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Abstract 
Contemporaneous inference from economic data releases for policy and business decisions 
has become increasingly relevant in the high pace of the information age. The released data 
are typically filtered to eliminate seasonal patterns to reveal underlying trends and cycles. 
The nature of economic seasonal behavior is such that average seasonality, not actual 
seasonality, is filtered from the data. First, the paper suggests adjustments of the inference 
accounts for the stochastic seasonality. We formalize the issue and present a simple method 
to the informal inferential practice. Second, we provide a data-based method that allows 
for temperature adjustment to improve forecasting outcomes. With the assumption of 
climate change taking place, these methods are particularly important as weather patterns 
become more volatile.  
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1. Introduction 
 

Contemporaneous inference and real-time forecasting based on economic data releases 
have become increasingly relevant in the information age where data come quickly, 
frequently, and in large quantities. The data are typically filtered to eliminate seasonal 
patterns, regular variations due to weather and holidays, etc., prior to their release in order 
to reveal underlying trends and cycles. Translation of these data into useful elements for 
business and policy decision making follows a standard (if not always formal) Bayesian 
updating process. While the trend component of the seasonal behavior can be detected and 
imperfectly adjusted by moving-average seasonal factors 3 , the random component of 
seasonal behavior and how to incorporate that information in updating one’s forecasts have 
not been well studied. Moreover, good rules of thumb as to how to interpret from data 
convoluted with random seasonal events, such as a greater than average snowfall in a 
season, are important but yet to well accepted as suggested by Hausman and Watson 
(1985), Wright (2013), and Stock (2013). An understanding and methodologies of the 
random component of seasonality could become more important in the presence of the 
more volatile climate pattern all over the world accompanied with the enlarged magnitude 
of the random component. 
 
For example, we have heard the arguments over the past few winters as to how an extreme 
winter weather disrupted a normal seasonally-adjusted economy and a possible mean-
reverting process could follow in the spring. The extremely warm winter4 in 2012 boosted 
and kicked off some economic activities that was supposed to come later in the spring. The 
stronger 2012 winter performance was expected to, and indeed actually, be followed by a 
weaker spring performance5. In contrast, an extremely cold winter in 2014 rattled and/or 
delayed some economic activities, as pointed out by Bloesch and Gourio (2015). The 
question is: Beyond trends and cycles, will a weaker/stronger winter performance foresee 
a stronger/weaker spring one? This important question has just started to get attention from 
academies, private sectors, and governments but only few answers are provided. The paper 
presents some answers. If the random component of the winter weather just speeds up or 
postpones the economic activities across seasons, because of the predicted mean-reverting 
force, part of the spring’s outcome will be predictable and therefore the seasonal 
adjustment method should incorporate the information. In contrast, if the random 
component of the winter has permanent impact on the economy, whether positive or 
negative, the conventional seasonal adjustment methods would still be valid.  
 
Various recent newspapers pointed out that the U.S. GDP growth has averaged 1.3% in the 
first quarter (Q1) and 2.9% in all other quarters.6 Since 2010, the disparity widened with 
GDP growth of 0.4% in Q1 and 2.9% in the other three quarters. In May 2015, the Bureau 
of Economic Analysis announced that they were working on a multi-pronged action plan 
to improve its estimates of GDP by identifying and mitigating potential sources of 
“residual” seasonality, which is when seasonal patterns remain in data even after they are 

3 This is the principle behind the Census Bureau’s X-12 ARIMA seasonal adjustment method. 
4 The aggregate deviation of temperature in January, February, and March is 16.7 degree higher 
than its long-term average. See Figure 6 in details.  
5 See, for example, “Mild winter may have artificially inflated jobs data, economists fear,” 
Washington Post, April 6, 2012.  
6 See, for example, “Will first-quarter GDP get better after it gets worse?” Wall Street Journal, 
May 29, 2015. 
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adjusted for seasonal variations.7 Rudebusch, Wilson, and Mahedy (2015) find a strong 
positive residual seasonality of GDP growth in Q1 over the past two decades, especially 
after 2008. They propose a second seasonal adjustment approach and suggest that 2015:Q1 
GDP growth would be 1.8% rather than 0.2%.  
 
Seasonal adjustment is a common pre-analysis transformation of economic time series 
data. The benchmark for this practice is the path-breaking work on the Census X-11 
methodology by Shiskin, Young and Musgrave (1967). As an illustration of the 
pervasiveness of the publication of mechanical seasonal adjustment, the U.S. Bureau of 
Labor Statistics (BLS) publishes 299 seasonally adjusted time series on consumer prices 
and 734 on employment, and the U.S. Bureau of Economic Research GDP release table 
contains 35 seasonally adjusted series. To accomplish the task of the seasonal adjustment 
of thousands of series by the U.S. Government as well as the many thousands published by 
other organizations, a high degree of automation is required8. Some specific annual events 
such as 4/5-week fixed effects and Easter/Labor Day adjustments are standard for all series 
and only require the development of a few common matrices for many time series, but 
deeper analysis of the causal seasonal events and their underlying economic dynamics are 
left to others. 
 
Statistical issues with respect to seasonal adjustment are many9, but the general overall 
process as practiced by statistical reporting agencies has changed only slowly over time 
since the debates of Pierce (1979), Bell and Hillmer (1984, 1985), Maravall (1984), and 
Sims (1985). Recent econometric research (e.g. Canova and Ghysels (1994), Canova and 
Hansen (1995), Franses and de Bruin (2000), and Koopman and Franses (2002)) have 
observed seasonal factor changes and seasonal variance changes associated with cyclical 
time series movements suggesting that seasonality in economic time series may be much 
more complex than previously thought. But these important avenues of research have not 
resolved the issues raised by Bell et al. (1984); that of economists and journalists using the 
thousands of more or less mechanically seasonally adjusted series for inference and 
decisions. Greenaway-McGrevy (2013) proposes a new semiparametric multivariate 
approach, as opposed to conventional univariate approach, to seasonal adjustment under 
the assumption that the trend component is driven by the common changes among a group 
of time series. Wright (2013) examines how the Great Recession, due to its timing in 
2008:Q4 and 2009:Q1, distorts the following seasonally adjusted payroll employment. 
Boldin and Wright (2015) propose a seasonally and weather adjusted approach by 
incorporating temperature and snowfall data.  
  
The contributions of this paper are twofold. First, we provide a simple model to adjust the 
time-varying variance of the seasonal factors and suggest an improved confidence interval 
and inference. Second, by incorporating observable seasonal factor, i.e. winter temperature, 
we produce an improved real-time forecast on economic variables in the spring. The article 
is organized as follows. Section 2 explains the average seasonal-adjustment model. Section 
3 presents the scholastic seasonal-adjustment model. Section 4 shows the results of a Monte 

7 See Bureau of Economic Analysis’ Blog Post: http://blog.bea.gov/2015/05/22/residual-
seasonality-gdp/. 
8 Jaditz (1994) explores the rationale and exceptions to seasonal adjustment. 
9 See Blitzer, Case, Maitland, Shiller and Stiff (2010) for a discussion of some of the anomalous 
results from the application of Census X12 to the S&P/Case Shiller Home Price Indices.  They do 
not critique the X12 program but state that it “works as intended” and point out that these results 
are data generated. 
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Carlo simulation. Sections 5 suggests a method to improve inference. Section 6 proposes a 
method to improve forecast. Section 7 concludes. 

