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Abstract 

All previously derived Regression Models were either based on the normality 

assumption(s) of the regressed variable and their non-normality counterparts on their 

asymmetric distributional assumption of the explained variable. The present paper 

addressed a new sort of common regression model that is suitable for error(s) either 

following a symmetric distribution or an asymmetric distribution. Attempt for estimation 

of parameters has also been addressed. 

Key word: Explained Variable ; Invariance. 

1. Introduction

One of the basic problems in regression analysis is the normality assumption of the 

distribution of the explained variable. The requirement is not pragmatically met in several 

situations. In real life the explained variable may have asymmetric pattern or symmetric-

non-normal pattern or symmetric-normal pattern. So, it is better to develop a regression 

model which is fit to any of the aforesaid situations. So, if the distribution of the explained 

variable is symmetric-normal of symmetric-non-normal or asymmetric, we can use our 

regression model and we can analyze the data to test several hypotheses.  

Adnan and Kiser (2011) developed a Generalized Exponential distribution which is the 

core probability distribution that can generate a couple of other probability distributions 

such as Generalized Gamma, Generalized Chi-square, Generalized 𝑡, Generalized 𝐹, etc. 

Generalized Beta 1st kind and 2nd kind distributions are also addressed from the generalized 

distribution. The two parameter generalized double exponential distribution was defined 

as a distribution of a random variable X having the probability density function 

𝑓(𝑥) =
𝑏 √𝑎

𝑏

2𝛤(
1

𝑏
)

𝑒−|𝑎𝑥𝑏|  ;  −∞ ≤ 𝑥 ≤ ∞.         (1) 

where 𝑎 is the scale-parameter and 𝑏 is the shape-parameter such that  𝑎, 𝑏 > 0. 

Attempts have been made here to develop a regression model which is invariant to the type 

or shape of the explained variable. Here the explained variable follows the distribution 

addressed in equation (1).  
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2. Least Square Method for Simple Linear Regression with Double

Exponential  Regressed Variable 

Let the simple linear regression model is 

𝑦 =  𝛽0 +  𝛽1𝑥 +  𝜀      (2.1) 

where the intercept  𝛽0 and the slope 𝛽1  are unknown constant known as regression

coefficients and  𝜀 is a random error component. Here,  

𝜀~𝐷𝐸(0,
Γ(

3

𝑏
)

𝑎
2

𝑏⁄ Γ(
1

𝑏
)
) 

and 

𝑦~𝐷𝐸(𝛽0 + 𝛽1𝑥,
Γ(

3
𝑏

)

𝑎
2

𝑏⁄ Γ (
1
𝑏

)
) 

The errors are assumed to have mean zero and unknown variance 
Γ(

3

𝑏
)

𝑎
2

𝑏⁄ Γ(
1

𝑏
)
. Here the errors 

are uncorrelated. There is a Generalized Double Exponential probability distribution for y 

at each possible value for 𝑥 such that  

𝐸(𝑦|𝑥) = 𝛽0 + 𝛽1𝑥
and 

𝑉(𝑦|𝑥) = 𝑉(𝛽0 +  𝛽1𝑥 +  𝜀) =  
Γ(

3

𝑏
)

𝑎
2

𝑏⁄ Γ(
1

𝑏
)
. 

Although the mean of 𝑦 is a linear function of 𝑥 that is the conditional mean of 𝑦 depends 

on 𝑥, but the conditional variance of 𝑦 does not depend on 𝑥. Moreover, the responses 𝑦 

are uncorrelated since the errors 𝜀 are uncorrelated.  

Since the parameters 𝛽0 and 𝛽1 are unknown, they should be estimated using sample data.

