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Abstract 
Classification is an extremely important aspect in the analysis of Big Data – whether 
natural or simulated and whether “sort of big” and “massively big”. Statistical models 
used in evaluation, classification or decision-making are used to study or discover 
patterns of variation. Sources of heterogeneity can complicate data collection design, and 
if they are neglected, they can distort analysis and interpretation of the relationships that 
the data are meant to reveal. Simulated data can be arbitrarily big/massive, as can modern 
data in biomedical, educational, and business applications. One type of “negative results” 
is “classification error”. The negative results (classification errors) from models in two 
examples, one from education and one from epidemiology, are explored in this article. 
The epidemiology example discusses the differences in decisions based on thyroid 
hormone levels (T3/T4) in pregnancy that depend on the assay used to determine the 
hormone levels (simple model). The education example is fully developed and described, 
a simulation study designed to document bias arising from a complex model used to 
assess the contributions of individual teachers to student learning. ASA Guidelines for 
the integrity of the professional and the data are both met by a formal examination of 
classification errors; as are the responsibilities to statisticians and the profession and 
employers. Ignoring these errors, whether the data are simple or complex, “big” or 
“small”, is not consistent with the ASA Ethical Guidelines for Statistical Practice. 
Ignoring them may also have important, unanticipated, implications for those about 
whom the modeling is specifically intended to be informative. 
 
 
Key Words: classification errors; negative results; model misspecification; ASA Ethical 
Guidelines. 
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1. Introduction: Overview 
 

“Negative results” can be non-significant inference tests (p>0.05) but can also be: 
a. failures of an accepted model to function as intended; identification that a model 

or method does not function (or is biased); or  
b. quantification of what is wrong with a model, method, or instrument.  

These negative results can arise from clinical studies or experiments, epidemiological 
analyses, or simulation studies. Simulated data can be arbitrarily big/massive, as can 
modern data in biomedical, business, and educational applications. This paper briefly 
presents a model of “negative results” as “classification errors” taken from an 
epidemiology application. A more thorough discussion of classification errors is then 
presented from a simulation study which is fully described in the sections that follow. In 
the discussion, the implications of ignoring both simple and complex classification errors 
are discussed with respect to ASA Ethical Guidelines. 
 

2. Example of classification errors: small epidemiological sample with 
simple analysis 

 
As an example, Soldin, Tractenberg & Soldin (2004) reported the results of two different 
biochemical analyses of the same thyroid analytes (T3, T4) from 50 healthy pregnant 
women taken at four different points in pregnancy (first, second, third trimester; post 
partum). Two tests for T3 and T4 are immunoassay (IA) and tandem mass spectrometry 
(MS/MS); their different functions are discussed extensively in Soldin et al. (2004). The 
question these assays are employed to answer is, “is a pregnant woman’s T3 or T4 
“normal””? They analyzed the IA and MS/MS classifications of each of 50 women’s T3 
and T4 samples at each of four time points, and quantified the agreement by these 
methods on whether a sample is within or outside of the “normal” range. Values 
identified as “within normal range” are healthy for mother and fetus; values outside the 
range are thereby unhealthy for the mother, fetus, or both – and so are particularly 
important to identify. Comparing classifications, Soldin et al. (2004) reported >90% 
agreement overall on whether T3 and T4 results were in “normal” range. 
However, when considering results that fell outside the “normal” ranges for each analyte, 
detection failed 75-100% of the time for out of range T3 and 33-66% of the time for T4. 
Thus, the very high levels of agreement (90% or higher) overall, driven by large 
proportion of observations inside the normal ranges, obscured the unacceptably low 
levels of detection of those outside the normal ranges. That is, classification errors in this 
example are extremely important because they only occur for those at risk – for both the 
mother and the fetus as it develops.  
 
This example from epidemiology is not a big dataset (only 200 observations on two 
analytes), and the modeling that is discussed in Soldin et al. (2004) is very simple 
(agreement only); however, this simple example shows that classification errors can have 
an enormous (life changing or threatening) impact. The example also highlights the 
importance of classification errors in a simple agreement model (i.e., two methods give 
the same or different decisions about any individual’s risk) in a relatively small data set, 
where such high levels of agreement (90%+) may be difficult to ignore in favour of “edge 
cases” or classification errors. These difficulties become even easier to ignore but also, 
more difficult to detect, as data increases in complexity and size. This is demonstrated in 
the study that is presented in detail below. 
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3. Example of classification errors: simulated education-based samples 
with complex analysis 

 
 
The evaluation of students and of teachers pose similar challenges: Both require the 
isolation of the effects of interest while taking all sources of bias into account.  Doing so 
is particularly important when decisions and policies are made based on the results.  The 
importance of modeling variability explicitly is reflected in both empirical studies (e.g., 
Goodman, 1974; Henry & Muthén, 2010; Lazarsfeld & Henry, 1968; Muthén & Shedden, 
1999; Nagin & Land, 1993) and methodological developments (e.g., Asparouhov & 
Muthén, 2008; Bartholomew & Knott, 1999; Goodman, 1974; Lazarsfeld, 1950; Muthén, 
2001; Nagin, 1999; Raudenbush & Bryk, 2002; Skrondal & Rabe-Hesketh, 2004; 
Verbeke & Lesaffre, 1996). Estimates from statistical models can vary depending on 
whether manifest and/or latent variables are modeled (see, e.g., Muthén & Asparahouv 
2009), and whether these variables are modeled appropriately or not (e.g., Palardy & 
Vermunt, 2010; Chen et al. 2010).  As estimates vary in relation to these factors, so too 
will the inferences based on those estimates. 
 
This analysis focuses on biases due to an unmodeled source of heterogeneity in so-called 
“value-added models” (VAMs; McCaffrey, Koretz, Lockwood & Hamilton, 2004).  
These multi-level models inherently have at least two levels of modeling: individual 
students at one level with other (higher order) levels representing nesting variables such 
as classrooms, teachers, or schools. A student’s performance in such analyses is usually 
assessed directly with a standardized test, where bias and errors in test scores are 
minimized in order to isolate performance, a proxy for ability, as the sole source of 
variation among the students. Results from such tests may be used to assess students 
(achievement) or their teachers (effectiveness).   
 
The term “value-added” is commonly used in multi-level modeling frameworks (e.g., 
Sanders & Rivers, 1996) to represent or estimate the contribution(s) of higher-level – 
indirect- effects such as teachers (level 2) and schools (level 3) on the student’s 
achievement and/or improvement (level 1). Covariates such as student ethnicity, socio-
economic status, previous performance level, or classroom size might be included so as 
to minimize systematic bias and errors associated with the classroom or school that can 
affect the estimation of a particular teacher’s “value” added to an individual student’s 
performance.  
 
A common assumption for this approach to teacher evaluation is that all students have 
received the same contribution or benefit from the teacher, and that this benefit is 
constant across the score scale (i.e., a constant effect of teacher).  This assumption is 
generally unrealistic. For example, there may be students who are unmotivated, have 
different priorities other than focusing on studies, or for whom the language of instruction 
is a challenge. These students do not receive any benefit from the teacher, no matter how 
effective or ineffective s/he might be. In fact, a recent study of persistently low 
performing (PLP) students (Lazarus et al, 2010) strongly indicated that there is a group of 
students who do not receive benefit from traditional classroom instruction.  This example 
of an effect that can contribute bias and/or imprecision to estimates of teacher effects 
based on student scores unless they are included in the estimation model; other 
unanticipated or unknown sources of heterogeneity may further compound these sources 
of bias. 
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If teachers have different effects on different types of students, estimated teacher effects 
are likely to be affected when there are different proportions of these types students in a 
given class. For example, two teachers who truly add identical value to student 
performance will have different estimated values-added if one teacher has a majority of 
low achieving students and the other has the same proportion of high achieving students 
in their respective classes. When the modeling assumes that all students receive the same 
benefit from their instruction, teachers are penalized, in terms of the estimation of their 
effectiveness or value added, by the kinds of students they have in their classroom. Thus, 
in value added modeling to estimate teacher effects on student achievement, fairness in 
the evaluation cannot be established without accounting for the type(s) of students in 
their class.  
 
