment. Proceedings of the IEEE, 95(5), 1085-1132.

Thomson, D. J. (2013). Background Magnetospheric Variability as Inferred From Long Time Series of Goes
Data. Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere, 225-242.

Thomson, D. J., & Haley, C. L. (2014, July). Spacing and shape of random peaks in non-parametric spectrum
estimates. In Proc. R. Soc. A (Vol. 470, No. 2167, p. 20140101). The Royal Society.

Thomson, D. J., & Vernon III, F. L. (2015). Unexpected, high-Q, low-frequency peaks in seismic spectra.
Geophysical Journal International, 202(3), 1690-1710.

325

https://www.cfa.harvard.edu/~sylvain/research/tables/
https://www.cfa.harvard.edu/~sylvain/research/tables/
http://soleil80.cs.technik.fhnw.ch/solarradio/data/BurstLists/

	1 Introduction and Methodology
	2 The Dataset
	3 Background
	3.1 Multitaper Spectrum Estimation
	3.2 The Physical Model

	4 A Test for Mode Detection
	4.1 The Statistical Model
	4.2 A Statistical Test for Normal Modes

	5 Data Analysis
	5.1 Data Preparation
	5.2 Estimation of the Baseline Spectrum: Whitening Techniques
	5.3 Results of the Mode-Detection Test

	6 Conclusion
	7 Acknowledgments