Suppose that we have 𝑛 pairs of data, say (𝑦1, 𝑥1), (𝑦2, 𝑥2), … , (𝑦𝑛, 𝑥𝑛) obtained from a

controlled experimental design or from an observational study or from existing historical 

records. Least Square method estimates 𝛽0 and 𝛽1 so that the sum of squares of differences

between the observations 𝑦𝑖 and the straight line is minimum. From equation 2.1 we can

write 

𝑦𝑖  =  𝛽0 +  𝛽1𝑥𝑖 + 𝜀𝑖; 𝑖 = 1, 2, … , 𝑛      (2.2)  

Equation 2.1 presents the Population Regression Model and equation 2.2 expresses the 

Sample Regression Model. Now the sum of squares of deviations from the true line is  

𝑆 =  ∑ 𝜀𝑖
2𝑛

𝑖=1 =  ∑ (𝑦𝑖 − 𝛽0 −  𝛽1𝑥𝑖)2𝑛
𝑖=1    (2.3) 

Now the least square estimates of 𝛽0 and 𝛽1 must satisfy

𝜕𝑆

𝜕𝛽0
=  −2 ∑ (𝑦𝑖 − 𝛽0 −  𝛽1𝑥𝑖) = 0𝑛

𝑖=1 (2.4) 
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and 
𝜕𝑆

𝜕𝛽1
=  −2 ∑ (𝑦𝑖 − 𝛽0 −  𝛽1𝑥𝑖)𝑥𝑖 = 0𝑛

𝑖=1 .  (2.5) 

After simplification the two normal equations are generally found such that 

𝑛�̂�0 + �̂�1 ∑ 𝑥𝑖 =  ∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
𝑖=1      (2.6) 

�̂�0 ∑ 𝑥𝑖 +  �̂�1
𝑛
𝑖=1 ∑ 𝑥𝑖

2𝑛
𝑖=1 =  ∑ 𝑦𝑖𝑥𝑖

𝑛
𝑖=1 (2.7) 

The solution to the normal equations is 

�̂�0 =  �̅� −  �̂�1�̅�     (2.8) 

and �̂�1 =  
∑ 𝑦𝑖𝑥𝑖−

∑ 𝑦𝑖 ∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑛
𝑖=1

∑ 𝑥𝑖
2𝑛

𝑖=1 − 
(∑ 𝑥𝑖

𝑛
𝑖=1 )

2

𝑛

  (2.9) 

where �̅� =  
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 and  �̅� =  

1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 .

Therefore, �̂�0 and �̂�1 are the Least Square estimates of the intercept and slope respectively. 

The fitted Simple Linear Regression Model is  

�̂�0 =  �̂�0 +  �̂�1𝑥.    (2.10) 

3. Statistical Properties of Least Square Estimators

The estimators of the regression parameters are linear and unbiased. 

3.1 Linearity 

The estimators of the regression parameters are linear. 

�̂�1 =
∑(𝑥𝑖−�̅�)(𝑦𝑖−�̅�)

∑(𝑥𝑖−�̅�)2 =
∑(𝑥𝑖−�̅�)𝑦𝑖−∑(𝑥𝑖−�̅�)�̅�

∑(𝑥𝑖−�̅�)2 =
∑[(𝑥𝑖−�̅�)𝑦𝑖]

∑(𝑥𝑖−�̅�)2

Assuming, 
(𝑥𝑖−�̅�)

∑(𝑥𝑖−�̅�)2 = 𝑘𝑖,  �̂�1 gives the following form such that

∴ �̂�1 = ∑ 𝑘𝑖
𝑛
𝑖=1 𝑦𝑖     (3.1) 

Similarly, �̂�0 = �̅� − �̂�1�̅� =
1

𝑛
∑ 𝑦𝑖 − �̅� ∑ 𝑘𝑖 𝑦𝑖

∴ �̂�0 = ∑ [
1

𝑛
− �̅�𝑘𝑖] 𝑦𝑖    (3.2) 

Thus, both �̂�0 and �̂�1 are expressed as linear functions of 𝑦′𝑠.

3.2 Unbiasedness 

The estimators of the regression parameters are unbiased. 