The type of student can be conceptualized as a function of their change over time, or 
growth. Growth itself can be estimated with growth curve models (Hancock & Lawrence, 
2006), or a student’s growth profile can be entered as a known variable. Latent growth 
curve, or simply latent growth, models (LGMs) can be extended so that the growth 
profile is both estimated from the model and incorporated as a classifying variable, with 
types such as the persistently-low-performing (PLP) type of Lazarsfeld et al. (2010), or 
types that grow over time more quickly or more slowly. Such a model is a latent growth 
mixture model (LGMM or simply GMM) where the “mixture” comes from the varieties 
of student growth types or profiles. If estimates are needed about higher-level variables, 
such as teacher effect or value added, or if there are inherent nesting relationships that 
must be included in the estimation, then a multi-level version of the GMM can be 
utilized. 
 
The multilevel growth mixture model (MLGMM) is a relatively recent extension of 
GMM that has been applied in education (e.g., Muthén and Asparouhov, 2009; Palardy & 
Vermunt, 2010). Specifically, Muthén and Asparouhov (2009) used a multilevel growth 
mixture model to estimate student achievement where subgroups of students were 
identified within the latent growth variable “student type” with categories “fast learner” 
or “slow learner”. This student level (level 1) latent class (LC) variable was included to 
account for the otherwise unaccounted-for heterogeneity in level 1 residual variance.  
This mixture model also identified effects that were estimated at the school level (level 
2).  Modeling the latent mixing structure changed the estimated effects of covariates at 
both student and school levels, and led to different interpretations of parameter estimates 
than were supported by the conventional two-level model. Muthén and Asparouhov 
(2009) also tested for the presence of a LC at the school level and found that, although 
such a level 2 LC could be identified, it had a very limited impact upon the estimation or 
interpretation of other parameters.  This example highlighted the importance of thorough 
investigation of heterogeneity in variance at each level, and in particular showed that the 
conventional multi-level model is not always sufficient to limit bias and optimize 
precision of estimates at either level. 
 
Because the VAM is a special case of MLGMM, Muthén and Asparouhov’s (2009) 
multilevel growth mixture modeling approach might also be useful for estimating teacher 
and/or school effects that are argued to contribute to students’ growth – representing the 
“value” that is “added” to the student-level effects. The approach therefore both estimates 
the development of student capabilities over time, and accommodates student level 
growth characteristics as modifiers of teacher or school effects rather than assuming 
homogeneous teacher effects across students. 
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The primary focus of this simulation study was to investigate the impact of ignoring a 
mixture of student growth profiles in the estimation of teacher effects within the VAM 
framework. This simulation study therefore included models that do (no mixture of 
student growth profiles) and do not (mixtures of growth profiles) assume homogenous 
teacher effects. This comparison permits the quantification of the impact on decision 
making derived from VAM modeling that correctly, vs incorrectly, assumes the presence 
of growth profile mixtures. Specifically, our simulations included varying proportions of 
a non-performing group of students (PLP) in classrooms to study their respective impacts 
on the estimation of the teacher’s effect on (the value added to) student scores. To 
quantify the impacts, analyses focused on the bias and precision of the estimated 
teacher’s effects, i.e., the parameter estimates at level 2 of a multi-level growth mixture 
model.  
 
3.1 Methods: Simulation Study Design and Analysis 
The goals of the study were to: (1) quantify the effect of unaccounted-for heterogeneity in 
growth at level 1 on level 2 effects by comparing the level 2 effect estimates between a 
conventional VAM (LGM) and multilevel growth mixture model (MLGMM); and (2) 
examine the stability of level 2 effect estimates in MLGMM models. 

 
3.1.1 Simulation study design: Data features 
Four simulation features were manipulated in this study:  
• Cluster number (CN) is the number of clusters (e.g. classes) in the population 
(e.g. school). 
• Cluster size (CS) is the number of students in a cluster (e.g. 40 students in a 
classroom). 
• Mixture proportion (MP) is the proportion of students in each growth profile 
within a cluster (e.g. 100%, 75%, or 50% of students in the fast growth group). 
• Cluster effect (CE) is a level 2, or cluster-level, effect representing an individual 
teacher’s effect on the students in a cluster (e.g., classroom).  
 
These four simulation conditions were systematically manipulated to investigate the bias 
and precision in an estimated teacher’s effect when the cluster effect is estimated with or 
without accounting for the heterogeneity (i.e., the mixture of growth profiles) in the data.  
Cluster number and size were included to represent features of different types of teaching 
contexts within which cluster effects (cluster, or level 2, effects) might be estimated using 
the VAM approach. In all simulations, we assume that only students in the fast growth 
group receive any benefit of instruction from teachers –that is, the teacher’s effect is zero 
for students in low intercept/growth group 
 
Level 1 data: Every cluster (representing a classroom) in the simulation was included a 
mixture of students from one (100% fast growth) or both (75% or 50% fast growth with 
the remainder being slow growth) of the growth profiles, corresponding to different kinds 
of learners in a given classroom. Note that a student’s classroom membership is 
observed; his or her growth profile is not observed (latent). Whether heterogeneity 
corresponding to latent classes is properly or improperly dealt with depends on whether a 
mixture model is (proper) or is not (improper) fit at level 1. 
 
Two different growth profiles or trajectories in individuals represented the heterogeneity 
of the level 1 data in this simulation. The characteristics of the two growth profiles 
followed Chen et al. (2010) - which was based on Nylund et al. (2007) – namely, one 
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with steeper slope and one with shallower slope. The definitions of fast (intercept mean 
2.5, slope mean 0.6) and slow (intercept mean 1, slope mean 0.1) growth were constant in 
every model, but the proportions in the ‘sample’ from each type were varied (according 
to the factor, ‘mixture proportion’). These settings create a clear separation of the two 
groups, and the parameter settings characterizing the slow growing group correspond to 
the persistently low performing (PLP) type of students described by Lazarus et al. (2010).  

 
Level 2 data: Four attributes define the characteristics of level 2 data, representing 
clusters in the hierarchy: 1) the cluster number; 2) the cluster size; 3) cluster type (with 
three sub-clusters) and the LC mixture proportion of individuals within a sub-cluster; and 
4) the cluster effect to be estimated. The level 2 or cluster data (each with these four 
characteristics), represents the teacher or classroom about which the VAM estimates are 
to be made. Each cluster level attribute, and its role in the simulation, is described below. 
 
The sample sizes that were used in this simulation are determined by the cluster number 
and cluster size, each of which characterizes any given classroom. Cluster number (CN) 
represents the relative size of the population from which the clusters are drawn. For this 
simulation, three cluster numbers (CN) were chosen to represent small, medium and large 
districts (CN=30, 60, 90, respectively), Chen et al. (2010) used CN = 30, 50, and 80; for 
our design, our CN were 30, 60 or 90 (comprised of three sub-clusters of size 10, 20, or 
30) 
 
The cluster size (CS) is the number of observations, or individuals (students), within a 
cluster.  For this simulation, CS was based on the design used by Chen et al. (2010), 
namely, values of 20 and 40 (see Sanders and Rivers (1996) (20) and Wright, Horn & 
Saunders (1997) (25)) This study also included a cluster size of 40 to represent larger 
class sizes. 
 
