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Abstract
Linear mixed effects models have been widely used in medical studies and other applications to

deal with repeated-measure or clustered data. In reality, these data can be a mixture of different
groups of subjects. Then, it is preferred to fit the group-specific model if the group indicator is
available so that existing variable selection methods for linear mixed effects models can be used.
In this study, we consider a situation that the data involve two groups of subjects but the grouping
information is only partially known. We construct a finite mixture of linear mixed effects models
via joint modeling of repeated measures using linear mixed effects models and missing group status
using a logistic regression. We propose a penalized likelihood method with SCAD penalty function
using EM algorithm for variable selection in this mixture model. BIC is applied to determine the
tuning parameters and covariates. Simulation studies are used to demonstrate the performance of
the proposed method.
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1. Introduction

Linear mixed effects model, involving fixed effects and random effects, is especially useful
for handling longitudinal data (e.g., blood glucose measures of a patient at each week in a
month) and clustered data (e.g., monthly incomes of family members grouped by house-
hold in a town). It has become a major research topic in statistics since C. R. Henderson
first introduced the framework of the model in his 1949 and 1950 papers [1, 2]. Its estima-
tion methods and variable selection approaches have been studied and discussed in many
publications [3, 4, 5, 6, 7, 8, 9, 10]. Due to the flexibility of modeling fixed and random
factors at the same time with assuming the correlation among random effects [9], it is also a
highly influential statistical model which is applied in diverse disciplines such as economics
[11], genetics and biology [12], physiology [13], psychology [14], environmental science
[15], social and behavioral science [16, 17], and clinical trials [18, 19]. In addition, with
increasing complexity of data, linear mixed effects model has been extended to incorporate
with survival models via joint modeling [20] and has also been constructed as finite mix-
ture models to account for the unobserved heterogeneity between subjects while allowing
for correlations from the same subject [21, 22]. The finite mixtures of linear mixed effects
models are useful in many areas and some algorithms for fitting this mixture model have
been discussed in the literature such as Markov Chain Monte Carlo (MCMC) algorithm
[21] and expectation-maximization (EM) algorithm [22]. However, few of articles studied
the variable selection for this kind of model.

In this study, inspired by the paper of Grün in 2008 [22] and the paper of Khalili and
Chen in 2007 [23], we introduce an EM algorithm for maximum likelihood (ML) estima-
tion of a constructed finite mixtures of linear mixed effects models and propose a penalized
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variable selection procedure for it. Similar as the finite mixtures of mixed effects models in
Grün’s paper [22], our mixture models are also constructed by joint modeling of repeated
measures using linear mixed effects models and latent group information using a concomi-
tant model - logistic regression model. But, instead of treating the group label for each
subject as complete missing for the EM framework in [22], we extend the framework to
adapt for partial missing. That is, sometimes, we have already had the group information
for partial subjects and have already known these groups of subjects have heterogeneity
on the response variable. Comparing to Khalili and Chen [23] who proposed a likelihood
variable selection procedure with a penalty such as smoothly clipped absolute deviation
(SCAD) [24] in finite mixture of regression models but without modeling the random ef-
fects and without selecting the informative variables for the concomitant linkage function,
we not only involve the random effects and use logistic model as a linkage in the mixture
models but also propose a penalized approach which can be used for clustering the mixture
types of data and select the informative variables for both fixed effects and the concomitant
model simultaneously. Since the framework is based on EM algorithm, unknown parame-
ters will be updated alternately. In each sub-step, the unknown parameters have analytical
solution and the computational cost is relatively cheap. The Bayesian information criterion
(BIC) [25] will be introduced to select the tuning parameter for variable selection process
and the performance is demonstrated via various simulation scenarios and real data analy-
sis.

The rest of this article is organized as follows. In section 2, we introduce the general
EM framework of the ML estimation for the proposed finite mixtures of linear mixed ef-
fects models and then propose the penalized variable selection approach. Some simulation
examples are introduced to demonstrate the performance of proposed method in section 3.
We conclude with a brief summary in section 4.