�̂�1 = ∑ 𝑘𝑖
𝑛
𝑖=1 𝑦𝑖 = ∑ 𝑘𝑖 (𝛽0 + 𝛽1𝑥𝑖 +  𝜀𝑖)
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�̂�1 = 𝛽0 ∑ 𝑘𝑖 + 𝛽1 ∑ 𝑘𝑖 𝑥𝑖 + ∑ 𝑘𝑖 𝜀𝑖    (3.3) 

∴ 𝐸(�̂�1) = 𝛽0 ∑ 𝐸(𝑘𝑖) + 𝛽1 ∑ 𝐸(𝑘𝑖𝑥𝑖) + ∑ 𝐸(𝑘𝑖𝜀𝑖) = 0 + 𝛽1 ∑ 𝐸(𝑘𝑖𝑥𝑖) + ∑ 𝑘𝑖 𝐸(𝜀𝑖)

= 𝛽1 ∑ 𝐸 [
(𝑥𝑖−�̅�)

∑(𝑥𝑖−�̅�)2 𝑥𝑖] + ∑
(𝑥𝑖−�̅�)

∑(𝑥𝑖−�̅�)2 𝐸(𝜀𝑖) = 𝛽1 ∑ 𝐸 [
(𝑥𝑖−�̅�)

∑(𝑥𝑖−�̅�)2 𝑥𝑖] + 0 = 𝛽1 ∑ 𝐸 [
𝑥𝑖

2−𝑥𝑖�̅�

∑(𝑥𝑖−�̅�)2] 

= 𝛽1 ∑ [
𝑥𝑖

2−𝑥𝑖�̅�

∑(𝑥𝑖−�̅�)2] = 𝛽1 [
∑ 𝑥𝑖

2−�̅� ∑ 𝑥𝑖

∑(𝑥𝑖−�̅�)2 ] = 𝛽1 [
∑ 𝑥𝑖

2−�̅�𝑛�̅�

∑(𝑥𝑖−�̅�)2 ] = 𝛽1 [
∑ 𝑥𝑖

2−𝑛�̅�2

∑ 𝑥𝑖
2−�̅�𝑛�̅�

] = 𝛽1

∴ 𝐸(�̂�1) = 𝛽1

Again, �̂�0 = �̅� − �̂�1�̅�

∴ 𝐸(�̂�0) = 𝐸(�̅�) − �̅�𝐸(�̂�1) = 𝐸 (
1

𝑛
∑ 𝑦𝑖) − �̅�𝛽1= 

1

𝑛
∑ 𝐸(𝑦𝑖) − �̅�𝛽1

= 
1

𝑛
∑(𝛽0 + 𝛽1𝑥𝑖) − �̅�𝛽1 = 𝛽0 + �̅�𝛽1- �̅�𝛽1 = 𝛽0

∴ 𝐸(�̂�0) =  𝛽0.

∴  �̂�1 and �̂�0 are the unbiased estimators of 𝛽1 and 𝛽0.

3 Maximum Likelihood Estimators 

For 𝑛 pairs of data, (𝑦1, 𝑥1), (𝑦2, 𝑥2), … , (𝑦𝑛 , 𝑥𝑛) where 𝑦𝑖  =  𝛽0 +  𝛽1𝑥𝑖 + 𝜀𝑖; 𝑖 =
1, 2, … , 𝑛  

and 

𝑦~𝐷𝐸(𝛽0 +  𝛽1𝑥,
Γ(

3

𝑏
)

𝑎
2

𝑏⁄ Γ(
1

𝑏
)
), 

the Maximum Likelihood Function will be  

𝐿 = ∏ 𝑓 (𝑦𝑖|𝑥𝑖, 𝛽0, 𝛽1,
Γ(

3
𝑏

)

𝑎
2

𝑏⁄ Γ (
1
𝑏

)
 )

𝑛

𝑖=1

 

=
𝑏 √𝑎

𝑏

2 ⌈
1
𝑏

𝑒−|𝑎(𝑦1−𝛽0− 𝛽1𝑥1)𝑏| ×
𝑏 √𝑎

𝑏

2 ⌈
1
𝑏

𝑒−|𝑎(𝑦2−𝛽0− 𝛽1𝑥2)𝑏| × … ×
𝑏 √𝑎

𝑏

2 ⌈
1
𝑏

𝑒−|𝑎(𝑦𝑛−𝛽0− 𝛽1𝑥𝑛)𝑏|

= ∏
𝑏 √𝑎

𝑏

2 ⌈
1
𝑏

𝑒−|𝑎(𝑦𝑖−𝛽0− 𝛽1𝑥)𝑏|

𝑛

𝑖=1

∴ 𝐿 = (
𝑏 √𝑎

𝑏

2 ⌈
1
𝑏

)