3.1.2 Simulation study design: Data features- Sub Clusters 
Each cluster, whether representing a class of size 20 or 40, and whether in a small, 
medium or large cluster number (school), is further categorized into one of three sub 
clusters. Sub clusters differ as to the mixing proportions of the two student growth 
profiles. In this simulation, three sub cluster types (each type representing one-third of 
any given cluster) were included to permit the differentiation of potential bias in 
estimating cluster effects that arises due to different proportions of students in our two 
growth profiles (mixture proportion, described below). Varying the mixture proportions 
that are (if properly modeled) or are not (if improperly modeled) included is the key 
feature of the simulation and study.  
 
Every model was comprised of simulated students generated using the fast and slow 
growth profiles with the mean intercepts and slopes given earlier. This study used four 
patterns of mixture proportion: 100% fast (0% slow); 75% fast (25% slow); 50% each of 
fast and slow; and 25% fast (75% slow) (Chen et al, 2010).  These parameters are shown 
in Table 1. Two of the patterns shown in Table 1 (patterns 1 and 2) reflect different 
mixture proportions in each of the three sub-clusters of a given cluster. 
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Table 1: Definition of mixture proportion by Cluster Type  
Level-2 features Growth (latent class, level-1 feature) 

Mixture proportion Pattern (MP) Cluster Type Fast Slow 

1 1 50 50 
 2 75 25 
 3 100 0 

2 1 25 75 
 2 50 50 
  3 75 25 
3 1,2,3 50 50 
4 1,2,3 75 25 

 
Mixture proportion patterns 1 and 2 investigate the influence of differential mixture 
proportions of the fast and slow growth types across the three sub-clusters within one 
cluster. By contrast, in patterns 3 and 4, all three sub-clusters within a given cluster have 
the same mixture proportions (see Muthén and Asparouhov, 2009; and Chen et al. 2010). 
These patterns permit us to study whether fixing mixture proportions (patterns 3 and 4) 
leads to different biases than varying mixture proportions (patterns 1 and 2). 
 
3.1.3 Simulation study design: Teacher effects 
Given the simulation structure described above, the teacher effect (i.e. cluster effect, or 
CE; the objective of a typical VAM study) represents the value-added effect, but is only 
estimable for individuals in the fast growth group - because we assume the slow growth 
group has effectively zero slope on average. Because the presence of individuals with 
“slow growth” profiles (i.e., zero cluster effects) varies across cluster type (Table 2), the 
cluster effect must also vary depending on cluster type. Table 2 shows the five cluster 
effects that were included to study whether the size of the cluster effect, in conjunction 
with all of the other manipulations we designed, would affect whether appropriate 
(MLGMM) or inappropriate (VAM) analyses led to biased estimates of the cluster 
effects.  
 
3.1.4 Simulation study design: Cluster effect conditions 
As Table 2 shows five cluster effect conditions (CEC). The simulation includes five 
patterns of cluster effects (CE), three as fixed effects (CEC 1-3) and two as random 
effects (CEC 4-5). Table 2 shows that, Cluster Effect Conditions 4 and 5 represent the 
cluster effect labeled 11γ , as a random value taken from a normal distribution with mean 0 
and variance either .5 or 1.0; this random effect is described further in the next section 
(Equation 8).  
 

Table 2: Cluster effects defined by pattern of Cluster Type 
Cluster Effect Condition  (CEC) Cluster Type  Cluster effect (CE) 

1 1 (-1, -0.5, 0, 0.5, 1) 
 2 (-1, -0.5, 0, 0.5, 1) 
 3 (-1, -0.5, 0, 0.5, 1) 

2 1 (-1, -0.5) 
 2 0 
 3 (0.5, 1) 
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3 1 (0.5, 1) 
 2 0 
 3 (-1, -0.5) 

4 1, 2, 3 11 ~ (0,0.5)Nγ  
 

5 1, 2, 3 11 ~ (0,1.0)Nγ  
 
Cluster effect condition 1 (CEC1) has the same five simulation parameters for all three 
sub-clusters, permitting evaluation of the influence of differential mixture proportion 
patterns (patterns 1 and 2 from Table 1) in terms of the direction of biases (i.e., positive 
or negative) and the precision of estimates. CEC2 and CEC3 differ solely in that the fixed 
parameters shown for CEC1 are reversed for CEC3. These characteristics permit us to 
investigate the impact of sub-cluster level effects on the bias and precision of cluster 
effect estimates. These conditions were included to systematically investigate the 
potential for/extent of positive and negative bias in the parameter estimates. The random 
effects based on different variances (small variation for CE4 and large variation for CE5) 
were included to study the role of variability in cluster effects on whether appropriate 
(MLGMM) or inappropriate (VAM) analyses lead to biased estimates of the cluster 
effects.  
 
Table 3 summarizes the overall simulation design, representing a total of 120 possible 
combinations of the manipulations described above. Each combination of the four 
cluster-level characteristics represents a single longitudinal model from which 100 
datasets were sampled; each longitudinal model had three time points (t=0, 1, 2). That is, 
there were 120 simulation conditions with 100 trials (or samples) per condition (12,000 
data sets). 
 

Table 3: Simulation Manipulated Conditions 
Conditions Number of Levels 
Custer Size 2 

Cluster Number 3 
Mixture Proportion 4 

Cluster Effect 5 
Total 120 

 
Data generation in SAS (9.2, SAS Inc. Cary, NC) was based on MLGMM, varying 
parameters for each of the 120 models as outlined in Table 3 (with details from Tables 1-
2). 
 
3.1.5 Simulation study design: The modeling 
Equations (1-9) show the three models that were fit to the 12,000 data sets, which each 
contained three time points (t=0, 1, 2). The first model represents the standard VAM 
approach, which is actually a 1-class MLGMM. This represents inappropriate modeling 
of the data whenever the mixture proportion was not 100% fast growth and 0% slow 
growth profiles. The second model was a 2-class MLGMM, which was the appropriate 
model for all datasets where the mixture proportion was not 100% fast growth and 0% 
slow growth profiles. Finally, the third model was inappropriate for all datasets, because 
it was a 3-class MLGMM, which assumes more heterogeneity than was present. These 
models are described in detail below. 
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Equations 1-9 represent a standard multi-level modeling framework with time (t), 
individual (i) and cluster (j) factors. At level 1, there is an outcome (Ytij), the dependent 
variable in all models representing the “achievement” (Y) as assessed at the tth timepoint 
for the ith student in the jth classroom. Equation 1 present a repeated measurement of 
individual students with the individual intercept or expected value of Y at time zero (π0ij) 
plus the expected slope or change over time for this student (π0ij), plus random error for 
(etij). The error is shown as coming from a normal distribution with mean =0 and variance 
=1. 

 
Level 1 

0 1 1 , ~ (0,1)tij ij ij tij tij tijY a e e Nπ π= + +  (1) 

0 00 01 0ij j j ij ijGrowthClass rπ β β= + +  (2) 

1 10 11 1ij j j ij ijGrowthClass rπ β β= + +  (3) 

00 01

10 11

0

1

0
where ~ ,

0
ij

ij

r
MVN

r
π π

π π

τ τ

τ τ

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 (4) 

Equations 1-3 characterize the random effects at the first level of the MLGMM; Equation 
4 specifies the magnitude of within-class variation (i.e., variance-covariance of slopes 
and intercepts) to be: 

00
0.20πτ = , 

10 01
0.05π πτ τ= = , and 

11
0.05πτ =  (see Chen et al. 

2010; Tofighi & Enders, 2008). 
 

