
Clustered Binomial Data Analysis by Modified Generalized Estimating
Equations

Xuemao Zhang∗

Abstract
Extra-binomial variation in clustered binomial data is frequently observed in biomedical and obser-
vational studies. The usual generalized estimating equations (GEE) method treats the extra-binomial
parameter as a constant across all clusters. In this paper, a two-parameter variance function mod-
eling the extraneous variance is proposed to account for heterogeneity among clusters. The new
approach allows modeling the extra-binomial variation as a function of the mean and binomial size.
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1. Introduction

Clustered/longitudinal data arise in many epidemiological and bio-statistical practices in
which a number of repeated count/binomial responses are observed on a number of indi-
viduals. Consider clustered binomial data arranged in a series of observations (yij ,xij)
from n clusters, where xij is a vector of covariates associated with the univariate binomial
outcome yij with size mij , j = 1, . . . , Ti, i = 1, . . . , n. Assume all clusters have the
same number of observations/individulas Ti = T . Now, each yij is assumed to follow the
binomial distribution B(mij , µij); that is

P (Yij = yij) = {mij !/[yij !(mij − yij)!]}µ
yij
ij (1− µij)mij−yij ,

j = 1, . . . , T , i = 1, . . . , n. We suppose that the response probability µij depends on the
explanatory variable xij via a logistic regression model

µij = exp(x
′
ijβ)/[1 + exp(x

′
ijβ)],

where β is a p-vector of unknown regression coefficients. Now, under the binomial as-
sumption V ar(yij) = mijµij(1 − µij). In presence of extra-binomial variation (over or
under dispersion) a more general distribution, such as the beta-binomial distribution, which
accounts for such extra-binomial variation, is considered. However, in practice a distribu-
tional assumption for the data may not hold. In such a situation, the generalized estimating
equation (GEE) approach (Liang and Zeger, 1986, and Zeger and Liang, 1986) can be used
for the estimation of the regression parameters.

The main advantage of the GEE method of estimation in clustered data analysis is
that the estimators are consistent even if the working correlation structure is misspecified.
Although miss-specification of the correlation structure does not affect consistency of the
estimates of the regression parameters, it does reduce the efficiency of the regression pa-
rameter estimates (Wang and Carey, 2004). As discussed by Wang and Zhao (2007) the
GEE approach focuses on correctly modelling the working correlation matrix. However, it
treats the variance function to be of a known form. The usual practice is to take the variance
function as that obtained from the overdispersed generalized linear models (GLM) (Nelder
and Wedderburn, 1972, and McCullagh and Nelder, 1983). Now, the variance function for
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binomial data is v(µ) = µ(1 − µ). Therefore, in the framework of a GLM for data with
extra-binomial variation Var(yij) = ϕmijv(µij), where ϕ is the extra-binomial parameter.
This form of the variance of clustered binomial response data could be too limited in prac-
tice. Heterogeneity between clusters in a clustered data analysis might be another source
of the extra-binomial variation.

To apply the GEE methodology to binomial data it would be convenient to deal with da-
ta yit/mit in the form of proportion. If yit has a binomial distribution, then Var(yit/mit|xit) =
µit(1 − µit)/mit. Suppose yit is a sum of mit correlated binary responses with common
success probabilities µit such that yit =

∑mit
j=1 zitj and corr(zitj , zitj′ ) = τit for j 6= j

′
.

Then,
Var(yit/mit) = µit(1− µit)[1 + τit(mit − 1)]/mit, (1)

with τit ≥ −1/(mit − 1). This variance can also be derived from the beta-binomial distri-
bution (Williams, 1975, and Crowder, 1978). Note that Var(yit/mit) = µit(1−µit)/mit+
(mit−1)
mit

τitµit(1−µit) consists of two parts. The first part is the variance of a binomial pro-
portion and the second part is the extra-binomial variation. Moore(1987) generalized the
model by expressing τit as τit(µit) = φiµ

δ−1
it (1− µit)δ−1 and obtained

Var(yit/mit) = µit(1− µit){1 + φi(mit − 1)[µit(1− µit)]δ−1]}/mit

= µit(1− µit)/mit + φi(mit − 1)[µit(1− µit)]δ/mit, δ ≥ 1.
(2)

Note, this also imposes a constraint on φi as φi ≥ −[µit(1 − µit)]
1−δ/(mit − 1). The

parameters φi and δ, in some way, are over-dispersion parameters; φi is the usual beta-
binomial type over-dispersion parameter and δ is an over-dispersion parameter due to the
variation in the proportion parameter µi.