𝑛

𝑒−|𝑎 ∑ (𝑦𝑖−𝛽0− 𝛽1𝑥)𝑏𝑛
𝑖=1 | 

where, 𝑎 ∑ (𝑦𝑖 − 𝛽0 − 𝛽1𝑥)𝑏𝑛
𝑖=1  is positive or negative. 
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For, positive 𝑎 ∑ (𝑦𝑖 − 𝛽0 −  𝛽1𝑥)𝑏𝑛
𝑖=1

∴ 𝐿 = (
𝑏 √𝑎

𝑏

2 ⌈
1
𝑏

)

𝑛

𝑒−|𝑎 ∑ (𝑦𝑖−𝛽0− 𝛽1𝑥)𝑏𝑛
𝑖=1 | 

Taking logarithm on both sides we find the log likelihood function as 

log𝑒 𝐿 = log𝑒 [(
𝑏 √𝑎

𝑏

2 ⌈
1
𝑏

)

𝑛

𝑒−𝑎 ∑ (𝑦𝑖−𝛽0− 𝛽1𝑥)𝑏𝑛
𝑖=1 ] 

⇒ log𝑒 𝐿 = ln (
𝑏 √𝑎

𝑏

2⌈
1

𝑏

)

𝑛

+ ln [𝑒−𝑎 ∑ (𝑦𝑖−𝛽0− 𝛽1𝑥)𝑏𝑛
𝑖=1 ] 

⇒ log𝑒 𝐿 = 𝑛 ln 𝑏 +
𝑛

𝑏
ln 𝑎 − 𝑛 ln 2 ⌈

1

𝑏
− 𝑎 ∑(𝑦𝑖 − 𝛽0 − 𝛽1𝑥)𝑏

𝑛

𝑖=1

Now the maximum likelihood estimator can be obtained as a solution of the following 

equations  
𝜕

𝜕(𝛽0,𝛽1)
log𝑒 𝐿 [𝑎, 𝑏; 𝑦1, 𝑦2, … , 𝑦𝑛 ] = 0

𝜕

𝜕𝛽1
log𝑒 𝐿 [𝑎, 𝑏; 𝑦1, 𝑦2, … , 𝑦𝑛 ] = 0

=
𝜕

𝜕𝛽1
[𝑛 ln 𝑏 +

𝑛

𝑏
ln 𝑎 − 𝑛 ln 2 ⌈

1

𝑏
− 𝑎 ∑ (𝑦𝑖 − 𝛽0 −  𝛽1𝑥)𝑏𝑛

𝑖=1 ] 

0 = 0 − 𝑎 ∑ 𝑏(𝑦𝑖 − 𝛽0 −  𝛽1𝑥)𝑏−1(−𝑥𝑖)𝑛
𝑖=1

∑ 𝑥𝑖(𝑦𝑖 − 𝛽0 −  𝛽1𝑥)𝑏−1𝑛
𝑖=1 = 0     (4.1)  

Again, 
𝜕

𝜕𝛽0
log𝑒 𝐿 [𝑎, 𝑏; 𝑦1, 𝑦2, … , 𝑦𝑛 ] = 0

=
𝜕

𝜕𝛽0
[𝑛 ln 𝑏 +

𝑛

𝑏
ln 𝑎 − 𝑛 ln 2 ⌈

1

𝑏
− 𝑎 ∑ (𝑦𝑖 − 𝛽0 −  𝛽1𝑥)𝑏𝑛

𝑖=1 ] 

0 = 0 − 𝑎 ∑ 𝑏(𝑦𝑖 − 𝛽0 −  𝛽1𝑥)𝑏−1(−1)𝑛
𝑖=1

∑ (𝑦𝑖 − 𝛽0 −  𝛽1𝑥)𝑏−1𝑛
𝑖=1 = 0  (4.2) 

Solving the two equations (4.1) and (4.2) by Numerical Integration say Newton Raphson 

Method we can estimate the 𝛽0 and 𝛽1. If we put b = 2, the equation (4.1) and (4.2) become

normal equations for the regression model where the error term is distributed as Normal.  