 
2. The Average Seasonal-Adjustment Model 

 
The statistical theory that admits the widespread practice of seasonal adjustment is 
straightforward. Consider a time series Yit  where i = 1,…, r is the within-year period and t 
= 1,…, T is the annual indicator. The traditional component formulation of the time series 
is given by: Yit   = Cit Sit Eit, where C is the trend/cycle component, S is the seasonal 
component and E is the random disturbance component. The time series is then 
transformed by taking the natural logarithm to be: 
 

yit = cit + sit + ε it  where ε ∼ i.i.d. (0, σ2)    (1) 
 

By removing the seasonal component, sit, the seasonally adjusted series, y*
it, is comprised 

of the trend/cycle (underlying fundamentals) and a serially uncorrelated random shock.  
There are a number of mechanical ways to remove sit from yit. These include filtering 
(Shiskin, Young and Musgrave (1967), Burman (1965), Dagum and Quenneville (1993), 
Jain (2001), Koopman and Ooms (2006)), seasonal differencing (Box, Jenkins, and Reinsel 
(2008), Granger and Newbold (1986), Hillmer, and Tiao (1982)), fixed effects or dummy 
variables (Barsky and Miron (1989), Osborn (1990)), and spectral decompositions (Proietti 
(2000), Burman (1965)). While each have their merits and, depending on the nature of the 
time series, one may be indicated over the others10, they all have the objective of finding a 
seasonal factor Si, i = 1, 2,…, r which when subtracted from yit in (1) yields a time series 
devoid of seasonal effects.  In some variations Si = Si(t) in order to capture the change in 
seasonal effects over time. The time variation is assumed to follow a smooth path as 
seasonality morphs from one generation to the next. 
 
There is one key assumption imbedded in this process. All seasonal adjustment 
transformations (after suitable data transformations) are assumed to remove a component 
that is calendar dependent and, with the exception of temporal drift, is approximately 
constant year to year11. Thus the estimation of the seasonal factors, when done correctly, 
throws off i.i.d. errors subsumed in the error component of the seasonally adjusted series.  
 
Seasonal components in many economic time series are derived from events such as 
weather. When it snows or is extremely cold, people do not generally go out and shop for 
cars. Thus automobile sales in February are generally below average for the year.  The 
seasonal component of automobile sales is a behavioral reaction to external stimuli, snow 
and temperature. If it does not snow in February, the behavioral reaction is bound to be 
different. Therefore the seasonal component changes. Since the difference between the 
amount of snowfall and temperature in any given year and the long run average is properly 
viewed as a random variable, so then is a component of Si, the behavioral reaction to it. 
Importantly, this shift in car purchases has an asymmetric effect on the data. The behavioral 
response in February does not change car sales in December or in January, but it does 
change them in March and April. 

10 See for example, Franses, Hylleberg and Lee (1994) for a discussion on differencing versus 
seasonal fixed effects and Ghysels, Lee and Siklos (1993) on a comparison of methods using U.S. 
macroeconomic data. 
11 Ghysels, Osborn and Rodrigues (2003) discuss violations of this assumption and methods to 
identify unit root and near unit root seasonal processes. 
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Removing the average seasonal response from the time series does not remove the entire 
seasonal response, and to the extent that the time series datum is treated as devoid of 
seasonal behavior, this induces an error to any inference derived from it. The more variable 
the stimulus (i.e. the more important seasonality is), the more seasonality remains.  
 

3. The Stochastic Seasonal-Adjustment Model 
 
Suppose there exists a singular random seasonal event that occurs in the first period of the 
year represented by W1t, where t is the annual time index. W impacts the value of the time 
series yit by an amount λW1t. By definition, a seasonality is a temporary change from trend 
that is then compensated for in other periods within the year so as to preserve the annual 
average of the time series. In this example, we assume for simplicity’s sake that the 
compensation is spread equally throughout the year. Formally that requires that fixed λ, 
ΣWit = 112. Let the seasonal pattern of Wit for a series of r sub-annual periods be described 
by: 
 

W1t = {w* + Φ, w*, w* - Φ} with probability {1/3, 1/3, 1/3}    
Wit  = W1t / (r-1)   for all i ≠ 1      (2)  
 

One can think of w* as a winter storm which can either be severe, average, or mild.  Almost 
all economic time series that are seasonally adjusted would have, given enough historical 
data, the estimated seasonal factors: 
 

S1 = - λ w* 
Si = + λ w* / (r-1) i = 2,…, r     (3) 

 And the seasonally adjusted series would then be: 
yit = cit + sit + Si + ε it       (4) 
 

If the seasonal influence were in fact removed (Φ = 0) then: 
 

sit + Si  = 0 
y*it  = cit + ε it         (5)  
 

Equation (5) would then be a seasonally adjusted series, which by construction would be a 
stationary time series.  The purpose of this seasonal adjustment is to be able to draw 
inferences that would not be polluted by the presence of ephemeral seasonal phenomena.  
The inference is of the form: 
 

H0: |Δy*
it | = |Δcit + Δεit | < δ      (6) 

 
For large enough values of |Δy*

it| rejection of H0 is an inference that the current observation 
on y is significantly different from the previous one.  
 
Whether the analysis of (6) is a formal statistical hypothesis test or an implicit Bayesian 
posterior probability update, the size of δ matters.  Since it is normally assumed that (5) is 
a close approximation to the time series cleaned of its seasonal component, δ is functionally 

12 It is important to note here that the parameter restriction is only on future seasonal values. Thus, 
the standard two-sided moving restriction on the sum of seasonal factors is, appropriately, relaxed. 
Ex post, it is not necessarily true that a sequence of twelve months of seasonal factors in monthly 
data sum to 1. 
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related to σ2, the variance of ε. To be fair, it is generally recognized that W has some random 
component embedded in it, and that the random deviation from w* ends up in the error term 
of (5), but this is generally not considered to be a problem13. This thinking is often not 
incorrect.  First, the seasonal error in the economic data is not an i.i.d. process even if the 
seasonal event w* is. That is because the behavior causing the seasonal blip in the data 
represents a temporal shifting in behavior across the year, as indicated in (2) and (3). 
Second, the way in which seasonal events translate into economic activity causes the 
variance of the deviation from average to be non-constant. Third, there is a temporal 
asymmetry to the impact of seasonal events.  
 