In this paper, we propose to use this two-parameter variance function when the GEE
method is used to estimate the regression parameters. The form of the variance function is
generalized by allowing for negative δ− 1 values. It allows us to model the extra-binomial
variation of clustered binomial data as a function of the mean.

The modified GEE approach for clustered binomial data is presented in Section 2.
Three methods of estimating the variance parameters are proposed in Section 3. A limited
simulation study is conducted in Section 4 to compare the three methods and investigate
the effect of the variance function and misspecification of the working correlation structure
on the efficiency of the estimates of the regression parameters. A discussion follows in
Section 5.

2. Generalized Estimating Equations for Clustered Extra-binomial Data

Consider a clustered data analysis with n clusters and let yi = (yi1, . . . , yiT )
′

be the bino-
mial responses of size mit, t = 1, . . . , T for cluster i over T individual in the cluster. De-
note the T × p design matrix for yi as Xi = (xi1, . . . ,xiT )

′
, where xit = (xit1, . . . , xitp)

′

are the p covariates/predictor variables of interest for individual t, t = 1, . . . , T . We assume
that the n clusters are independent while the measurements yit, t = 1, . . . , T in cluster i
are correlated. For each individual t, consider the binomial proportion yit/mit and let

µit = E(yit/mit|xit,mit), µit = g−1(x
′
itβ), i = 1, . . . , n, t = 1, . . . , T,

where g is a link function and β is the vector of regression parameters of interest. In this
paper, we consider the logit link only. That is, logit(µit) = x

′
itβ. Now, let

µi = (µi1, . . . , µiT )
′
, yi = (yi1, . . . , yiT )

′
, and Di = ∂µi/∂β, i = 1, . . . , n.
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Then, the set of GEEs for estimating β is given by
n∑
i=1

DiV
−1
i (yi/mi − µi) = 0, (3)

where mi = (mi1, . . . ,miT )
′
, Vi = ϕA

1/2
i W

−1/2
i R(α)W

−1/2
i A

1/2
i , ϕ is an extra-

binomial parameter, Ai = diag(v(µit)) a diagonal matrix with v(µit) = µit(1 − µit)
on its tth diagonal, Wi is a T × T diagonal matrix with mit as the tth diagonal and R(α)
is the working correlation matrix completely defined by the parameter α. The main ad-
vantage of the GEE approach is that the estimator of β is consistent even if the working
correlation matrixR(α) structure is misspecified, though correct specification of the corre-
lation structure can improve the efficiency of the regression parameter estimate (Wang and
Carey 2004).

To account for the size mi and binomial probabilities µi, we propose the set of GEEs
of the form (3) with Vi = A

1/2
i R(α)A

1/2
i , Ai = diag(v(µit)) a diagonal matrix with its

tth diagonal

v(µit) = µit(1− µit){1 + φ(mit − 1)[µit(1− µit)]δ−1}/mit, (4)

where −∞ < δ < ∞ and φ ≥ −min{[µit(1 − µit)]1−δ/(mit − 1), i = 1, . . . , n, t =
1, . . . , T}.

Note that for δ−1 = 0, v(µit) is the beta-binomial variance given in (1); for δ−1 > 0,
0 < [µit(1 − µit)]

δ−1 < 1 and v(µit) is the generalized variance given in (2) and for
δ − 1 < 0, [µit(1 − µit)]δ−1 > 1 represents a further generalization of (2) that takes into
account the over-dispersion of the binomial proportion for each cluster. That is, we have
extended the form of the variance function in Moore (1987) by allowing for negative values
of δ − 1. In this paper, we focus on the estimation of φ and δ to improve the estimation
efficiency of regression parameter estimates.

The estimation procedure for (β, φ, δ) can be described by the following iterative algo-
rithm.

(i) Obtain an initial estimate β(0) of β from the GEE independence model.

(ii) For given β = β̂
(j)

, estimate the variance parameters φ and δ by the method of
least squares, weighted least squares or Gaussian estimation method as described in
Section 3.