2. Finite mixtures of linear mixed effects models

The finite mixtures of linear mixed effects models are supposed to have totalK components
with a linkage to predict the weights for each component, where the component is a linear
mixed effects model and the linkage could be a concomitant model such as multinomial
logistic model to make sure the sum of the component weights equals to 1. The superiority
of this mixture mixed effects model comparing to the mixture model discussed in Khalili
and Chen (2007) [23] is that random effects are also involved so that the variations of the
observations from the same subject can be explained. Therefore, given that the group labels
of each subject are constant, the finite mixtures of linear mixed effects models can capture
the relationships between subjects in a group with the correlations between observations
from a same subject by component while indicate the heterogeneity between (latent) groups
on the response. The heterogeneity is represented by the differences between parameter
values of each component (e.g., the coefficients of fixed effects between components). In
practice, K = 2 is often used in many other mixture models [26, 27], for example, gender
is often a good group indicator since there exists heterogeneity between males and females
such as heights, hormone levels and so on. To treat the group labels as complete missing
values for the EM framework of mixture models is very common. However, it is possible
that the data may contain partial group labels (e.g., gender indicators of some subjects may
be missing) which could be a useful prior information for getting more accurate component
weights. The complete missing of group labels which discussed in Grün (2008) [22] is just
a special case of the partial missing. In the rest of the section, we will set up our model
based on the total number of components K = 2 with logistic model as the concomitant
linkage by assuming partial grouping information is available. In addition, we assume
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that the heterogeneity between two groups is reflected by the difference of the parameter
values of the fixed effects between two components only while random effects for both
components cluster around a common mean. The EM framework for the ML estimation of
this model will be discussed.

2.1 Model set up

Given a set of observed data (yij , xij , zij , ui), we consider the following mixture linear
mixed effects model,

yij = βT1 xij + γi1
T zij + εij1, wi = 1, (group 1)

yij = βT2 xij + γi2
T zij + εij2, wi = 0, (group 2)

logit (P (wi = 1)) = αTui,

(1)

where i = 1, . . . , N indicates the number of subjects; j = 1, . . . , ni is the number of ob-
servations for subject i; xij and zij are the fix and random effects covariates for subject i
in jth observation respectively; εijk ∼ N(0, σ2) is the error term for group (or component)
k = 1, 2; βk is fixed effects for group k and γik ∼ N(0, G) is random effects for individual
i in group k, where G is a positive-definite variance-covariance matrix. Moreover, wi is
the missing value which indicates the subject-specific group label and is related to a set
of covariates ui for subject i. In order to make sure wi is unchanged all the time for ith
subject, the covariates ui for subject i in the logistic model should be fixed regardless of
the observation j.

By assuming the partial grouping information is available, we actually have another
parts of observed data (y0ij , x

0
ij , z

0
ij , u

0
i , w

0
i ) with given group labels, where i = 1, . . . , N0,

j = 1, . . . , n0i , and w0
i indicates the given group labels. Then the complete likelihood

function will be derived in the following part.

2.2 Complete likelihood and EM framework

For observed data with group labels (y0ij , x
0
ij , z

0
ij , u

0
i , w

0
i ), denote Y 0

i = [y0i1, . . . , y
0
in0
i
]T ,

X0
i = [x0i1, . . . , x

0
in0
i
]T and Z0

i = [z0i1, . . . , z
0
in0
i
]T . Then it is obvious to get the log likeli-

hood function

l0 =

N0∑
i=1

log

( eα
T u0

i

1 + eα
T u0

i

h0
i1

)w0
i (

1

1 + eα
T u0

i

h0
i2

)1−w0
i

 , (2)

where h0ik for k = 1, 2 represents the density for ith subject who is from group k with the
following formula

h0
ik =

(
2πσ2)−n0

i
2 exp

[
− 1

2σ2

(
Y 0
i −X0

i βk − Z0
i γ

0
ik

)T (
Y 0
i −X0

i βk − Z0
i γ

0
ik

)]
× (2π|G|)−

1
2 exp

[
−1

2
γ0
ik
T
G−1γ0

ik

]
.

(3)

Similarly, for the data without grouping information (yij , xij , zij , ui), denote Yi = [yi1, . . . , yini ]
T ,

Xi = [xi1, . . . , xini ]
T and Zi = [zi1, . . . , zini ]

T . In addition, as mentioned above, we let
the missing valuewi indicates the latent group labels. The complete log likelihood function
shows as follows

l =

N∑
i=1

log

[(
eα

T ui

1 + eαT ui
hi1

)wi (
1

1 + eαT ui
hi2

)1−wi
]
, (4)
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where

hik =
(
2πσ2)−ni

2 exp

[
− 1

2σ2
(Yi −Xiβk − Ziγik)T (Yi −Xiβk − Ziγik)

]
× (2π|G|)−

1
2 exp

[
−1

2
γik

TG−1γik

]
.

(5)

Therefore, the complete log likelihood for data with partial grouping information with the
total number of groups (or components) K = 2 can be simply expressed as lc = l0 + l.
Since partial group labels are missing, EM algorithm is a most common approach to solve
the problem.