Here we explore the implications of these in our example. For i = 1 there are 9 possible 
values for Δy*

1t, each with a probability of 1/9: 
 
 1. Δc1t  + Δε1t + λΦ(r-2)/(r-1) 
 2. Δc1t  + Δε1t + λΦ  
 3. Δc1t  + Δε1t + λΦr/(r-1) 
 4. Δc1t  + Δε1t - λΦ/(r-1) 
 5. Δc1t  + Δε1t  
 6. Δc1t  + Δε1t + λΦ/(r-1) 
 7. Δc1t  + Δε1t - λΦ(r-2)/(r-1) 
 8. Δc1t  + Δε1t - λΦ  
 9. Δc1t  + Δε1t - λΦr/(r-1)    (7.a) 
 
For i = 2 there are three possible values and they are not independent of the value of W at 
period 1: 
 
 1. Δc2t + Δε2t - λΦr/(r-1)           when W1t  = w* + Φ 
 2. Δc2t + Δε2t                                              when W1t  = w* 
 3. Δc2t + Δε2t + λΦr/(r-1)          when W1t  = w* - Φ    (7.b) 
 
For 2 < i < r - 1 there is one outcome: 
 
 1. Δcit + Δεit    (7.c) 
 
The variances of the three cases are: 
  
 Var(Δy*

1t) = 2 σ2  + (2/3)λ2Φ2(1+(r-1)-2)    
 (8.a) 
 Var(Δy*

2t) = 2 σ2  + (2/3)λ2Φ2(r2(r-1) -2)    
 (8.b) 
 Var(Δy*

it) = 2 σ2   for all i ≠ 1, 2                    (8.c)     
     
And the co-variances of the time series are: 
 
Lead/Lag            Cov(Δy*

1t)                            Cov(Δy*
2t)   Cov(Δy*

it) for all i ≠ 1, 2 

13 Proietti (2004) and Tripodis and Penzer (2007) have studied the impact of monthly specific 
stochastic seasonal events by specifying the monthly variation in seasonality as a random walk.  
The asymmetry in the autocorrelation function as an outgrowth of the behavioral response to 
seasonal events was not incorporated in his study, nor has his analysis of the impact of monthly 
specific factors impacted the standard seasonal adjustment practice. 
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- (r+1)                         0                                               0                                          0 
- r                  - (2/3)λ2Φ2(r-1)-1                                    0                                          0 
- (r-1)          - (2/3)λ2Φ2(r-2)(r-1)-2                               0                                          0 
- (r-2)                           0                                               0                                          0 
     .                               .                                                .                                           . 
     .                               .                                                .                                           . 
     .                               .                                                .                                           . 
-2                                 0                                               0                                          0 
-1              -σ2  + (2/3)λ2Φ2(r-1)-2        -σ2  + (2/3)λ2Φ2r(r-1)-1                               -σ2 

0        2 σ2  + (2/3)λ2Φ2(1+(r-1)-2)     2 σ2 + (2/3)λ2Φ2(r2(r-1)-2)                           2σ2 

1                 σ2  + (2/3)λ2Φ2r(r-1)-1                                            σ2                                          σ2 
2                                  0                                              0                                           0 
     .                                .                                                   .                                       . 
     .                                .                                                   .                                       . 
     .                                .                                                   .                                       . 
r -1                              0                                                 0                                        0 
r                                  0                                  -(2/3)λ2Φ2r(r-1)-2                                           0                                                                      
r+1             (2/3)λ2Φ2(r-1)-1                                                                 0                                        0                                          
r+2                              0                                                   0                                       0      (9)        
 
In this simple example of seasonality we note three things. First, even though the non-
seasonal components of the data series, Δyit, might be stationary, the seasonally adjusted 
series, Δy*

it, is not. The seasonally adjusted series violates the assumption that Cov(Δy*
kt , 

Δy*
it) = ρ(k-i) for all i and k.  So the process of seasonal adjustment may smooth the original 

series somewhat by taking out the mean seasonality, but it does not generate a stationary 
time series from a series where nonstationarity is caused by the presence of a random 
seasonal component.  
 
Second, the variances of the seasonally adjusted series are non-constant. If the analyst were 
to estimate the variance σ2 by the standard methodology and then apply, say, a two standard 
deviation critical value to equation (6), then for some i, t, δ would be too small and for 
some δ would be too large. In our example, δ will be too small for Periods 1 and 2 and too 
large for the others. How much larger and how important this is becomes an empirical 
question14. However, we can say from our brief foray into the theory of seasonal adjustment 
that the larger λ and Φ are, the more likely there is to be inferential errors. Which is to say, 
the more important seasonal influences are in a series, the more likely the series is to be 
seasonally adjusted and the more likely current methods of adjustment by statistical 
bureaus will lead to inferential errors. The issue of how important this might be is explored 
via a Monte Carlo analysis in the next section. 
 

4. Monte Carlo Simulation 
 
Though the theory is quite clear—random seasonality creates nonstationary time series and 
seasonal adjustment does not correct for that nonstationarity—the question remains: is it 
an important or relatively inessential characteristic of seasonal patterns in time series? To 
be sure, if the random component of seasonal behavior were sufficiently small, then to the 
extent that there were errors of inference made by ignoring the random component, they 

14 Koopman, S. J., Ooms, M. and I. Hindrayanto (2009) calculated differing monthly seasonal 
frequencies in U.S. unemployment data. 
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would be infrequent and not terribly consequential. To answer the question, we ran a Monte 
Carlo simulation to bring out the factors that would make this an important characteristic 
of time series. 
 
The structure of the simulation is a mean zero time series with four periods labeled Q1-Q4. 
There is no cyclical component, but there is a seasonal component that is modeled as a 
constant plus an MA process: 
 
             Xt = Sit + et + β1eit-1 + β2eit-2,   i =1, 2, 3, 4    (10) 
 
Sit is fixed as S1t = 1, S2t = 0, S3t = -1, S4t = 0 for all t.  The eit are chosen from one of two 
distributions. The distributions are identical for i = 1, 3 and for i = 2, 4 and differ from each 
other by a scalar. The Monte Carlo simulation was conducted for alternative values of the 
scalar given β1 and β2, to ascertain how the size of the variance of the random component 
matters in inference with random seasonality and for alternative values of β1 and β2 given 
S(t) to ascertain how the behavioral linkage between periods affects inference with random 
seasonality.   
 
The experimental design was to construct 1,000 time series of length 88.  Each series began 
with an initial condition of e4,-1 = 0 and e3,-2 = 0.  The impact of the initial condition on the 
time series is washed out by t = 4, and the series employed in the analysis was t = {4,…, 
88}. An estimate of the seasonal factors was calculated using X-11 methodology, and the 
series were then seasonally adjusted. The seasonally adjusted series on t = {4,…, 84} were 
used to compute the standard deviation of the series with the entire sample, and individually 
for each quarter. The final step of the analysis was to take each observation t = {85,…, 88} 
and, using the total series standard deviation and the period specific standard deviation, 
calculate confidence intervals. Observations in which a decision was made that Xt, the mean 
zero time series, was significantly different from zero were recorded. 
 