(iii) For given β = β̂
(j)

obtained in step (i) and φ = φ̂ and δ = δ̂ obtained in step
(ii), the estimate α̂ of the correlation parameter α by the method of moments (Zeger
and Liang 1986). For example, the scalar parameter α in the working exchangeable
correlation matrix is estimated by

α̂ =
N∑
i=1

∑
k 6=l

y∗iky
∗
il

/[
(T − 1)

N∑
i=1

T∑
k=1

y∗ik
2

]
,

where y∗ik = (yik − µ̂ik)/
√
µ̂ik(1− µ̂ik), µ̂ik = µik(β̂

(j)
).

(iv) Update β̂ according to the modified Fisher scoring formula in the GEE method

β̂
(j+1)

= β̂
(j)

+

{
N∑
i=1

D̂
′
iV̂
−1
i D̂i

}−1{ N∑
i=1

D̂
′
iV̂
−1
i (yi − µ̂i)

}
, j = 1, 2, · · · ,

where D̂i = ∂µi/∂β
∣∣
β̂
(j) , µ̂i = µi(β̂

(j)
) and V̂i = Ai(φ̂, δ̂, β̂

(j)
)R(α̂)Ai(φ̂, δ̂, β̂

(j)
).
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(v) Iterate between (ii) and (iv) until a desired convergence criterion (for example max|β̂(j+1)−
β̂
(j)| < 0.001) for β is satisfied. At convergence, the final estimates of α, φ and δ

are given by α = α̂, φ = φ̂ and δ = δ̂ used in the last step of iteration.

3. Estimation of Variance Parameters

The GEE estimate of the regression parameter β is obtained by an iterative procedure given
above in which the variance parameters φ and δ in (4) need to be estimated. In this section
we discuss three methods of estimation of φ and δ for given estimate β̂.

3.1 Least squares

Let ei = yi/mi − µi for given estimate of β. Then eit has mean zero and E(e2it) is
approximately v(µit), t = 1, . . . , T . By the method of least squares, φ and δ are obtained
by minimizing

n∑
i=1

T∑
t=1

(e2it − v(µit))
2.

That is, estimates of φ and δ are obtained by solving the following system of equations
simultaneously.

n∑
i=1

T∑
t=1

(e2it − v(µit))[∂v(µit)/∂φ] =0,

n∑
i=1

T∑
t=1

(e2it − v(µit))[∂v(µit)/∂δ] =0.

Note that the least square method involves a nonlinear variance function and there is
no closed-form solution. Thus the convergence depends on the choice of initial values.
Furthermore, when the binomial sizes mi’s are small, v(µi) could be very small while
the observed values of the square of the residuals are large. In this case, the procedure
could diverge or the estimates of φ and δ may not be reliable even if convergence can be
obtained. Therefore, the estimators by the least square method are consistent only if there
is a convergent solution to the above minimization problem.

3.2 Weighted least squares

As is well-known, for normal data, e2it has approximate variance v2(µit). This suggests that
the weighted least square estimator of φ and δ can be obtained by minimizing

n∑
i=1

T∑
t=1

(e2it − v(µit))
2/v2(µit),

or by solving the following system of equations simultaneously

n∑
i=1

T∑
t=1

∂v(µit)

∂φ

[
1 + (e2it − v(µit))/v(µit)

]
(e2it − v(µit))/v

2(µit) =0,

n∑
i=1

T∑
t=1

∂v(µit)

∂δ

[
1 + (e2it − v(µit))/v(µit)

]
(e2it − v(µit))/v

2(µit) =0.
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3.3 Gaussian estimation

Whittle (1961) introduces the Gaussian estimation procedure which uses the normal log-
likelihood, without assuming that the data are normally distributed. Then, the Gaussian
log-likelihood apart from a constant is given by

l = −1

2

n∑
i=1

{
log det[2πVi] + (yi/mi − µi)

′
V−1i (yi/mi − µi)

}
. (5)

Wang and Zhao (2007) showed that when R(α) is an identity matrix, the estimates of
the parameters φ and δ obtained by maximizing (5) are consistent. Therefore, we choose
Vi = Ai in (5) and estimates φ and δ by solving the following Gaussian score equations
simultaneously.

1

2

n∑
i=1

tr

{[
A−1i (yi/mi − µi)(yi/mi − µi)

′ − IT
]
A−1i

∂Ai

∂φ

}
=0,

1

2

n∑
i=1

tr

{[
A−1i (yi/mi − µi)(yi/mi − µi)

′ − IT
]
A−1i

∂Ai

∂δ

}
=0,

where IT is a T dimensional identity matrix.