Level 2 
00 00 0j jβ γ µ= +  (5) 

01 01jβ γ=  (6) 

10 10jβ γ=  (7) 

11 11jβ γ=  (8) 

0000where ~ (0, )j N βµ τ  (9) 

The four group-level (Level 2) growth parameters (Equations 5-8) took values of 

00 1.0γ = , 01 1.5γ = , 10 0.1γ = , and 11 0.5γ = , and the variable labeled “GrowthClass” 
in Equations 2 and 3 is a dichotomous indicator of growth profile (1=High Growth, 
0=Low Growth). 
 
An intraclass correlation (ICC), representing the magnitude of intercept random effect 
(error/variability) over the total variability, of 0.10 translates to a parameter setting of 

000
0.133βτ =   (Chen et al., 2010).  
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3.1.6 Simulation study design: Model fitting; bias and precision estimation 
All models were fit using MPlus 7.1 (Muthén & Muthén, 2013). Group level effects for 
the MLGMM were derived from the fast-growth latent class (since the slow-growth class 
had zero slope by definition).  Results of fitting each of the 120 models were summarized 
as the percentage, of the 100 samples fitted per model, that a given MLGMM was 
(correctly) identified as the best model. Identification as the best model was achieved 
using Akaike Information Criterion (AIC; Akaike 1974), the Modified Akaike 
information Criterion (AIC3; Bozdogan, 1993) and AICc (McQuarrie & Tsai, 1998; after 
Akaike, 1974) as described below. In this simulation study, “best” and “fit” are defined 
specifically by the information in the true model that any fitted model captures, and 
errors that are summarized with values like mean squared error (MSE) and root mean 
squared error (RMSE), which would be important estimates in real modeling, were not 
used/useful in selecting the “best model” in this simulation study. RMSE values were 
actually estimated for every model described below; they are fully described in Yumoto 
(2011) and are available from the first author, but are not reported here.  Bias in the 
cluster effect estimates was computed as the difference between the known values (used 
to simulate the data) and the estimates that were generated from the models fit to the data 
from both the mis-specified model (i.e. 1- and 3-class MLGMMs) and from the true 
model (i.e. 2-class MLGMM), averaged over 120 simulation conditions. Positive bias 
represents the overestimation, and negative bias represents underestimation, of the target 
cluster effects. 
 
3.1.7 Simulation study design: Analysis methods 
To determine which modeling method recovered the correct (true) model structure, we 
used three indices that are each defined as a function of log-likelihood of the model 
(following Bauer & Curran, 2004; Nylund et al., 2007; Palardy & Vermunt, 2010; 
Anderson, 2008). The indices differ in terms of the penalty each imposes as described 
below. Lower values of any information criterion indicate that the model for which it was 
computed fits the data better than do models with higher criterion values. 
 
3.1.8 Simulation study design: Analysis of model fitting 
Akaike Information Criterion (AIC; Akaike 1974) is the original information criterion, 
and is based on the Kullback-Leibler information number. The Modified Akaike 
information Criterion (AIC3; Bozdogan, 1993) differs from AIC by penalizing the 
likelihood by three times the number of parameters, while the second order bias corrected 
AIC (AICc; McQuarrie & Tsai, 1998; after Akaike, 1974) penalizes the likelihood by 
utilizing both the number of parameters and the sample size.  
 
Parameter estimates from the true model fit to the 12,000 samples were obtained from 
MPlus and then processed in SAS 9.2. A SAS program then computed the bias using 
Equation 1, the variance of the group level effect, and constructed 90% confidence 
interval (90% CI) based on the 100 samples fit for each of the 120 models - from the mis-
specified model (i.e., MLLGM or 1-class MLGMM) and from the true model (i.e. 2-class 
MLGMM).  
 
3.1.9 Summarizing the simulation design and modeling  
Bias in the cluster effect estimates from each of the 100 replications of the mis-specified 
and the true models were summarized (mean, standard deviation), representing the results 
for each of 120 conditions of this study. These results were analyzed with three separate 
ANOVAs specifically addressing effects described previously. The dependent variable 
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for all three ANOVAs is the bias of cluster effect. Three ANOVA designs are described 
below. In all ANOVA models, the dependent variable was the bias estimate; three 
specific analyses were designed: 
 

1. Within CEC1: Model (true vs mis-specified) x CS x CN x SC x CE x MP (2 x 2 
x 3 x 3 x 4 x 5 x 4).  

2. Comparing CEC2 to CEC3: Model x CEC x CS x CN x SC x CE x MP (2 x 2 x 2 
x 3 x 3 x 3 x 5 x 4) 

3. Comparing CEC4 and CEC5: Model x CEC x CS x CN x SC x MP (2 x 2 x 2 x 3 
x 3 x 4) 

 
The purpose of each analysis was to investigate systematic trends in the bias, variance, 
and 90% CI (based on 100 samples) for the mean bias estimated for each of the 120 
combinations of features. Other effects (e.g., cluster subtype, cluster size, and model 
types) were not studied.  
 
3.2 Results: Simulation Study 
No convergence issues occurred for MLGMMs with 1- or 2-latent classes. There were 32 
convergence issues out of total of 12,000 estimations with the MLGGM with 3 latent 
classes, and these only occurred for the CEC4 and CEC5; the majority (22 out of 32) of 
errors happened when the cluster size was 20 (data not shown). Results that follow 
describe model results and parameter estimates from all converging true models.  

 
3.2.1 Simulation study results: Bias of estimates  
Bias in the cluster effect estimates from each of the 100 replications of the mis-specified 
and the true models were summarized in terms of their means and standard deviations, 
for each of 120 conditions. These results were analyzed by 2 x 3 x 2 x 3 x 4 x 5 (see 
footnote 1) ANOVA, and the relevant results from the ANOVAs that answer the research 
questions are described below.  

 
3.2.2 Simulation study results: Cluster Effect Condition 1 (CEC1). 
Cluster effect condition 1 (CEC1) represents the effect of differential mixture proportions 
(MPs), among three sub-clusters (SCs), on the cluster effect (CE) estimates from the mis-
specifed and the true models (Model). Both the 4-way Model×SC×MP×CE and 5-way 
Model×CS×SC×MP×CE interaction terms were significant at the p<.0001 level, but the 
5-way Model×CN×SC×MP×CE term was not significant (p=0.97). (see Appendix 1 for 
full results).  
 
Each of Figures 1 and 2 includes 15 plots (five CE x three sub-clusters) with either 
CS=20 (Figure 2) or CS=40 (Figure 3). Each plot has two lines representing the estimates 
from the true model (Model T, a line with squares) and the mis-specified model (Model 
M, a line with circles), for four mixture proportion (MP) conditions. Each row of figures 
is based on the cluster size (20 for figure 1 and 40 for figure 2) and CE condition as 
shown in Table 3 (1st row is sub-cluster 1, 2nd row is sub-cluster 2, and 3rd row is sub-
cluster 3). Each column of figures represents five CE parameters (i.e. -1, -0.5, 0, 0.5, and 
1).  

  
Positive bias represents the overestimation of CEs and negative bias represents 
underestimation of CEs. Figures 1 and 2 show that the bias from the true model was 
consistently closer to zero, compared to that of the mis-specified model, for the same data 
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from all conditions (i.e., the true model yielded more accurate estimation of parameters in 
terms of recovery of CE values).  
 

 
Figure 1: Bias estimates for cluster effect condition 1 (CEC1) and cluster size 20 

(CS20) in each of the three cluster types. Model M=mis-specified; Model T =true model; 
MP=mixture proportion; CE=cluster effect. 
 
The effect of cluster size was minimal (comparing Figures 1 and 2), although the 
magnitude of differences in bias between the true and mis-specified models was greater 
when the cluster size was larger (i.e., CS=40, see Figure 2).  
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Figure 21. Bias estimates for cluster effect condition 1 (CEC1) and cluster size 40 
(CS40) in each of the three cluster types. Model M=mis-specified; Model T =true model; 
MP=mixture proportion; CE= cluster effect. 
 
