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Abstract
Multiple matrix sampling is a survey methodology technique that randomly chooses a relatively
small subset of items to be presented to survey respondents for the purpose of reducing respondent
burden. The data produced are missing completely at random (MCAR), and special missing data
techniques should be used in linear regression and other multivariate statistical analysis. We derive
asymptotic variances of regression parameter estimates that allow us to conduct power analysis for
linear regression models fit to the data obtained via a multiple matrix sampling design. The ideas
are demonstrated with a variation of the Big Five Inventory of psychological traits. An exploration
of the regression parameter space demonstrates instability of the sample size requirements, and
substantial losses of precision with matrix-sampled regressors. A simulation with non-normal data
demonstrates the advantages of a semi-parametric multiple imputation scheme.

Key Words: MCAR, multiple imputation, multiple matrix sampling, power analysis, respondent
burden.

1. Introduction and motivation

This work was conceived and carried out in the context of a task to reduce respondent bur-

den in a mental health study. We were interested in a range of outcome variables, and our

analytical goal was fitting regression models to explain the mental health outcomes. The

instrument collects demographic explanatory variables, as well as scores from the Big Five

Inventory (John & Srivastava 1999), a commonly used set of five psychological traits that

are often found to be correlated with behaviors and outcomes. We expected that multiple

matrix sampling would allow us to reduce the instrument length from over an hour to about

20–25 minutes. A key component of sampling design, sample size determination, will be

based on a linear regression power analysis. However, complexities of regression analy-

sis with missing data required custom derivations of power analyses, which is what this

technical paper addresses.

2. Regression setting

Consider a regression analysis problem where an outcome y is predicted by a set of ex-

planatory variables x1, . . . , xp:
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y = β0 + β1x1 + . . .+ βpxp + ε (1)

In the simplest possible case of no missing data and homoskedastic normal errors

V[εi] = σ2 ∀i, the maximum likelihood estimates are the OLS estimates

β̂OLS = (X ′X)−1X ′Y ; V[β̂OLS] = σ2(X ′X)−1;

v[β̂OLS] = s2(X ′X)−1; s2 =
1

n

n∑
i=1

(yi − x′iβ̂)2 (2)

Inference on regression coefficients is based on normality of coefficient estimates, β̂ ∼
N(β, σ2(X ′X)−1).

An unbiased estimate of s2 can be obtained by changing the denominator (degrees of

freedom) from n to n − p. The OLS estimates hold desirable properties in more general

settings, e.g., by dropping the normality requirement. When regressors X are stochastic,

the OLS estimates and their variance estimates given above only have an asymptotic justifi-

cation, and require independence of regressorsX and errors ε. When the basic assumptions

are violated, sandwich-type or resampling variance estimates need to be used.

2.1 Power analysis and sample size determination in regression setting

Power analysis and sample size determination are statistical tasks of addressing, quanti-

fying and controling type I error. In a typical power analysis problem, a null hypothesis,

H0 : θ ∈ Θ0, and an alternative, H1 : θ ∈ Θ1, are formulated; a test statistic t(X) is

selected, for which a critical region of level α is specified. E.g., assuming that high values

of the test statistic indicate disagreement between the data and the null, as is typical with χ2

or F -statistic tests common in regression models, the rejection region would have the form

Tα = [c,+∞) so that Prob[t(X) > c] ≤ α when the true value of the parameter θ ∈ Θ0.

Finally, power analysis addresses the issue of Type II error, i.e., Prob[t(X) ≤ c] under

the alternative θ ∈ Θ1. While the null hypothesis typically represents a simple hypothesis

θ = θ0 or a subset of reasonably small dimension, the alternative is necessarily complex.

Hence researchers often formulate a measure of effect size δ and consider power analysis

for parameter values under the alternative that are at least δ away from the specific value θ0
or the subset Θ0 in an appropriate metric.

As the power to reject the null typically grows with the sample size n, the task of

sample size determination is to find the value nβ that guarantees a given level of power

1 − β. While the size of the test is often taken to be α = 5%, the traditional type II error

rate is β = 20% leading to 1− β = 80% power.