Tables 1 and 2 report the results from a variation in the variances.  The not surprising result 
is that the greater the difference in variability between the random components of the 
periods, the more likely it is that using the series standard deviation will lead Type I errors 
in the high variability periods and Type II errors in the low variability periods. If the 
behavioral consequence of a seasonal event is to move 80% of the shock forward in time 
(that is, the shock in Q1 is mostly compensated for by a reduction in Xt+1 and Xt+2 akin to a 
pulling forward or backwards shopping due to weather considerations), then between 1 in 
4 and 1 in 5 times inference using the total series standard deviation will be wrong. 
Moreover, between 1/3 and 1/2 the time incorrect inference will be made at least once 
during the year. 
 
Tables 3 and 4 report the results from varying the linkage between random seasonal events 
in one period and another. The Monte Carlo simulation was conducted with β1 varying 
between .8 and .1 and β2 set to 0. The simulations show that the less a seasonal event affects 
other episodes, the more inferential errors are made. This result seems counter intuitive, 
but relates to the fact that the offsetting behavior in the linked periods often leads to 
incorrect inference. Moreover the total series is more volatile, and therefore the standard 
errors tend to be larger. Nevertheless, the frequency of at least one inferential error over a 
year in the simulations remains between 1/3 and 1/2. 
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Table 1: Frequency of Different Inferential Results from Replacing the Series Standard 
Deviations with Monthly Standard Deviation 
 

 2.5% Significance (1 tailed test)  5% Significance (1 tailed test) 
 Q1 Q2 Q3 Q4  Q1 Q2 Q3 Q4 
Model Variance Ratio 2 1 2 1  2 1 2 1 
Model MA Process et - 0.5et-1 - 0.3et-2  et - 0.5et-1 - 0.3et-2 
Series Not Period 12% 0% 13% 0%  23% 0% 25% 0% 
Period Not Series 0% 4% 0% 6%  0% 8% 0% 9% 
Total 12% 4% 13% 6%  23% 8% 25% 9% 
          
Model Variance Ratio 7 4 7 4  7 4 7 4 
Model MA Process et - 0.5et-1 - 0.3et-2  et - 0.5et-1 - 0.3et-2 
Series Not Period 11% 0% 11% 0%  22% 0% 24% 0% 
Period Not Series 0% 4% 0% 5%  0% 7% 0% 7% 
Total 11% 4% 11% 5%  22% 7% 24% 7% 
          
Model Variance Ratio 3 2 3 2  3 2 3 2 
Model MA Process et - 0.5et-1 - 0.3et-2  et - 0.5et-1 - 0.3et-2 
Series Not Period 10% 0% 10% 0%  19% 0% 22% 0% 
Period Not Series 0% 3% 0% 5%  0% 5% 0% 5% 
Total 10% 3% 10% 5%  19% 5% 22% 5% 
          
Model Variance Ratio 5 4 4 4  5 4 4 4 
Model MA Process et - 0.5et-1 - 0.3et-2  et - 0.5et-1 - 0.3et-2 
Series Not Period 8% 1% 8% 1%  17% 1% 18% 1% 
Period Not Series 0% 3% 0% 3%  0% 3% 0% 3% 
Total 8% 3% 8% 3%  17% 4% 18% 4% 

 
 
  
 
Table 2: Frequency of Different Inferential Results from Replacing the Series Standard 
Deviations with Monthly Standard Deviation, At Least Once in Four Quarters Following 
Calculation of Seasonal Factors 
 

  2.5% Significance 5% Significance 
Model Variance Ratio 2:1   
Model MA Process et - 0.5et-1 - 0.3et-2 29% 49% 
    
Model Variance Ratio 7:4   
Model MA Process et - 0.5et-1 - 0.3et-2 28% 46% 
    
Model Variance Ratio 3:2   
Model MA Process et - 0.5et-1 - 0.3et-2 25% 42% 
    
Model Variance Ratio 5:4   
Model MA Process et - 0.5et-1 - 0.3et-2 21% 36% 
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Table 3: Frequency of Different Inferential Results from Replacing the Series Standard 
Deviations with Monthly Standard Deviation 
 

 2.5% Significance (1 tailed test)  5% Significance (1 tailed test) 
 Q1 Q2 Q3 Q4  Q1 Q2 Q3 Q4 
Model Variance Ratio 2 1 2 1  2 1 2 1 
Model MA Process et - 0.8et-1   et - 0.8et-1 
Series Not Period 12% 1% 8% 1%  16% 0% 18% 1% 
Period Not Series 0% 2% 0% 2%  0% 8% 0% 4% 
Total 12% 3% 8% 3%  16% 8% 18% 5% 
          
Model Variance Ratio 2 1 2 1  2 1 2 1 
Model MA Process et - 0.5et-1   et - 0.5et-1  
Series Not Period 11% 0% 12% 0%  22% 0% 24% 0% 
Period Not Series 0% 4% 0% 7%  0% 7% 0% 9% 
Total 11% 4% 12% 7%  22% 7% 24% 9% 
          
Model Variance Ratio 2 1 2 1  2 1 2 1 
Model MA Process et - 0.25et-1   et - 0.25et-1  
Series Not Period 15% 0% 14% 0%  29% 0% 28% 0% 
Period Not Series 0% 4% 0% 6%  0% 10% 0% 12% 
Total 15% 4% 14% 6%  29% 10% 28% 12% 
          
Model Variance Ratio 2 1 2 1  2 1 2 1 
Model MA Process et - 0.1et-1  et - 0.1et-1  
Series Not Period 16% 0% 15% 0%  30% 0% 29% 0% 
Period Not Series 0% 2% 0% 3%  0% 10% 0% 11% 
Total 16% 2% 15% 3%  30% 10% 29% 11% 

 
 
 
 
Table 4: Frequency of Different Inferential Results from Replacing the Series Standard 
Deviations with Monthly Standard Deviation, At Least Once in Four Quarters Following 
Calculation of Seasonal Factors 
 

  2.5% Significance 5% Significance 
Model Variance Ratio 2:1   
Model MA Process et - 0.8et-1 19% 36% 
    
Model Variance Ratio 2:1   
Model MA Process et - 0.5et-1 27% 47% 
    
Model Variance Ratio 2:1   
Model MA Process et - 0.25et-1 31% 55% 
    
Model Variance Ratio 2:1   
Model MA Process et - 0.1et-1 32% 58% 
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5. A Method to Improve Inference: Univriate Series 
 
5.1 Inference 
As an example of the problem, consider the U.S. nonfarm payroll employment numbers. 
Policy makers and analysts closely watch these numbers as an indicator of labor market 
health. Depending on the change in employment as measured by this series, decisions are 
made including those related to contra-cyclical macroeconomic policy. Figure 1 displays 
the not-seasonally-adjusted and seasonally adjusted series from the BLS from 1984 through 
April of 2012. The date sequence was chosen to avoid two offsetting anomalous values 
relating to the 1982 recession and to eliminate the clear difference in the variance of the 
series before and after 1984. In addition to the regular seasonal pattern from non-adjusted 
series, the non-adjusted series has a much more volatile fluctuation than the adjusted series.  
 