Figures 1 and 2 also show that the patterns of bias over the four mixture proportions in 
each cluster type were consistent when cluster effects were non-zero, namely, positive 
bias was observed with positive cluster effects (i.e., columns labeled CE=0.5 and 1) and 
negative bias observed with negative effects (i.e., CE=-0.5 and -1). The magnitude of bias 
was greater for MP2 than MP1, conditions which differed in the amount of variation in 
mixture proportion. These findings were consistent for the true and mis-specified models 
although the true model yielded much less bias and the difference between bias in 
estimates derived from the true and mis-specified models increased as the variability of 
mixture proportion increased (i.e., from MP1 to MP2).  The trend in bias was reversed for 
the mis-specified model between MP1 and MP2 on cluster types 1 and 2 when the cluster 
effect was zero because there were more cases with the cluster effect of zero for these 
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conditions due to the cases in the non-growth group. All bias was positive, i.e., when the 
true cluster effect was zero, all CE were overestimated. 

 
3.2.3 Simulation study results: Cluster Effect Condition 2 and 3 (CEC2 and 
CEC3). 
Cluster effect conditions 2 and 3 represent the potential for systematic bias in the cluster 
effect estimates that could arise from the same cluster effects in the presence of different 
mixture proportions. The ANOVA found the four-way Model×SC×MP×CE term 
significant at p<.0001, but the five-way Model×CN×SC×MP×CE (p>.92) and 
Model×CS×SC×MP×CE (p>.49) terms were not significant. Figure 3 summarizes these 
results showing eight plots (two cluster effect conditions x four mixture proportions) with 
two lines representing the estimates from the true model (Model T, a line with squares) 
and the mis-specified model (Model M, a line with circles). The x-axis of each figure 
represents five CEs. Each row of plots represents a cluster effect condition (CEC2 and 
CEC3). Sub-cluster was not included in the figure because the cluster effect is a direct 
indicator of sub-cluster type.  The magnitudes of both positive and negative bias 
increased as the variation in the mixture proportion increased. The overall variation in 
mixture proportions increased the magnitude of bias, especially on the non-zero positive 
cluster effect condition parameters (see Table 3).  
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Figure 3: Bias estimates for cluster effect conditions 2 and 3 (CEC2 and CEC3). 

Model M=mis-specified; Model T =true model; MP=mixture proportion; CE=cluster 
effect. 

 
Figure 3 shows that similar effects of mixture proportion on bias were observed for MP3 
and MP4 (where mixtures were fixed for each sub-cluster). The variation of mixture 
proportion between the fast and slow growth cases was greater on MP3 (50 fast/50 slow) 
than MP4 (75 fast/25 slow). The trend of bias was symmetric for the negative and 
positive CEs, centered around zero bias on CE=0 from both the true and mis-specified 
models on MP3, whereas the magnitude of negative bias was greater on MP4 for the true 
model. That is, positive bias was attenuated when a greater proportion of the cases were 
in the fast growth group.   

 
3.2.4 Simulation study results: Cluster Effect Condition 4 and 5 (CEC4 and 
CEC5). 
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Cluster effect conditions 4 and 5 assessed the impact of variability in cluster effect on 
bias of estimation, and results are shown in Figure 4. The term of interest in these 
analyses was the interaction between the cluster effect conditions (CEC), mixture 
proportion (MP) and sub-cluster (SC), with or without cluster size (CS) and cluster 
number (CN). ANOVA found that the three-way Model×MP×SC term was significant for 
both CEC4 and CEC5 (p <.0001), and no other terms, including that of the sub-cluster 
were statistically insignificant (all p>0.3).   

  
Figure 4 includes a total of 12 plots with four mixture proportions and three cluster types 
on the x-axis with two lines in each plot representing the estimates from the true model 
(Model T, a line with squares) and the mis-specified model (Model M, a line with 
circles). Four figures in each row represent the mixture proportion conditions. Each row 
of plots represents a sub-cluster (SC=1, 2, or 3).  
 
The ANOVA results indicated that the variation in true cluster effects (i.e. N(0,1) and 
N(0,0.5) random cluster effects) did not have a significant impact upon the bias of 
estimates, with only a slight increase in the magnitude of bias on CEC 5 (i.e. the effects 
of higher variance) on MP1 and MP2.   
 
Bias in estimates was minimal in the MP3 and MP4 conditions for both CEC4 and CEC5, 
indicating that constant mixture proportions appear to limit the variability of cluster effect 
estimates. The variability in the cluster effect estimates was also small in the MP1 and 
MP2 conditions (Figure 4). The magnitude of bias was similar between CEC4 and CEC5 
for the mis-specified model, while for the correct model, the magnitude of bias was 
greater for CEC5 than for CEC4. 
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Figure 4: Bias estimates for cluster effect condition 4 and 5 (CEC4 and CEC5) in 

each of three cluster types. Model M=mis-specified; Model T =true model; MP=mixture 
proportion; CE=cluster effect. 
 

3.2.5 Simulation study results: Precision of estimates 
The mis-specified model condition consistently resulted in precision that was equal to or 
greater than that of the true model, as expected. The difference in estimation between true 
and mis-specified models was smallest when most cases were in the fast growth group 
(i.e., MP1 and CEC 3), and was largest where the fewest cases were in the fast growth 
group (i.e., MP2 and CEC 1). For both the mis-specified and true models, the precision of 
estimates increased as the effective sample size increased. This is because the mis-
specified model always utilized 100% of the sample for the estimation of parameters, 
whereas the effective sample size was dependent on the mixture proportion for the true 
model. 
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4. Discussion: Simulation Study 
 
The goal of this study was to investigate the impact on teacher (or cluster) effect 
estimates that might arise from not modeling (ignoring) different proportions of students 
in two growth groups that are present within a single classroom. The key findings are: 
• Model misspecification led to systematic bias in level 2 parameter estimates in the 

multi-level models studied here, especially when there is more variability in some 
classroom (represented by mixture proportions). This bias is attenuated when the 
proportion of students belonging to a high-growth group is equal to, or greater than, 
that of the slow growth (e.g., PLP) group. However, when MLGMM is used instead 
of simple MLLGM for the level 2 parameter estimates; the bias is greatly reduced, 
loses all systematicity, and is largely unaffected by any of the other features that were 
manipulated in the simulation. Further, the mis-specified model consistently yielded 
greater bias, with higher precision for those biased estimates, as compared to the true 
model. 

• Bias in estimation of cluster effects was significantly reduced by accounting for the 
student level heterogeneity with the mixture modeling in most simulation conditions, 
except for a few conditions described later in this discussion. 

• Precision of the estimated cluster (teacher) effects was affected systematically by 
each of the conditions under study in this project. Effects of the various conditions on 
precision tended to vary depending on the proportion of students in the fast growth 
group, for all sample sizes, underscoring a specific effect that unmodeled 
heterogeneity in the classroom can have on the estimation of cluster effects.  

 
Taken together, these results suggest that the use of VAM in evaluation of cluster 
effects/effectiveness requires that bias be controlled as discussed below. In fact, the 
capacity to control bias is a very important feature of MLGMM. However, the use of an 
“advanced modeling technique” may engender a misplaced level of trust by the audience 
(decision-makers) because high levels of precision for biased estimates could lead to 
greater (erroneous) confidence in such incorrect estimates. Reasons for and against the 
use of VAM for teacher performance evaluation can be considered, explored, or 
addressed if and only if the issue(s) and source(s) of bias are controlled. 
 