4. Simulation study

In this section we compare, by simulations, the estimators of the regression parameters by
the four methods: GEE, GEELS, GEEWLS and GEEG. That is, we compare the usual GEE
and GEE with φ and δ estimated by the method of least squares (LS), weighted least squares
(WLS) and Gaussian (G) method, respectively. We investigate the effect of the variance
function and misspecification of the working correlation structure on the efficiency of the
estimates of the regression parameters.

In our limited simulation study, the extra-binomial responses are generated by adding
several correlated binary random variables. The detailed data generation procedure is de-
scribed as in the following. For the ith cluster, given a T × p design matrix Xi and the
regression parameter β, denote ηi = Xiβ = (ηi1, . . . , ηiT )

′
. First, T correlated bina-

ry variables (zi11, . . . , ziT1)
′

with marginal mean µi = exp(ηi)/[1 + exp(ηi)] and cor-
relation matrix Ω(γ) are generated using the method of Qaqish(2003), which accounts
for the lower and upper bounds of the correlation parameters. Secondly, we generate
zij2, . . . , zijmij , again by the method of Qaqish(2003), such that the mij binary respons-
es zij = (zij1, . . . , zijmij ) are equally correlated with correlation strength ρi, a uniform
random variable between 0 and 0.7, j = 1, . . . , T , i = 1, . . . , n. Here, the strength of
ρi is chosen to be not too strong to avoid data generation difficulties because of natural
restrictions imposed by the marginal means (Qaqish, 2003).

Finally, the correlated extra-binomial response variables are given by yij =
∑mij

k=1 zijk,
j = 1, . . . , T , i = 1, . . . , n. Thus, the response variables (yi1, . . . , yiT )

′
generated for

cluster i in this way are correlated and each yij is an extra-binomial variable, j = 1, . . . , T .
Note that the correlation structure among the binomial responses cannot in general be the
same as that of Ω(γ). Therefore, even if the working correlation structure in the GEE esti-
mation is the same as that of Ω(γ), the correlation structure might have been misspecified.

To investigate the effect of the variance function on the efficiency of the estimates
of the regression parameters, we choose large samples in the simulations. We consider
sample size n = 100 with each cluster having T = 4 observations with binomial size
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mij = mi, i = 1, . . . , 4, a discrete uniform random variable between 30 and 100, p = 2
and β = (β0, β1) with β0 = 0.5, β1 = 1.0. The covariates xij are generated as a uniform
random variable from −3 to 3, j = 1, . . . , 4. That is, the design matrix for each cluster i is
of the form

Xi =

(
1 · · · 1
xi1 · · · xi4

)′
.

Simulations were conducted with true exchangeable correlation structure Ω(γ). We
take γ = 0.0, 0.1, 0.4 and 0.7 in Ω(γ) to account for the weak, moderate and strong
correlations among the binomial responses. A working exchangeable correlation structure
is used in the first set of simulations. Simulation results are summarized in Table 1.

Table 1: Biases, MSEs and variances of regression parameter GEE estimates; exchangeable
Ω(γ) for γ = 0.0, 0.1 0.4 and 0.7; n = 100, T = 4 and β0 = 0.5, β1 = 1.0; based on
1, 000 replications.

n×Bias n×MSE n×Variance
β0 β1 β0 β1 β0 β1

γ = 0.0

GEE 0.102 0.298 0.677 0.368 0.593 0.322
GEELS 0.157 0.536 0.615 0.343 0.524 0.343
GEEWLS 0.341 1.310 0.848 0.574 0.795 0.726
GEEG 0.802 1.086 0.637 0.367 0.538 0.303

γ = 0.1

GEE 0.310 0.661 0.722 0.452 0.757 0.522
GEELS 0.372 0.833 0.660 0.410 0.696 0.438
GEEWLS 0.760 1.392 0.842 0.661 0.796 0.592
GEEG 0.924 1.476 0.691 0.449 0.710 0.438

γ = 0.4

GEE 0.628 0.877 0.922 0.602 0.777 0.472
GEELS 0.833 1.154 0.853 0.547 0.700 0.500
GEEWLS 0.974 1.418 1.042 0.738 0.932 0.751
GEEG 1.440 1.873 0.903 0.606 0.717 0.520