 

 
Figure 1:  U.S. Nonfarm Payroll Employment, Not Seasonally Adjusted and Seasonally 
Adjusted, 1984-2012, First Difference of Log Value 
Source: Bureau of Labor Statistics 
                                                    
 
As shown in Figure 2 of the Census X-12 method, there is a seasonal build up in 
employment in May and June, a seasonal correction or reduction in July and August, and 
another seasonal build up from September to December followed by a reduction the 
following January to March. Seasonal adjustment by the BLS seems to have corrected for 
these patterns and yielded a series that appears to be stationary with an imbedded cyclical 
component. Estimating the residual habitual behavior of the data with an AR(2) process 
yields a series of residuals with the expected white noise autocorrelation function.   
The estimated time series model is: 
  
 ∆yt = 0.0001 + 0.4135∆yt-1 + 0.4516∆yt-2 + εt    (11) 
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where ∆yt is the first difference of log nonfarm payroll employment. The adjusted R2 = 
0.68, all coefficients significant at 95%. To do inference with this data, analysts look at the 
size of the change in nonfarm employment and implicitly or explicitly compare it to some 
measure to see if the values indicate a turning point in the business cycle.  Presumably, the 
δ employed relates to the standard deviation of the residuals from the series after adjusting 
for trend, cycle and seasonal components.  In other words, δ is a function of the residual 
term15.   
 

 
Figure 2:  2011 Monthly Seasonally Adjustment Factors for U.S. Nonfarm Payroll 
Employment, 1984-2012, Based on the X-12 Method from Census Bureau 
Source: Data is from Bureau of Labor Statistics and factors are calculated by EViews’ Census X-
12 method 
 
To see if the problem posed here exists, that of the nonstationarity of the seasonally 
adjusted time series when the behavioral response to seasonal factors varies with the 
season, inferences on this time series in the period since the end of the 2008 recession were 
compared. First, the sample variance of the residuals from (11) was computed for the entire 
sample and the monthly changes were normalized. Next the sample was segmented by 
month, and variances for each month were computed. A second set of normalized changes 
were computed using the monthly specific standard deviations.   
 
Table 5 presents the results of the analysis. The first two columns show the changes in 
nonfarm payroll since the end of the 2008 recession using the two different normalizations. 
The following two columns answer the question: did the normalization matter for 
inference? Under the null hypothesis of stationarity, the answer should be, except for a 
small number of random instances, no. In this example, using a 90% critical value and 
assuming asymptotic normality, 14% of the months since June 2009 would have led to 
different inferences between statistics employing the total sample variance and those 

15 Tiller and Di Natale (2005) propose a model based variance to improve inference when the data 
is derived from sampling.  See also Jaditz (2000). 
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employing the 12 monthly sample variances. This difference falls to 11% when a 95% 
critical value is used. The results from this example are in line with the Monte Carlo results 
above. 
 
Table 5: Standardized Change in Log Seasonally Adjusted Nonfarm Payroll in the U.S. 
 

Year Month Std. 
Deviation 
from Total 
Sample 

Std. Deviation 
from Individual 
Months in 
Sample 

Different 
Inference 
90% Level 

Different 
Inference 
95% Level 

2009 July  -2.627 -2.601 N N 
2009 August -1.794 -2.201 N Y 
2009 September -1.548 -1.594 N N 
2009 October -1.547 -1.483 N N 
2009 November -0.328 -0.325 N N 
2009 December -1.335 -1.995 Y Y 
2010 January -0.312 -0.371 N N 
2010 February -0.274 -0.240 N N 
2010 March 1.476 1.265 N N 
2010 April 1.863 1.843 N N 
2010 May 4.012 4.157 N N 
2010 June -1.297 -1.088 N N 
2010 July  -0.451 -0.446 N N 
2010 August -0.396 -0.486 N N 
2010 September -0.210 -0.216 N N 
2010 October 1.709 1.610 Y N 
2010 November 0.939 0.932 N N 
2010 December 0.930 1.390 N N 
2011 January 0.852 1.012 N N 
2011 February 1.702 1.496 Y N 
2011 March 1.900 1.628 Y N 
2011 April 1.935 1.914 N N 
2011 May 0.416 0.431 Y N 
2011 June 0.646 0.542 N N 
2011 July  0.738 0.731 N N 
2011 August 0.653 0.801 N N 
2011 September 1.551 1.597 N N 
2011 October 0.859 0.801 N N 
2011 November 1.202 1.193 N N 
2011 December 1.706 2.549 N Y 
2012 January 2.099 2.494 N N 
2012 February 1.973 1.735 N Y 
2012 March 1.088 0.932 N N 
2012 April 0.517 0.511 N N 
2012 May 0.585 0.606 N N 
2012 June 0.607 0.510 N N 

 
 
Consider the February 2012 employment change data. Using a normalization based on the 
entire series, the change in employment was 1.973 standard deviations, a level unlikely to 
be random at the 95% level. The Wall Street Journal’s report on the employment numbers 
was typical.  “… (this is) the latest sign that the economy has gained momentum. … Still, 
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most economists said Friday's report showed that the labor market is continuing to 
strengthen.” To be sure, the report contained a host of caveats, but the general tenor of this 
and other analyst reports was that February was a confirmation of a firming of the recovery. 
If the monthly variance estimates were used, one would have found that the change in non-
farm employment fell from 2.49 standard deviations in January to 1.74 in February, and 
February’s change was not significantly different from random at the 95% level.   
 
The reason for the disparity between the two sets of inferences lies in February having a 
higher variance in the change in non-farm employment than other months. The higher 
variance means that one ought to have discounted changes in February non-farm 
employment more heavily than in other months. Good analysts do this intuitively, but it is 
not common nor standard practice.    
 
5.2 Model Residual Autocorrelation between Specific Months 
In the previous example of the U.S. nonfarm employment time series, a seemingly 
stationary series was constructed. Though the series may technically be nonstationary, the 
extent to which it is might not matter. Under the null hypothesis of stationarity, 
autocorrelation functions estimated from a subset of the original data should not be 
systematically and significantly different from the full sample autocorrelation function. 
Figure 3 shows comparisons between the monthly sample autocorrelation functions, e.g. 
the January sample denotes Jan ’84, Jan ’85, Jan ’86, … Jan ’12, and the total sample. As 
expected, the total sample values, represented by triangles in the graphs, are close to zero. 
The monthly autocorrelation functions are asymmetric, and for each month there are 
estimated autocorrelation coefficients that are significantly different from the full sample 
model.   
 