Particularly worrisome is the pattern of bias in the results for better (positive cluster 
effect estimates) and worse (negative cluster effect) teaching. The results suggest that if a 
cluster effect is positive, then bias in its estimation will tend to be positive 
(overestimation), and that the greater the absolute value of this teacher (cluster) effect, 
the greater the bias. Increasingly better teachers will appear even better due to this bias. 
These results also suggest that, if a cluster effect is negative, then bias in its estimation 
will tend to be negative, such that increasingly worse teachers will appear even worse. 
 
These results are discussed further in the next section, with respect to the conclusions, 
future steps suggested by the results, and their implications for the effective and fair 
application of VAM, using MLGMM, for policy-making and teacher evaluations.  

 
4.1 Evaluation of systematic biases via simulation 
As seen in Figures 1 and 2, model misspecification led to greater, and systematic, bias, as 
compared to conditions involving the true model. If a cluster effect is negative, then the 
bias tends to be negative, representing overestimation of a negative effect of the teacher. 
If a cluster effect is positive, then the bias tends to be positive (overestimation), and that 
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the greater the absolute value of this cluster effect, the greater the bias. The potential for 
bias in estimating a teacher’s effect is greatest in the following conditions: 

1. Higher overall variation, between cluster type, in terms of in mixture 
proportion (MP=2). 

2. Smaller proportion of cases in the fast growth group (cluster type 1 in MP2 
and 3). 

3. Higher overall variation in the mixture proportion (MP3). 
 
The effects of model misspecification are likely to be greatest in a school district having 
schools with a wide range of performances and/or classes within a school encompassing a 
wide performance range. For instance, the highest magnitude of bias would occur in a 
classroom with the smallest proportion of fast growth students within a school that also 
has a small proportion of fast growth students. The greatest effects on teacher evaluation 
through VAM would be in the context of schools with few fast growers, and bad teachers 
would be more negatively affected than good teachers. The evaluation of teachers in 
more homogeneous school districts, for example, where the majority of students belong 
to a fast growth group would yield the least biased estimates of cluster effect, even with a 
mis-specified VAM. 
 
The pattern of bias on the cluster effect estimates across conditions was informative: 
1. Overall bias was greatest in MP2 and CEC3, where the variation in the sample 
and among cluster types were the highest, exaggerating overestimation of a negative 
effect of poor teachers and overestimation of positive effect for good teachers. Greater 
variation in the mixture proportion increased bias. 
2. The potential for unfairness, if VAM without accounting for student-level 
heterogeneity is employed to estimate cluster effect, is very high due to the tendency for 
increasing student-level heterogeneity to lead to overestimation of positive effects for 
good teachers and overestimation of a negative effect of poor teachers. 
 
Bias in evaluation that heavily favors, and also inflates the effects of, good performing 
teachers will be greatest in a district with a wide range of students in terms of growth 
profiles, including low-starting, fast growth students in low performing schools and high-
starting, fast growth students in high performing schools, or in a single school with these 
characteristics in the classrooms. In cases where a class has fewer students in the fast 
growth group, the VAM approach will strongly favor teachers with a positive effect and 
will severely penalize those teachers with negative effects.  
 
In addition to having significant implications for the fairness of decision-making and 
policy based on VAM results, these results can also affect the choices that teachers make 
– they might feel that schools with higher proportions of fast growing students are the 
only contexts in which they have a chance of being evaluated fairly. The issue of fairness 
– and its perception – in evaluation affects all parties in these decisions. 

 
4.2 Limitations of the Simulation Study 
Simulation projects require fixed characteristics, and as such, these led to several 
limitations. One such limitation is the use of only two growth profiles. This might be 
more realistic than assuming homogeneous growth within a cluster, but it is far more 
likely that there are more than just two growth profiles in any classroom or school. A 
related challenge was that no latent classes were included to represent interactions 
between individuals and teachers across levels, which may be very likely in reality. 
Further, some mixture proportions were unrealistic (i.e., MP3 and 4) because they 

197



represent homogeneous growth within clusters; these conditions were included to 
contextualize these results with those published previously. The mixture proportions used 
for MP1 and 2 are not necessarily realistic, but they represent the assumption that there is 
variation in these growth class proportions (i.e., proportions of student in each growth 
profile) within a given cluster, and that this variation is unlikely to be consistent across all 
clusters in a given modeling situation. The results do suggest that variation in those 
proportions has a significant impact on estimation and thereby, on decision-making that 
might be based on those cluster effect estimates. Future studies could explore whether a 
wider, more realistic, range of variation in growth class proportions yields a clearer 
picture of this impact and possible ways of addressing it in simulations.  
 
The impact of higher proportions of slow growth group members, who actually 
experience zero cluster (teacher) effect, was unexpected.  An option for realizing these 
features would be to center the true effect of the fast growth groups on a positive value 
instead of zero (used in this study).   
 
Although this simulation study was designed to investigate the impact of unmodeled 
heterogeneity at the classroom level on the potential for fair VAM-derived teacher 
evaluations, the greatest challenges to fair decision-making that is based on cluster effects 
(or value-added effect by teachers) is not the actual values of these estimates, but rather, 
it is the distinction between proficient and not-proficient teachers – a two-level 
classification. The study did not address that two-level situation, but the finding that 
teachers with more positive and more negative cluster effects will actually generate 
differentially-biased estimates suggests that any proficient/non-proficient classification 
will require very careful attention to the “non-proficient” characterization. Further, the 
estimation of changes in estimated cluster effects would be especially critical in decision-
making, because these results suggest that “improvement” in cluster effect would be 
more easily recognizable (although possibly, overestimated) in better teachers and would 
be more difficult to recognize in those who may need, or indeed may be struggling, to 
improve the most. 
 
4.3 Simulation study: Implications 
The multilevel growth mixture model is a relatively new analytic method specifically 
developed to accommodate a particular kind of heterogeneity so as to minimize the effect 
of variability on precision in estimation and to reduce biases that can arise in hierarchical 
data. This is particularly important in the context of value-added models, where decisions 
and evaluations about teaching effectiveness are made, because estimates could be 
contaminated, biased, or simply less precise when data are modeled without a full 
account of sources of variability. This rstudy investigated the effects of unmodeled 
heterogeneity at level 1 on the precision of level 2 estimates in the multilevel growth 
mixture model and multilevel linear growth model.  The heterogeneity we focus on is that 
of a “non-responsive” class of students—that is, having minimal growth regardless of 
teacher effects. Our results show that if a level 2 effect is positive, then the bias tends to 
be positive, such that increasingly better teachers would appear even better due to the 
bias in this type of estimate. However, if a level 2 effect is negative, then the bias tends to 
be negative, such that increasingly worse teachers will appear even worse due to this bias 
in this type of estimate. Modeling for the possibility of latent classes is shown to reduce 
all types of bias in teacher effects estimation at level 2. 
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5. Conclusions 
 
Example 1 (epidemiology) highlights the importance of classification errors in a simple 
agreement model (i.e., two methods give either the same or different decisions about any 
individual’s risk) in a relatively small data set. Example 2 (education) highlights the 
importance of examining classification errors – and not assuming effects are 
exchangeable. Together, these examples support the argument that edge 
cases/classification errors can be as informative as, if not more informative than, “results” 
– and should be included in sensitivity analyses and post hoc work. 
 