γ = 0.7

GEE 0.012 0.394 1.103 0.698 1.323 0.494
GEELS 0.069 0.550 0.967 0.640 1.135 0.472
GEEWLS 0.762 1.621 1.343 1.010 1.445 0.682
GEEG 1.117 1.452 1.028 0.713 1.139 0.476

We see from the results in Table 1 that the biases of the estimates of β0 and β1 by all
methods are small showing that the estimators by the four methods are consistent. GEELS
and GEEG estimates have a little larger biases compared to GEE and GEELS method while
GEE method results in smallest biases. Furthermore, we compare the MSE’s (mean squared
error) of the estimates, where MSE is defined as the average of the squares of the differences
between the true values of the parameters and their estimates. GEELS estimates of β0 and
β1 have smallest MSE and variance estimates and GEEWLS estimates of β0 and β1 have
the largest MSE and variance estimates. The usual GEE method leads to estimates of β0
and β1 with a somewhat larger MSE and variance estimates compared with GEEG.

To study the effect of misspecification of the working correlation structure, a further set
of simulations were conducted with true AR(1) correlation structure Ω(γ) with the values
of γ as 0.0, 0.1, 0.4 and 0.7 and working exchangeable correlation structure. Simulation
results are summarized in Table 2.

We see from Table 2 that, again, all methods produce consistent estimators and GEE
has least biased estimators; GEEWLS performs worst in terms of bias, MSE and variance
estimates. In general, GEELS estimates of β0 and β1 have the smallest MSE and GEEG
performs the second best in terms of MSE. For variance estimates of β0 and β1, GEEG
performs best and the second best is GEELS.

263



Table 2: Biases, MSEs and variances of regression parameter estimates; AR(1) Ω(γ) for
γ = 0.0, 0.1, 0.4 and 0.7; n = 100, T = 4 and β0 = 0.5, β1 = 1.0; based on 1, 000
replications.

n×Bias n×MSE n×Variance
β0 β1 β0 β1 β0 β1

γ = 0.0

GEE 0.295 0.336 0.723 0.352 0.751 0.558
GEELS 0.308 0.525 0.680 0.318 0.728 0.516
GEEWLS 0.752 1.200 0.880 0.542 1.236 0.792
GEEG 0.976 1.114 0.722 0.343 0.688 0.507

γ = 0.1

GEE 0.167 0.258 0.701 0.378 0.690 0.351
GEELS 0.358 0.440 0.639 0.346 0.669 0.312
GEEWLS 0.875 0.884 0.798 0.517 0.758 0.397
GEEG 0.974 1.076 0.673 0.373 0.667 0.312

γ = 0.4

GEE 0.301 0.504 0.763 0.541 0.624 0.519
GEELS 0.439 0.806 0.674 0.491 0.595 0.497
GEEWLS 0.634 1.306 0.803 0.678 0.846 0.854
GEEG 0.975 1.499 0.707 0.540 0.585 0.491

γ = 0.7

GEE 0.776 1.187 1.085 0.596 1.175 0.780
GEELS 0.914 1.439 1.029 0.573 1.104 0.747
GEEWLS 1.064 1.793 1.281 0.843 1.094 1.023
GEEG 1.723 2.272 1.109 0.627 1.132 0.725

The limited simulations show that GEELS and GEEG perform better than the usu-
al GEE method in terms of MSE and variance estimates. The reason may be that the
extra-binomial variances of correlated binomial responses for different clusters cannot be
accounted for by one parameter only adopted by the usual GEE method. The GEEWLS
performs worst in terms of MSE and variance estimates. This may be partly because that
the weight chosen is based on normal data. The incorrect weight may exaggerate the het-
erogeneity among clusters. The problem of choosing an appropriate weight is left for future
research.

In the above limited simulation study, the over-dispersion of the binomial responses is
a result of adding several correlated binary responses. Therefore, there is no way to get
any bias information of the estimates of φ and δ in the proposed model. The simulation
of correlated over-dispersed binomial variables with specified variance function is left as a
future research.

5. An example

We now analyze a biological data from Alderdice and Forrester (1968) analyzed by Cha-
ganty, Sabo and Deng(2012). The data set is reproduced in Table 3. The purpose of the s-
tudy is to model the effects of salinity and temperature on the proportion of hatched English
sole eggs. The number of hatched eggs was recorded at seven salinity and five temperature
levels. Measurements were taken in four separate tanks for each combination of salinity
and temperature, and for each tank the number of fish eggs and the number hatched were
recorded. Therefore, the tanks represent the repeated measure component for this binomial
data set.