While the interactions between the months are quite complicated, March and May provide 
a good example of the nonstationary behavior derived from random seasonal events. In the 
March sample, March is negatively correlated with June (lead period 3), and the 
autocorrelation is significantly different from zero. The autocorrelation between March and 
January (lag 2) / February (lag 1) / April (lead 1), however, is not significantly different 
one from the other. April is negatively correlated with June, and the autocorrelation 
coefficient is significantly different from zero.   
 
The explanation for this is straightforward. Seasonal hiring in March and April is 
associated with seasonal layoffs in June. When the amount of hiring is atypically large, the 
amount of firing will be as well. But prior to April, employers do not know that seasonal 
events are going to lead to more or less hiring. They are expecting the average.   So the 
seasonal factors generated by standard methods fail to create a stationary series, even 
though the technical data, examined through our timeworn lens of time series analysis, 
seems to suggest they have. 
 
Note that the violation of stationarity derives, by definition, from month-over-month time-
varying property as shown in (10). As the time horizon gets longer, say more than one year, 
the seasonal time variation becomes less important. This is the reason why the standard 
nonstationarity tests, such as Augmented Dickey-Fuller, Phillips-Perron (1988), Elliot, 
Rothenberg, and Stock (1996), fail to reject the null hypothesis of unit root for most 
seemingly-stationary seasonally-adjusted series empirically. This implies that the 
stochastic seasonal problem might not be crucial for the real-time, or out-of-sample, long-
term forecast. Yet, for the real-time short-term forecast, it is imperative for forecasters to 
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capture these seasonal shocks and systematically adjust their forward-looking correlation 
into forecasting. More importantly, the inference of seasonal abnormality is fundamentally 
different from cycle or trend changes.   
      
5.3 Adjusting for Seasonal Serial Correlation 
A solution to the above problems is to use estimated monthly autocorrelation functions, 
Figure 3, to estimate that part of the random seasonal that is projected forward from the 
seasonal event to future months. The new seasonally adjusted series is: 
  
 y**

it = cit + sit + Si - ζit + ε*
it     (12) 

 
where  ζit  is the estimated seasonal from past deviations of the seasonal events from their 
average values, and  ε*

it is the new serially uncorrelated residual.  It is still the case that Si  
- ζit will differ from sit by the amount of behavior induced by the deviation of the 
contemporaneous seasonal event from its average16. Therefore the monthly variances in 
y**

it will not be constant over time, and an adjustment of the standardized changes using 
the new monthly variances is made to account for this. 
 

16 Tiao and Grupe (1980) analyze the structure of seasonal periodicity in ARMA models. 
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Figure 3:  Sample Autocorrelation Functions Estimated for Each Month Compared to the 
Sample Autocorrelation Function for the Entire Sample (1984 – 2012). Seasonally 
Adjusted U.S. Nonfarm Payroll Residuals from the AR(2) Model 
Source: Bureau of Labor Statistics 
 
An estimate of the new, seasonal autocorrelation-corrected standardized differences is 
presented in Table 6. The first two columns represent the standardized changes in BLS 
seasonally adjusted nonfarm employment and the standardized changes using monthly 
autocorrelation corrections. There are two immediate observations. First, the number of 
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inferential differences between the two series has increased from 14% to 23% for the 90% 
critical value and from 11% to 20% for the 95% critical value.   
 
Table 6: Standardized Change in Log Seasonally Adjusted Nonfarm Payroll in the U.S. 
 

Year Month Std. 
Deviation 
from Total 
Sample 

Std. Deviation 
from Individual 
Months in 
Sample 

Different 
Inference 
90% Level 

Different 
Inference 
95% Level 

2009 July  -2.627 -4.183 N N 
2009 August -1.794 -0.821 Y N 
2009 September -1.548 -3.156 Y Y 
2009 October -1.547 -0.958 N N 
2009 November -0.328 -1.626 N N 
2009 December -1.335 -0.296 Y Y 
2010 January -0.312 0.101 N N 
2010 February -0.274 -0.708 N N 
2010 March 1.476 0.297 N N 
2010 April 1.863 1.010 Y N 
2010 May 4.012 1.278 Y Y 
2010 June -1.297 1.177 N N 
2010 July  -0.451 1.468 N N 
2010 August -0.396 1.327 N N 
2010 September -0.210 -0.505 N N 
2010 October 1.709 2.709 N Y 
2010 November 0.939 1.163 N N 
2010 December 0.930 1.491 N N 
2011 January 0.852 0.549 N N 
2011 February 1.702 2.094 N Y 
2011 March 1.900 1.514 Y N 
2011 April 1.935 3.531 N Y 
2011 May 0.416 0.331 N N 
2011 June 0.646 1.055 N N 
2011 July  0.738 1.886 Y N 
2011 August 0.653 -0.447 N N 
2011 September 1.551 1.617 N N 
2011 October 0.859 1.622 N N 
2011 November 1.202 1.972 Y Y 
2011 December 1.706 1.666 N N 
2012 January 2.099 1.326 Y Y 
2012 February 1.973 2.061 N N 
2012 March 1.088 1.529 N N 
2012 April 0.517 1.388 N N 
2012 May 0.585 0.841 N N 
2012 June 0.607 1.274 N N 
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Second, the pattern of changes using the BLS seasonally adjusted series since the end of 
the 2008 recession shows a sequence of two to three months of significant changes in 
nonfarm employment from time to time. These have, in fact, repeatedly given rise to 
inferences of a persistent move in the cyclical component of the series. In the 
autocorrelation adjusted series there are also some significant changes in nonfarm 
employment, but they are then followed by an insignificant change. The April, May 2011 
sequence, thought to indicate a strengthening of labor markets, appears to be 
indistinguishable from random fluctuations, and January, February 2012, while perhaps 
encouraging, is hardly different from previous movements of the series. 
 
The univariate series solution can be implemented with some changes in code and fully 
automated for the tens of thousands of seasonally adjusted series published each year. The 
filtered series used to construct seasonal factors in the X-11 and X-12 routines will generate 
residuals once the seasonal component is calculated.  By calculating the standard deviation 
of those residuals by period and publishing them along with the series, all those who use 
the series will be able to observe the statistical difference in volatility and use it 
accordingly.   
 

6. A Method to Improve Forecast: Multivariate Series 
 
The second solution is to directly incorporate additional observable variables which are 
related to the real-time seasonality into the seasonal adjustment process. The multivariate 
solution focuses on real-time short-term forecast rather than inference as discussed in 
previous sections. It is similar to the practice of using Vector Autoregressive models 
instead of ARMA models to improve the forecasting outcomes.  
  