Let −lc denote the negative complete log likelihood, EM algorithm can optimize it
through updating the parameters alternatively between expectation step (E-step) and max-
imization step (M-step) until convergence. For E-step, the missing group labels will be
predicted by using available data and current parameter values via a Bayesian formula such

that pi = E(wi) = eα
T uihi1

eα
T uihi1+hi2

. Then, we can get the expected negative complete log
likelihood by replacing wi with pi in −lc. For M-step, the expected negative complete log
likelihood can be optimized via two parts separately. The first part regarding the concomi-
tant linkage function, we attempt to find α̂ which can minimize the following formula

α̂ = argminα

{
N0∑
i=1

[
log
(
1 + eα

T u0
i

)
− αTu0

iw
0
i

]
+

N∑
i=1

[
log
(
1 + eα

T ui

)
− αTuipi

]}
. (6)

Newton-Raphson method is used to solve α̂ in formula (6) due to lack of analytical solution.
The second part regarding the components of mixture, a set of parameters, including βk,
γik, γ0ik, σ2 and G, needs to be solved to make the following formula minimize,

n0 + n

2
logσ2 +

N0 +N

2
log|G|

+

N0∑
i=1

2∑
k=1

I0k
2

[
1
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i γ

0
ik

)T (
Y 0
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i γ

0
ik

)
+ γ0
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ik

]

+

N∑
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Ik
2

[
1

σ2
(Yi −Xiβk − Ziγik)T (Yi −Xiβk − Ziγik) + γik

TG−1γik

]
,

(7)

where n0 =
∑N0

i=1 n
0
i and n =

∑N
i=1 ni represent total observations of N0 subjects with

group labels and total observations of N subjects without group labels respectively; I0k and
Ik are the indicator of group labels for subjects given group labels and indicator of expected
group labels for subjects without group labels such that

I0k =

{
w0
i k = 1

1− w0
i k = 2

and Ik =

{
pi k = 1
1− pi k = 2

.

All parameters in formula (7) have closed form solutions by taking first derivative on one
parameter given the rest of parameters are fixed and then making the equation equal to zero.
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The solutions for each parameter are listed below:

β̂k = argminβk
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γ̂ik =
[
Ik
σ2Z

T
i Zi + IkG
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× Ik
σ2Z

T
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γ̂0
ik =

[
I0k
σ2Z

0
i
T
Z0
i + I0kG

−1
]−1

× I0k
σ2Z

0
i
T (
Y 0
i −X0

i βk
)
.

(8)
The equation of β̂k in formula (8) is formulated in the form of least squares. Several pack-
ages such as ncvreg [28] in the statistical software R can be applied to solve β̂k directly
depending on this form. Table 1 summerizes the computing algorithm for parameters up-
dating using the proposed EM framework.

Table 1: Computing algorithm for parameters updating

1. Initialize α(0), σ2(0), G(0), β(0)k , γ(0)ik and γ0ik
(0) to get p(0)i .

2. a) Given p(t)i , update α, σ2, G, βk, γik and γ0ik alternately in M-step.
b) Given α(t), σ2(t), G(t), β(t)k , γ(t)ik and γ0ik

(t), update p(t+1)
i in E-step.

3. Repeat step 2 until convergence.
(0) parameter value at the beginning (i.e., initializer).
(t) parameter value at current level.

2.3 Variable selection using penalized approach

Based on the EM framework described in section 2.2, variable selection via a penalized
approach will be introduced. A penalized method is used to enhance the predictive power
of the model via producing sparse solutions [24]. We utilize SCAD penalty in this study due
to some good properties such as continuity and unbiasedness [24, 29]. Variable selection is
applied on both the logistic linkage (α) and fixed effects (βk) simultaneously. For selecting
informative variables for βk (k = 1, 2), the equation of β̂k in formula (8) is replaced by a
penalized version in the M-step:

β̂∗k =argminβk

{
N0∑
i=1

[√
I0k
σ

[(
Y 0
i − Z0

i γ
0
ik

)
−X0

i βk
]]T [√I0k

σ

[(
Y 0
i − Z0

i γ
0
ik

)
−X0

i βk
]]

+

N∑
i=1

[√
Ik
σ

[(Yi − Ziγik)−Xiβk]
]T [√

Ik
σ

[(Yi − Ziγik)−Xiβk]
]
+ pλk (βk)