The goal of the analysis is to study the dependence of the proportion of eggs hatched
on the salinity and temperature. Thus, we consider the following marginal model with a
logit link

logit(µ) = β0 + β1Temp + β2Salinity. (6)
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Table 3: Number of hatched and total eggs of English sole at different salinity and temper-
ature levels in sea water.

Tank 1 Tank 2 Tank 3 Tank 4
Salinity (h) Temp.(C) Hatch Total Hatch Total Hatch Total Hatch Total

15
4 236 666 203 724 183 764 212 723
8 600 656 697 747 615 746 641 703
12 407 566 343 603 365 560 302 394

25
4 203 717 177 782 155 852 138 590
8 591 621 564 640 714 754 532 570
12 475 622 465 645 506 608 415 532

35
4 1 738 3 655 10 742 3 763
8 526 616 419 467 410 484 374 606
12 272 362 352 478 392 590 382 459

10
10 303 681 329 710 262 611 301 700
6 277 757 234 681 263 647 287 801

40
10 387 450 389 553 388 564 318 604
6 276 662 247 542 248 527 149 591

20
10 351 391 559 650 527 603 476 548
6 585 643 620 671 437 497 667 771

30
10 484 532 538 605 507 563 508 559
6 563 666 600 704 562 656 615 723

Here, µij = E(yij/mij), where yij is the number of eggs hatched out of the totalmij in the
jth tank at the ith combination of salinity and temperature, j = 1, . . . , 5, i = 1, . . . , 17. We
consider the exchangeable correlation structure only among the binomial responses due to
convergence issues (Chaganty, Sabo and Deng, 2012). The convergence rates of the three
proposed methods using the iterative procedure in section 2 involve different minimization
problems. Therefore, they need a little more time for convergence compared to the GEE
method.

The estimates of (φ, δ) in the proposed variance function (4) are (0.129, 0.585), (0.028,−0.621)
and (0.677, 1.629) for the method GEELS, GEEWLS and GEEG respectively. Note that
the estimate of (φ, δ) by GEEWLS, with negative δ, is very different from those by GEELS
and GEEG. This affects the estimates of the regression parameters of model (6) as well.
Estimates of the regression parameters and their standard errors by the four methods are
given in Table 4.

Table 4: Parameter estimation by GEE, GEELS, GEEWLS and GEEG of β0, β1, and β2.
Estimates Standard error

β0 β1 β2 β0 β1 β2
GEE -2.013 0.348 -0.00324 0.743 0.105 0.0284

GEELS -1.948 0.359 -0.00700 0.757 0.101 0.0273
GEEWLS -3.696 0.687 -0.00860 1.098 0.175 0.0305

GEEG -1.796 0.323 -0.00583 0.775 0.0786 0.0275

There does not appear to be a lot difference among the estimates or the regression
parameters by GEE, GEELS and GEEG. The estimates by GEEWLS seem to be unusual
since β0 is estimated much smaller and β1 is estimated much larger. However, the signs
of the estimates by the four methods are consistent. Positive β1 shows that salinity in the
range 15-40h has positive effect on the hatching efficiency while negative β2 shows that
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temperature in the range 4-12C has positive effect on the hatching efficiency. GEELS and
GEEG produce estimates of β1 and β2 with the smallest standard errors. The usual GEE
method leads to the smallest standard error for the estimate of β0. The results obtained
from this example are consistent with the findings in the simulation study.

6. Discussion

In this paper we develop a model for correlated extra-binomial data where two variance
parameters are used to account for the heterogeneity amongst clusters in clustered data
analysis. We modify the usual GEE approach to estimate the regression parameters in
which the variance parameters are estimated by the method of least squares, weighted least
squares and Gaussian estimation. Simulations do not show a clear cut conclusion as to
which method is the best overall. However, the GEE procedure still shows best overall
performance in terms of bias. The GEEWLS performs worst in terms of MSE and variance
estimates. Regardless of the working correlation structure, the GEE procedure, where the
variance parameters are estimated by the least squares method, performs best in terms
of MSE and variance estimates. The GEEG procedure performs best overall in terms of
estimated variance and worst in terms of bias. A bias corrected GEEG could perform better
in terms of all criteria. This issue and whether any other working correlation structure affect
estimation efficiency will be the subject of a future study.
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