6.1 The Temperature and Seasonal Factor 
In the presence of extreme weather, an obvious candidate for many economic time series 
would be temperature. Figure 4 shows the mean and standard deviation of monthly 
temperature in the U.S. Figure 5 displays the seasonal factors of nonfarm payroll from 1984 
to 2012 calculated by the Census X-12 method. It seems that the seasonal pattern for Q1 
(Winter: January, February, and March) and Q2 (Spring: April, May, and June) is more 
dramatic in Snow Belt states, such as Minnesota, Illinois, and Ohio, than in Sun Belt states, 
such as California, Texas, and Florida. We run a pooled OLS regression in which the 
dependent variables are the calculated monthly seasonal factors for each state and the 
independent variables are the corresponding average monthly temperature for each state 
and summer dummy (July and August) as follows: 

 
Seasonal Factor state, m = α + β1Temperature state, m + β2 Summer Dummy (13)   

 
Our results were that α = 0.982, β1 = 0.0004 (t-stat = 9.21), β2 = -0.0108 (t-stat= - 8.57), 
and the adjusted R2 = 0.22. The statistical significant estimation of β1 demonstrates that 
monthly temperature would influence the seasonal pattern instantaneously. The estimated 
model can then be employed to adjust the seasonal factors for the differential in actual 
temperature from the averages employed in the estimation.  
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Figure 4: The Mean and Standard Deviation of Monthly Temperature in the U.S. 
(Contiguous 48 States, 1990-2011) 
Source: National Climatic Data Center, standard deviations are in parenthesis.  
 
 

 
Figure 5:  2010 Monthly Seasonally Adjustment Factors for Nonfarm Payroll Employment 
in 9 States, 1984-2012, Based on X-12 Method from Census Bureau 
Source: Data is from Bureau of Labor Statistics and factors are calculated by EViews’ Census X-
12 method. 
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6.2 A Temperature-Based Adjustment Method  
The previous section proposes a simple way to adjust the seasonal factor in the presence of 
extreme weather so that the seasonally adjusted data would be less stochastically seasonal. 
The alternative way is to keep the estimated seasonal factor unchanged and to directly 
adjust and forecast non-seasonally adjusted economic data and then followed by the 
average seasonal adjustment. Here we suggest a simple data-based method with 
temperature adjustment on economic data. Using the nonfarm employment time series, we 
propose a hypothesis for the stochastic seasonality. Defining μ as the average employment 
growth in the data, the model—presumably based on additional knowledge of the 
relationship between the seasonal stimuli and the economic time series—is then: 

(a) Normal winter: employment growth in Q1 is μ – s, and Q2 is μ + ks, while k and s 
> 0. Therefore, the seasonal difference of employment growth between Q2 and Q1 
would be (k+1)s. 

(b) Severe winter: employment growth in Q1 is μ – w1s, and Q2 is μ + w1ks, while k 
and s > 0 and w1 > 1. Therefore, the difference of seasonal employment growth 
between Q2 and Q1 would be w1(k+1)s. The severe winter discourages or delays 
many more economic activities and transactions, which will be realized in the 
spring. And this is why we have w1 > 1. 

(c) Warm winter: employment growth in Q1 is μ – w2s, and Q2 is μ + w2ks, while k 
and s > 0 and w2 < 1< w1. Therefore, the difference of employment growth between 
Q2 and Q1 would be w2(k+1)s.  
 

Based on this hypothesis, we expect that the difference of employment growth from Q1 to 
Q2 will be larger in a severe winter while that in a warm winter will be smaller. Here we 
assume that summer and fall have no significant correlated seasonality. Equation (14) tests 
this hypothesis: 
 

Xit = α + φ Xit-1 + βTemdevit      (14) 
 
where X is the difference between non-seasonal adjusted employment growth in Q1 
(winter) and Q2 (spring) at state/sector i at year t from 1957 to 2011. Temdev is the winter 
temperature deviation from its historic winter temperature mean as partly shown in Figure 
6. We suggest that φ, as an AR(1) model, would, by and large, capture the trend and cyclical 
components for an annual series17. If our hypothesis is correct, β would be significant and 
negative. As mentioned earlier, with a severe winter, Temdev would be negative and small, 
and X would be large. As a result, β would be negative. The results are displayed in Table 
7, in which the upper panel shows the results with cross-state series and the lower panel 
shows the results with cross-sector series. 
 
For the cross-state series, β is statistically significant (t-stat = -11.5) and negative (-0.0013) 
from the pooled OLS regression. If we decompose the coefficient for Q1 and Q2, 
respectively, β1 is 0.0006 and β2 is -0.0007. That said, with each degree higher than the 
average in winter temperature, we expect the employment growth in Q1/winter to go up by 
0.0006%. However, this employment boost due to a warmer winter will face repercussions 
in Q2/spring, where employment growth will be expected to decline by 0.0007%. The state 
fixed effect exhibits similar estimations. For the cross-sector series, β is statistically 
significant (t-stat= -2.3) and negative (-0.0008) from the pooled OLS regression, although 

17 AR(2), AR(3), and AR(4) models are estimated and produced similar results at the national 
level. But at the individual state level, AR(1) is the most appropriate model, so we use the AR(1) 
model.   

 

                                                        

230



the magnitude is less than that of the cross-state series. And the sector fixed effect presents 
similar results.    
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Figure 6: Monthly Temperature Deviation from the Average of the Month in the U.S. 
(Contiguous 48 States) 
Source: National Climatic Data Center  
Note: Average is based on the period of 1957 to 2011 
   
If we run OLS for each state by (14), we could know which states are more sensitive in 
response to winter temperature abnormalities in terms of their winter and spring 
employment growth. The states with significant and negative β are shown in the 
shaded/yellow color in Figure 7. The significant states are mostly in the Midwest and the 
South. It is not surprising to see where in the West and in the Southeast the winter 
temperature aberration does not cause the winter/spring employment trade-off. The reason 
is because, for these relatively warmer-winter states, a big drop in winter temperature still 
produces a relatively mild winter with a smaller likelihood of snowstorms. Thus, we do not 
see a winter and spring employment growth tradeoff in these states. On the other hand, for 
states like Minnesota, Wisconsin, Michigan, and North Dakota with big positive or 
negative deviations in winter temperature, residents might still face more or less cold 
winters with snow and ice hindering economic activities. For instance, the average Q1 
temperature in Minnesota from 1957 to 2012 is 16.5, and it was 27.2 in 2012. Even with 
an abnormally warm winter in 2012, it was still below freezing; therefore it will not affect 
economic behaviors. However, the average Q1 temperature in Iowa from 1957 to 2012 is 
25.5, and it was 35.3 in 2012. The 10-degree higher winter, taking temperatures above 
freezing, will make a difference in economic behaviors. 
 