The American Statistical Association (ASA) established its Ethical Guidelines for 
Professional Practice in 1981; they were first revised in 1999 and the third revision was 
approved in 2016. The Guidelines (American Statistical Association, 2016) comprise 8 
core principles, which entail 49 specific elements (See Appendix): 
 
A. Professional Integrity & Accountability (6) 
B. Integrity of data and methods (10) 
C. Responsibilities to Science/Public/Funder/Client (5) 
D. Responsibilities to Research Subjects (6) 
E. Responsibilities to Research Team Colleagues (4) 
F. Responsibilities to Other Statisticians or Statistics Practitioners (5) 
G. Responsibilities Regarding Allegations of Misconduct (6) 
H. Responsibilities of Employers, Including Organizations, Individuals, Attorneys, or 
Other Clients Employing Statistical Practitioners (7) 
 
Although the ASA expects all members to be familiar with the Guidelines, there are three 
in particular which are relevant in promoting the consideration of classification errors, 
and all negative results that may be encountered in statistical practice: 
 
A. Professional Integrity and Accountability. The ethical statistician uses methodology 
and data that are relevant and appropriate, without favoritism or prejudice, and in a 
manner intended to produce valid, interpretable, and reproducible results. 
 
If an accepted model fails to produce valid, interpretable, and/or reproducible results, it 
should not be favoured – and research that identifies a model as failing in this respect is a 
meaningful contribution to the literature. However, the simple summary of an 
information criterion or estimated error alone cannot be relied on to have identified a 
“favourable” model. Thorough examination of classification or prediction errors is, and 
the report of these when they are discovered, is an important indicator of the professional, 
accountable, and ethical statistician. 
 
B. Integrity of the data and methods. The ethical statistician is candid about any 
known or suspected limitations, defects, or biases in the data that may impact the 
integrity or reliability of the statistical analysis. 
 
Heterogeneity in data can arise from manifest or latent variables: as was shown in the 
first example, Thyroxine (T3 and T4) levels that change within individuals over time in 
unpredictable (latent) ways (Soldin et al. 2004); or from manifest (observable sources), 
such as boys and girls in a classroom. In the second simulation example, the latent 
variable bring heterogeneity was developmental patterns for children in the classroom. 
Within classroom, all children do not start, or change, in the same ways; therefore, group 
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membership is unknown/unobservable (latent) - although groups may be identified 
from/characterized by data patterns. 
 
If data contain bias (like the educational data are shown to do), then the bias must be 
explicated. This may be particularly important for the ethical statistician to report and 
advocate for fully disclosing when high-stakes decisions are being based on the results. 
The stakes are as high for classification errors in T3/T4 that are too high and too low, 
while the decision in the education simulation study are problematic for less-proficient 
teachers and are neutral or even positive for teachers who are “good” or proficient. Even 
if a model has overall “good” accuracy, if the errors that the model makes create bias, 
that must be acknowledged and reported. 
 
Meeting both of these Guideline Principles in the two given examples permits the analyst 
to act in a manner consistent with Guideline Principle C: 
 
C. Responsibilities to science/public/funder/client. The ethical statistician supports 
valid inferences, transparency, and good science in general, keeping the interests of the 
public, funder, client, or customer in mind (as well as professional colleagues, patients, 
the public, and the scientific community). 
 
Statistical modeling permits accounting for heterogeneity from sources if they are 
recognized within the model. Building the most fair model requires anticipating and 
accommodating all sources of bias. Results must be reported fully, including an 
exploration of the bias and/or limitations of the method and data, to allow and promote 
the most informed decision making by the funder or client. 
 
While a “good” model, or decisions that are consistent with prior decisions or work, may 
be desirable, these must be balanced by responsibilities to others, not just the funder or 
client. These must also be consistent with the Principles relating to the ethical 
statistician’s obligations to the integrity of the data and methods, and his or her own 
professional integrity and accountability. 
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APPENDIX: ASA ETHICAL GUIDELINES – REVISED 

Ethical Guidelines for Statistical Practice 

Prepared by the Committee on Professional Ethics  
of the American Statistical Association 

Approved by ASA Board April 2016 
 
Purpose of the Guidelines  
 
The American Statistical Association's Ethical Guidelines for Statistical Practice are 
intended to help statistics practitioners make decisions ethically. Additionally, the Ethical 
Guidelines aim to promote accountability by informing those who rely on statistical 
analysis of the standards that they should expect. The discipline of statistics links the 
capacity to observe with the ability to gather evidence and make decisions, providing a 
foundation for building a more informed society. Because society depends on informed 
judgments supported by statistical methods, all practitioners of statistics, regardless of 
training and occupation or job title, have an obligation to work in a professional, 
competent, and ethical manner and to discourage any type of professional and scientific 
misconduct.  

 
Good statistical practice is fundamentally based on transparent assumptions, reproducible 
results, and valid interpretations. In some situations, Guideline principles may conflict, 
requiring individuals to prioritize principles according to context.  However, in all cases, 
stakeholders have an obligation to act in good faith, to act in a manner that is consistent 
with these Guidelines, and to encourage others to do the same.  Above all, 
professionalism in statistical practice presumes the goal of advancing knowledge while 
avoiding harm; using statistics in pursuit of unethical ends is inherently unethical.   

The principles expressed here should guide both those whose primary occupation is 
statistics and those in all other disciplines who use statistical methods in their 
professional work. Therefore, throughout these Guidelines, the term "statistician" 
includes all practitioners of statistics and quantitative sciences, regardless of job title or 
field of degree, comprising statisticians at all levels of the profession and members of 
other professions who utilize and report statistical analyses and their implications. 
 

A. Professional Integrity and Accountability   

The ethical statistician uses methodology and data that are relevant and appropriate, 
without favoritism or prejudice, and in a manner intended to produce valid, interpretable, 
and reproducible results. The ethical statistician does not knowingly accept work for 
which he/she is not sufficiently qualified, is honest with the client about any limitation of 
expertise, and consults other statisticians when necessary or in doubt. 

 The ethical statistician: 

1. Identifies and mitigates any preferences on the part of the investigators or data 
providers that might predetermine or influence the analyses/results.   
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2. Employs selection or sampling methods and analytic approaches appropriate and 
valid for the specific question to be addressed, so that results extend beyond the 
sample to a population relevant to the objectives with minimal error under reasonable 
assumptions.      

3. Respects and acknowledges the contributions and intellectual property of others. 

4. When establishing authorship order for posters, papers, and other scholarship, strives 
to make clear the basis for this order, if determined on grounds other than intellectual 
contribution. 

5. Discloses conflicts of interest, financial and otherwise, and manages or resolves them 
according to established (institutional/regional/local) rules and laws.  

6. Accepts full responsibility for his/her professional performance. Provides only expert 
testimony, written work, and oral presentations that he/she would be willing to have 
peer reviewed.  

 

B. Integrity of data and methods 
The ethical statistician is candid about any known or suspected limitations, defects, or 
biases in the data that may impact the integrity or reliability of the statistical analysis. 
Objective and valid interpretation of the results requires that the underlying analysis 
recognizes and acknowledges the degree of reliability and integrity of the data. 

The ethical statistician: 

1. Acknowledges statistical and substantive assumptions made in the execution and 
interpretation of any analysis. When reporting on the validity of data used, 
acknowledges data editing procedures, including any imputation and missing data 
mechanisms. 

2. Reports the limitations of statistical inference and possible sources of error. 

3. In publications, reports, or testimony, identifies who is responsible for the statistical 
work if it would not otherwise be apparent.  

4. Reports the sources and assessed adequacy of the data; accounts for all data 
considered in a study and explains the sample(s) actually used. 

5. Clearly and fully reports the steps taken to preserve data integrity and valid results.  

6. Where appropriate, addresses potential confounding variables not included in the 
study. 

7. In publications and reports, conveys the findings in ways that are both honest and 
meaningful to the user/reader.  This includes tables, models, and graphics. 

8. In publications or testimony, identifies the ultimate financial sponsor of the study, the 
stated purpose, and the intended use of the study results. 