}
,

(9)

where pλk(βk) is the penalty with tuning parameter λk (i.e., λ1 is for β1 and λ2 is for β2).
Thus, we can get the SCAD-penalized least squares estimators. However, for selecting
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informative α, formula (6) cannot be transformed into least squares directly due to lack
of analytic solution. In order to apply the penalized approach, the second order Taylor
expansion was studied to be a good solution in this case. Let the first and second order
derivative of likelihood formula (6) be:

l′(α) =

N0∑
i=1

[(
eα

T u0
i

1 + eα
T u0

i

− w0
i

)
u0
i

]
+

N∑
i=1

[(
eα

T ui

1 + eαT ui
− pi

)
ui

]
, (10)

and

l′′(α) =

N0∑
i=1

[
eα

T u0
i

(1 + eα
T u0

i )2
u0
iu

0
i
T

]
+

N∑
i=1

[
eα

T ui

(1 + eαT ui)2
uiui

T

]
. (11)

Then, given estimation α(s), using the second order Taylor expansion formula, we have
penalized likelihood as:

l(α) ≈ l(α(s)) + l′(α(s))(α− α(s)) +
1

2
l′′(α(s))(α− α(s)) + pλ3(α), (12)

where pλ3(α) is the penalty for α. Thus, to minimize l(α) is equivalent to find

α̂∗ =argminα

{[
l′(α(s))α− α(s)T l′′(α(s))α

]
+

1

2
αT l′′(α(s))α+ pλ3(α)

}
. (13)

By taking formula (10) and (11) into formula (13), we can rewrite it into the least squares
form and supersede formula (6) in M-step so that α can be iteratively updated by the regular
penalized procedure as βk.

The updating procedure for the rest of parameters is the same as the procedure in the
EM framework proposed in the section 2.2. Total three penalties (pλk(βk)k=1,2 and pλ3(α))
are supposed to involve in the penalized framework. In this study, we set λ1 = λ2 = λ3 to
save the computational cost and BIC criteria will be introduced to find the optimal tuning
parameter. The algorithm is summarized in Table 2.

Table 2: Computing algorithm for parameters updating (penalized)

1. Assign a λ and initialize α(0), σ2(0), G(0), β(0)k , γ(0)ik and γ0ik
(0) to get p(0)i .

2. a) Given p(t)i , update α, σ2, G, βk, γik and γ0ik alternately in M-step.
b) Given α(t), σ2(t), G(t), β(t)k , γ(t)ik and γ0ik

(t), update p(t+1)
i in E-step.

3. Repeat step 2 until convergence.
4. Compute BIC.
5. Repeat step 1 to 4 to find a λ that gives minimum BIC.
(0) parameter value at the beginning (i.e., initializer).
(t) parameter value at current level.

The implementation of our proposed approach in R is not difficult with current available
R packages. The initializers listed in Table 1 and Table 2 (α(0), σ2(0), G(0), β(0)k , γ(0)ik and

γ0ik
(0)) are achieved by using the data from the subjects with group indicator.

3. Simulations

In this section, we do some simulation studies based on our proposed method. We gen-
erated xij , zij and ui independently from U(−3, 3), the random effects γ0ik and γik from
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N(0, G), error terms εijk from N(0, 1) for k = 1, 2, and set ni = n0i = D, where D
indicates that all the subjects have the same duplicates number.

Example 1: In the first example, we set

G =

 0.15 0 0
0 0.3 0
0 0 0.45

 ,
which is a diagonal matrix. Then we set β1 = (1, 1, 1, 0, 0), β2 = (−1,−1,−1, 0, 0) and
β1 = (0.3, 0.3, 0.3, 0, 0), β2 = (−0.3,−0.3,−0.3, 0, 0) separately with α = (1,−1, 0)
or (0.5,−0.5, 0) in addition to D = 4, the number of subjects with labels N0 = 100 or
200, and the number of subjects without labels N = 200. Table 3 summarized parame-
ter estimation results without penalization. It shows that the parameter estimation results
based on the proposed EM framework are approximate to the true values. In addition, the
estimation accuracy is affected by both the number of N0 and the true effect size of the
parameters. The lower number of N0 with lower parameter effects can cause some estima-
tion bias especially for α. However, it can be remitted by increase the number of N0. For
proposed penalized variable selection method, each scenario is duplicated for 50 times and
the performance is summarized in Table 4.

Example 2: In the second example, we set

G =

 0.15 0.05 0.05
0.05 0.3 0.05
0.05 0.05 0.45

 ,
which is a general covariance matrix. Other settings are the same as example 1 and the
penalized variable selection performance is showed in Table 5.