If we run OLS for each sector by (14), three sectors present significant responses for their 
winter/spring employment tradeoff. They are construction, utilities, and information. For 
the construction and utilities sectors, the significant response is straightforward because 
these two sectors are directly affected by weather and temperature. For information, it is 
less clear. One possible reason might be that some sub-sectors, such us filming and other 
outdoor productions, are affected by weather as well. 
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Table 7: Estimations of Temperature-Adjusted AR(1) Model, 1957 to 2011  
 
 Xit = α + φ Xit-1 + βTemdevit 

  Cross States 

 Pooled OLS  State Fixed Effect 

 Coeff. t-stat Coeff. t-stat 
φ (AR(1))   0.88 103  0.72   53 
β (Q2-Q1)  -0.0013 -11.5  -0.0014 -11.5 

 Observations 2592  2592 
 Adjusted R2 0.81  0.82  

φ (AR(1))   0.55 34.5 0.32 17.4 
β (Q1)  0.0006 7.4 0.0006  7.5 

 Observations 2640  2640 
 Adjusted R2 0.32  0.41  

φ (AR(1))   0.86 87.8 0.67  47.4 
β (Q2)  -0.0007 -5.9 -0.0008  -6.7 

 Observations 2592 2592 
 Adjusted R2 0.75  0.77  

  Cross Sectors 

 Pooled OLS  Sector Fixed Effect 

 Coeff. t-stat Coeff. t-stat 
φ (AR(1)) 0.96 103 0.79 34.6 
β (Q2-Q1) -0.0008 -2.3 -0.0009 -2.5 

 Observations 734 734 
 Adjusted R2 0.93  0.94 

φ (AR(1)) 0.85 47.4 0.55 18.5 
β (Q1) 0.0005 2.1 0.0006 2.4 

 Observations 746 746 
 Adjusted R2 0.75  0.79 

φ (AR(1)) 0.94 81.5 0.79 242 
β (Q2) -0.0003 -0.9 -0.0004 -1.1 

 Observations 734 734 
 Adjusted R2 0.90  0.91 

Note: Xit is the difference between non-seasonally-adjusted payroll employment growth in 
Q1 (winter) and Q2 (spring), where i denotes contiguous 48 states, and t denotes years. 

 
 
6.3 In-sample and Out-of-sample Forecasting Performance 
Using (14) and the estimated coefficients we obtained in Table 7, we calculate the in-
sample mean squared errors (MSE: (X-𝑋𝑋�)2/N, where X is the actual non-seasonally adjusted 
payroll growth difference between Q2 and Q1; 𝑋𝑋� is the model projection) of the national 
payroll employment from 1957 to 2011 by two methods: (1) Equation (14)—AR(1) model 
with temperature adjustment, and (2) the AR(1) model. For cross-states pooled OLS model, 
MSE is 0.03932 for the temperature adjustment model (Equation (14)) while MSE is 
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0.04178 without the temperature adjustment model. The MSE is computed based on one-
year-ahead rolling forecast.    
 
 

 
Figure 7: State’s Winter and Spring Employment that Responds Significantly with Winter 
Temperature Abnormality  
 
 
Next, we use the in-sample estimates (1957-2011) from Table 7 to forecast out-of-sample 
estimates (2012-2017) by these two methods as shown in Table 8. The actual x is 8.5%, 
10.1%, 11.1%, 11.1%, 10.2%, 10.2% from 2012 (Q2-Q1) to 2017 (Q2-Q1). The out-of-
sample forecasts by the AR(1) model with temperature adjustment is 9.3%, 9.8%, 11.8%, 
11.6%, 10.6%, and 9.7% with MSE of 0.00003, while forecasts by the AR(1) model are 
11.5%, 9.6%, 11.0%, 11.9%, 11.9%, and 11.2% with MSE of 0.00022. Apparently, the 
forecasting performances, both in-sample and out-of-sample, from the model with 
temperature adjustment are better than the model without.   
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Table 8: Out-of-sample Forecast Mean Square Errors 2012 to 2017 
 

 Actual 
Xt 

Winter 
Temperature 

Deviation 
(Temdevt) 

Forecast Without 
Temperature 
Adjustment 

Forecast With 
Temperature 
Adjustment 

Forecast Model 
Based on the 
Estimators from 
1957-2011 
 

  Xt = 0.0219 + 
0.879Xt-1 

Xt = 0.0212 + 
0.883Xt-1 – 

0.0013×Temdevt 

2012 Q2-Q1 8.5% 16.7 11.5% 9.3% 
2013 Q2-Q1 10.1% -1.5 9.6% 9.8% 
2014 Q2-Q1 11.1% -6.2 11.0% 11.8% 
2015 Q2-Q1 11.1% 2.1 11.9% 11.6% 
2016 Q2-Q1 10.2% 9.8 11.9% 10.6% 
2017 Q2-Q1 10.2% 11.5 11.2% 9.7% 
     
Out-of-sample  
Mean Square Errors 
(MSE) 
 

  0.0002296 0.0000343 
 

 
Note: Xit is the difference between non-seasonally-adjusted payroll employment growth in Q1 
(winter) and Q2 (spring), where i denotes contiguous 48 states, and t denotes years. 
  
 

7. Conclusions 
 
The purpose of this paper is to rekindle the debate on how one infers cyclical change from 
seasonally adjusted economic data. The past three years have generated ample evidence of 
inferences in the presence of extreme winters. There are three contributions of the paper. 
First, the autocorrelation correction suggested herein is an improvement to current practice. 
Second, the direct modeling of the behavioral responses is also suggested, and the 
improvement of the forecasting outcomes is presented. Third, the evidence from states and 
sectors validates our hypothesis that says that, given a certain range and industries, 
economic agents respond accordingly to the winter temperature.  
   
What should be clear is that economic agents are not seasonal by themselves.  Their 
seasonal behavior is a response to an external seasonal event or shock. If that event and the 
response are deterministic, then the answer for economists is to hit the Census X-12 button 
on the computer. But, more likely, the response to seasonal events will depend on the 
magnitude of the event. The more important the behavioral response, the more one has to 
worry about treating a non-stationary seasonally contaminated time series as a stationary 
de-seasonalized one. With regard to casual inference, the publication of the monthly 
standard deviation for each seasonally adjusted series would go a long way towards 
providing a standard measure by which contemporaneous analysis can be conducted. This 
does not require any new, sophisticated seasonal adjustment methodology, but simply a 
quantification of the period specific variances. 
 
With regard to research employing seasonally adjusted time series, the solution to the 
problem comes from understanding the nature of the seasonal event as it affects individual 
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behavior and why one is performing a seasonal adjustment transformation of the data in 
the first place18. If the seasonal event is a random stimulus with a fixed proportionate 
response function, then explicitly including seasonal data, such as the winter temperature 
deviation from its long-term mean, will solve the problem at least partly. If the seasonality 
cannot be modeled explicitly, then estimating the monthly variances and implicitly or 
explicitly incorporating them into inference with respect to the series is indicated. Finally, 
the question of what to do with series that are dominated by behavioral responses to random 
seasonal events when employing them in regression analysis is more complicated19 and 
depends on how those seasonal events impact both the endogenous and exogenous 
variables.   

 
Acknowledgements 

 
We thank Ed Leamer, Chris Sims, Romain Warziag, Harald Uhlig, Paul McNelis and Jeffery 
Timmons and participants in various workshops and conferences for their helpful comments. Any 
errors are our own. 
 

18 This is an observation David Pierce made at the beginning of his (1979) article. 
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