9. When reporting analyses of volunteer data or other data that may not be 
representative of a defined population, includes appropriate disclaimers and, if used, 
appropriate weighting. 
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10. To aid peer review and replication, shares the data used in the analyses whenever 
possible/allowable, and exercises due caution to protect proprietary and confidential 
data, including all data that might inappropriately reveal respondent identities. 

11. Strives to promptly correct any errors discovered while producing the final report or 
after publication. As appropriate, disseminates the correction publicly or to others 
relying on the results. 

 
C. Responsibilities to Science/Public/Funder/Client  
 
The ethical statistician supports valid inferences, transparency, and good science in 
general, keeping the interests of the public, funder, client, or customer in mind (as well as 
professional colleagues, patients, the public, and the scientific community).   

The ethical statistician: 

1. To the extent possible, presents a client or employer with choices among valid 
alternative statistical approaches that may vary in scope, cost, or precision. 

2. Strives to explain any expected adverse consequences of failure to follow through on 
an agreed-upon sampling or analytic plan. 

3. Applies statistical sampling and analysis procedures scientifically, without 
predetermining the outcome. 

4. Strives to make new statistical knowledge widely available to provide benefits to 
society at large and beyond his/her own scope of applications.  

5. Understands and conforms to confidentiality requirements of data collection, release, 
and dissemination and any restrictions on its use established by the data provider (to 
the extent legally required), and protects use and disclosure of data accordingly. 
Guards privileged information of the employer, client, or funder. 

 
D. Responsibilities to Research Subjects  

The ethical statistician protects and respects the rights and interests of human and animal 
subjects at all stages of their involvement in a project.  This includes respondents to the 
census or to surveys, those whose data are contained in administrative records, and 
subjects of physically or psychologically invasive research.  

The ethical statistician: 

1. Keeps informed about and adheres to applicable rules, approvals, and guidelines for 
the protection and welfare of human and animal subjects.  

2. Strives to avoid the use of excessive or inadequate numbers of research subjects, and 
excessive risk to research subjects (in terms of health, welfare, privacy, and 
ownership of their own data), by making informed recommendations for study size.  

3. Protects the privacy and confidentiality of research subjects and data concerning 
them, whether obtained from the subjects directly, other persons, or existing records. 
Anticipates and solicits approval for secondary and indirect uses of the data, 
including linkage to other data sets, when obtaining approvals from research subjects, 
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and obtains approvals appropriate to allow for peer review and independent 
replication of analyses.  

4. Knows the legal limitations on privacy and confidentiality assurances and does not 
over-promise or assume legal privacy and confidentiality protections where they may 
not apply. 

5. Considers whether appropriate research-subject approvals were obtained before 
participating in a study involving human beings or organizations, before analyzing 
data from such a study, and while reviewing manuscripts for publication or internal 
use. The statistician considers the treatment of research subjects (e.g., confidentiality 
agreements, expectations of privacy, notification, consent, etc.) when evaluating the 
appropriateness of the data source(s).  

6. In contemplating whether to participate in an analysis of data from a particular 
source, refuses to do so if participating in the analysis could reasonably be interpreted 
by individuals who provided information as sanctioning a violation of their rights. 

7. Recognizes that any statistical descriptions of groups may carry risks of stereotypes 
and stigmatization. Statisticians should contemplate, and be sensitive to, the manner 
in which information is framed so as to avoid disproportionate harms to vulnerable 
groups. 

 

E. Responsibilities to Research Team Colleagues 

Science and statistical practice are often conducted in teams made up of professionals 
with different professional standards.  The statistician must know how to work ethically 
in this environment. 

The ethical statistician: 
 
1. Recognizes that other professions have standards and obligations, that research 

practices and standards can differ across disciplines, and that statisticians do not have 
obligations to standards of other professions that conflict with these Guidelines. 
 

2. Ensures that all discussion and reporting of statistical design and analysis is 
consistent with these Guidelines.  
 

3. Avoids compromising scientific validity for expediency.  
 
4. Strives to promote transparency in design, execution, and reporting or presenting of 

all analyses. 

 

F. Responsibilities to Other Statisticians or Statistics Practitioners 

The practice of statistics requires consideration of the entire range of possible 
explanations for observed phenomena, and distinct observers drawing on their own 
unique sets of experiences can arrive at different and potentially diverging judgments 
about the plausibility of different explanations.  Even in adversarial settings, discourse 
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tends to be most successful when statisticians treat one another with mutual respect and 
focus on scientific principles, methodology and the substance of data interpretations.  Out 
of respect for fellow statistical practitioners, the ethical statistician: 

1. Promotes sharing of data and methods as much as possible and as appropriate without 
compromising propriety.  Makes documentation suitable for replicate analyses, 
metadata studies, and other research by qualified investigators. 

2. Helps strengthen the work of others through appropriate peer review; in peer review, 
respects differences of opinion and assesses methods, not individuals. Strives to 
complete review assignments thoroughly, thoughtfully, and promptly. 

3. Instills in students and non-statisticians an appreciation for the practical value of the 
concepts and methods they are learning or using. 

4. Uses professional qualifications and contributions as the basis for decisions regarding 
statistical practitioners' hiring, firing, promotion, work assignments, publications and 
presentations, candidacy for offices and awards, funding or approval of research, and 
other professional matters.  

5. Does not harass or discriminate. 

 

G. Responsibilities Regarding Allegations of Misconduct 

The ethical statistician understands the difference between questionable scientific 
practices and practices that constitute misconduct, avoids both, but knows how each 
should be handled. 

 
The ethical statistician: 
 
1. Avoids condoning or appearing to condone incompetent or unethical practices in 

statistical analysis. 
 

2. Recognizes that differences of opinion and honest error do not constitute misconduct; 
they warrant discussion, but not accusation. 
 

3. Knows the definitions of, and procedures relating to, misconduct. If involved in a 
misconduct investigation, follows prescribed procedures.  

 
4. Maintains confidentiality during an investigation, but discloses the investigation 

results honestly to appropriate parties and stakeholders once they are available. 
 

5. Following an investigation of misconduct, supports the appropriate efforts of all 
involved, including those reporting the possible scientific error or misconduct, to 
resume their careers in as normal a manner as possible. 
 

6. Avoids, and acts to discourage, retaliation against or damage to the employability of 
those who responsibly call attention to possible scientific error or misconduct. 

H. Responsibilities of Employers, Including Organizations, Individuals, 
Attorneys, or Other Clients Employing Statistical Practitioners 
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Those employing any person to analyze data are implicitly relying on the profession’s 
reputation for objectivity.  However, this creates an obligation on the part of the employer 
to understand and respect statisticians’ obligation of objectivity.  
 
Those employing statisticians are expected to: 
 
1. Recognize that the Ethical Guidelines exist, and were instituted, for the protection 

and support of the statistician and the consumer alike.  
 
2. Recognize that valid findings result from competent work in a moral environment.  

Employers, funders, or those who commission statistical analysis have an obligation 
to rely on the expertise and judgment of qualified statisticians for any data analysis. 
This obligation may be especially relevant in analyses that are known or anticipated 
to have tangible physical, financial, or psychological impacts.  

 
3. Recognize that the results of valid statistical studies cannot be guaranteed to conform 

to the expectations or desires of those commissioning the study or the statistical 
practitioner(s).   

 
4. Recognize that it is contrary to these Guidelines to report or follow only those results 

that conform to expectations without explicitly acknowledging competing findings 
and the basis for choices regarding which results to report, use, and/or cite. 

 
5. Recognize that the inclusion of statistical practitioners as authors, or 

acknowledgement of their contributions to projects or publications, requires their 
explicit permission because it implies endorsement of the work. 

 
6. Support sound statistical analysis and expose incompetent or corrupt statistical 

practice.  
 
7. Strive to protect the professional freedom and responsibility of statistical 

practitioners who comply with these Guidelines. 
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