In Table 4 and 5, ”AP” is the average number of predictors to be selected in the model.
”AIP” is the average number of informative predictors to be selected. ”ANP” is the av-
erage number of non-informative predictors to be selected. ”#C” is the number times of
correctly selected. ”#O” is the number times of overestimate and ”#U” is the number times
of underestimate. According to the results, the average number of informative variables
should be selected is varied from 7.2 to 8.0 with average number of non-informative vari-
ables being selected is from 0.3 to 2.5 which implies that our method has a good power
to identify the informative variables. Meanwhile, the computational time for each scenario
is pretty reasonable. From both examples, the effect size of the variables and the number
of subjects with labels (N0) are factors which can impact the variable selection accuracy.
Usually, the higher N0 and higher effect size can provide more accurate results. In addi-
tion, the variance-covariance matrix of random effects, G, has some effects on detect the
informative variables.

4. Conclusion

In this study, we constructed a mixture linear mixed effects model to deal with a situation
that the group information is partially missing. The proposed variable selection method for
this model is penalization likelihood based with SCAD penalty function. EM framework
and BIC are efficiently incorporated in our method. Our proposed approach can do variable
selection for both concomitant linkage and fixed effects in the mixture model simultane-
ously which is a novelty comparing to the published literature. Based on our simulation
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results, the introduced method can identify informative predictors efficiently. With larger
size of subjects with group indicator, the model even has more power to detect the true
informative predictors and sift out non-informative variables. Meanwhile, from the param-
eter estimation results, the estimation accuracy is also related to the size of the subjects with
grouping information which cause estimation accuracy varies among applications. We also
find that the assumption of random effects can also affect the selection results. In the lit-
erature, some studies such as Bondell and others [4] have studied the variable selection in
both fixed and random effects in linear mixed effects model. In the future study, we may
refer to their methods to incorporate variable selection for random effects in the mixture
linear mixed effects model.
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Table 4: The average performance of variable selection for the proposed mixture model for
example 1 (N = 200 and D = 4).

N0 α β1 β2 AP AIP ANP #C #O #U
100 (-1,1,0) (1,1,1,0,0) (-1,-1,-1,0,0) 9.10 8.00 1.10 30 20 0
200 (-1,1,0) (1,1,1,0,0) (-1,-1,-1,0,0) 8.68 8.00 0.68 41 9 0
100 (-1,1,0) (0.3,0.3,0.3,0,0) (-0.3,-0.3,-0.3,0,0) 9.00 7.88 1.12 17 27 6
200 (-1,1,0) (0.3,0.3,0.3,0,0) (-0.3,-0.3,-0.3,0,0) 9.22 8.00 1.22 27 23 0
100 (-0.5,0.5,0) (1,1,1,0,0) (-1,-1,-1,0,0) 10.50 8.00 2.50 9 41 0
200 (-0.5,0.5,0) (1,1,1,0,0) (-1,-1,-1,0,0) 9.70 8.00 1.70 23 27 0
100 (-0.5,0.5,0) (0.3,0.3,0.3,0,0) (-0.3,-0.3,-0.3,0,0) 8.40 7.20 1.20 7 25 18
200 (-0.5,0.5,0) (0.3,0.3,0.3,0,0) (-0.3,-0.3,-0.3,0,0) 9.10 7.70 1.40 26 19 5

Table 5: The average performance of variable selection for the proposed mixture model for
example 2 (N = 200 and D = 4).

N0 α β1 β2 AP AIP ANP #C #O #U
100 (-1,1,0) (1,1,1,0,0) (-1,-1,-1,0,0) 9.78 8.00 1.78 22 28 0
200 (-1,1,0) (1,1,1,0,0) (-1,-1,-1,0,0) 9.14 8.00 1.14 29 21 0
100 (-1,1,0) (0.3,0.3,0.3,0,0) (-0.3,-0.3,-0.3,0,0) 9.86 8.00 1.86 14 36 0
200 (-1,1,0) (0.3,0.3,0.3,0,0) (-0.3,-0.3,-0.3,0,0) 9.28 8.00 1.28 24 26 0
100 (-0.5,0.5,0) (1,1,1,0,0) (-1,-1,-1,0,0) 9.42 8.00 1.42 19 31 0
200 (-0.5,0.5,0) (1,1,1,0,0) (-1,-1,-1,0,0) 9.10 8.00 1.10 25 25 0
100 (-0.5,0.5,0) (0.3,0.3,0.3,0,0) (-0.3,-0.3,-0.3,0,0) 8.50 7.20 1.30 10 25 15
200 (-0.5,0.5,0) (0.3,0.3,0.3,0,0) (-0.3,-0.3,-0.3,0,0) 9.40 7.80 1.60 15 30 5

248


	Introduction
	Finite mixtures of linear mixed effects models
	Model set up
	Complete likelihood and EM framework
	Variable selection using penalized approach

	Simulations
	Conclusion