However, before solving the equations (4.1) and (4.2), we need to estimate the value of 𝑎 

and 𝑏. Adnan and Kiser (2011) addressed a classification of distributions based on various 
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specification of the parameters of 𝑎 and 𝑏. The various specifications of 𝑎 and 𝑏 along with 

the classification of distributions are addressed below. 

Table: The various specifications of 𝑎 and 𝑏 along with the classification of distributions 

for the response variable (y).  

S

l

. 

Name of the 

distribution 
𝑓(𝑥) Su

pp

ort 

𝑎 𝑏 𝑦 Mean Variance 

1 Generalized 

Double 

Exponential 

𝑏 √𝑎
𝑏

2Γ(
1
𝑏

)
𝑒−|𝑎(𝑦−𝛽0− 𝛽1𝑥)𝑏| 

−∞
≤ 𝑦
≤ ∞ 

𝑎 𝑏 𝑦 𝛽0 +  𝛽1𝑥 Γ(
3
𝑏

)

𝑎
2

𝑏⁄ Γ (
1
𝑏

)

2 Std. Laplace 1
2

𝑒−|𝑦| −∞
≤ 𝑦
≤ ∞ 

1 1 𝑦 0 2 

3 Laplace 1

2𝜆
𝑒

−|
𝑦−𝛽0− 𝛽1𝑥

𝜆
| −∞

≤ 𝑦
≤ ∞ 

1
𝜆

 
1 𝑦 𝛽0 +  𝛽1𝑥 2𝜆2

4 Standard 

normal 

1

√2𝜋
𝑒−

1
2

(𝑦)2 −∞
≤ 𝑦
≤ ∞ 

1
2

 2 𝑦 0 1 

5 Normal 1

√2𝜋𝜎
𝑒−

1
2

(
𝑦−𝛽0− 𝛽1𝑥

𝜎
)2 −∞

≤ 𝑦
≤ ∞ 

1

2𝜎2

2 𝑦 𝛽0 +  𝛽1𝑥 𝜎 2

6 Log-normal 
𝑒−

1
2

(
log 𝑦−𝛽0− 𝛽1𝑥

𝜎
)2

𝑦√2𝜋𝜎

0
≤ 𝑦
≤ ∞ 

1
2𝜎2

2 y 

𝑒𝛽0+ 𝛽1𝑥+
1
2

𝜎2

𝑒2(𝛽0+ 𝛽1𝑥)+𝜎2

{𝑒𝜎2
− 1}

7 Exponential 𝑎𝑒−𝑎(𝑦) 0
≤ 𝑦
≤ ∞ 

𝑎 1 𝑦 1
𝑎

 1
𝑎2

8 Gamma 
𝑦

1
𝑏

−1𝑒−(𝑦)

Γ(
1
𝑏

)

0
≤ 𝑦
≤ ∞ 

1 𝑏 𝑦 1
𝑏

 1
𝑏

⁄  

9 Rayleigh 2𝑦

𝜆2
𝑒

−
(𝑦)2

𝜆2
0
≤ 𝑦
≤ ∞ 

1
𝜆2

1 y 0.886𝜆 0.215𝜆2
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If for drawn the random sample the variable 𝑦 is distributed to any distribution other than 

the aforesaid one, it is required to estimate 𝑎 and 𝑏 to classify its pattern. The pattern can 

be unfolded from the mean variance or higher order moments relationship of the 

distribution. 

Conclusion 

The authors are trying to develop the inference procedure for the generalized regression 

model. The link with the generalized linear model is being thought to be developed. 
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