While testing the location parameter of two populations, for example, the natural hy-

potheses might be H0 : µ1 = µ2 vs. the (two-sided) alternative H1 : |µ1 − µ2| ≥ δ,

with relatively straightforward testing based on the Student t distribution, linear regression

models feature a variety of statistics that may be subject to testing and power analysis:
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1. Test of overall fit: H0 : β = 0.

(a) A version of this hypothesis can be formulated as H0 : R2 = 0. Depending

on how easy or difficult it is to conduct inference on parameter estimates or

regression sums of squares, one or the other may be preferred in applications.

2. An increase of overall fit: H0 : R2 ≤ R2
0 vs. H1 : R2 ≥ R2

0 + δ.

3. Specific regression coefficients: the coefficient of the j-th explanatory variable is

zero, H0 : βj = 0 vs. H1 : |βj | ≥ δ.

4. Linear hypothesis H0 : Rβ = r0, which covers cases like:

(a) Equality of two regression coefficient for the j-th and the k-th explanatory

variable, H0 : βj − βk = 0, so R = (0, . . . , 1, . . . ,−1), r = 0

(b) No impact of a set of variables j1, j2, . . .: H0 : βj1 = 0, βj2 = 0, . . ., so that

R is a subset of rows of a unit matrix, and r is a zero vector of conforming

dimension.

5. Tests on error variance σ2, e.g. H0 : σ2 ≤ σ20 vs. H1 : σ2 ≥ σ20 + δ.

3. Multiple matrix sampling

Multiple matrix sampling of a survey questionnaire consists of administering only a specific

subset of items to a given respondent, out of all items this respondent is potentially eligible

to be asked. The name stems from representation of the data with respondents as rows,

and items as columns, so that matrix sampling concerns selecting specific entries in the

matrix to be administered, rather than the full row as is typically done. The focus of the

technique is on selecting items out of all the relevant ones that the respondent could be

asked, with the potential skip patterns already taken into account. Similar or equivalent

techniques are also known as partitioned designs and questionnaire splitting. The method

originated in educational testing (Shoemaker 1973), where it was first used to select items

from a large pool of available ones. The educational testing companies have identified the

need to implement multiple matrix sampling methods to protect the integrity of their data

products, so that the students taking a standardized test are not able to get trained on a small

subset of items known to be administered on standardized tests, thus biasing the estimates

of achievement.

Given the relatively esoteric nature of the method, the existing publications have ad-

dressed some specific niche problems in matrix sampling (and the current paper is no ex-

ception). Gonzalez & Eltinge (2007) provided a review of matrix sampling and applications

in Consumer Expenditure Quarterly Survey. Chipperfield & Steel (2009) put the problem

of matrix sampling into a cost optimization framework, where proper subsets of K items
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can be administered on up to 2K − 1 forms at specific cost per item rates. They demon-

strated that with two items (or groups of items), the split questionnaire best linear unbiased

estimator (BLUE; also related to the GLS estimator) provides modest efficiency gains over

a design in which all items are administered at once, and over a two-phase design in which

all items are administered to a fraction of respondents, and one subset of items is admin-

istered to the remainder of respondents. Merkouris (2010) extended their work to provide

simplified composite estimation using the estimates based on the form-specific subsamples,

where compositing is based on the second-order probabilities of selection and the way they

are utilized in estimating the variance of the Horvitz-Thompson estimator. Eltinge (2013)

discussed connections to and relations with multiple frame and multiple systems estimation

methods (e.g., integration of survey and administrative data, where administrative data may

fill some of the survey items when available). We add to this literature by providing the

asymptotic variance-covariance matrix of the coefficient estimates under matrix sampling

of regressors, assuming that the outcome is always collected. We also discuss implications

for power analysis and sample size determination.

3.1 A simple example

Consider the following matrix sampling design, in which the outcome y is collected on

every form, while the explanatory variables differ between forms.

Table 1: Three questionnaire forms for data collection: Design 1.
Form X1 X2 X3 n

1 + n1

2 + n2

3 + n3

With this design, summaries (means, totals) of all the variables (x1, x2, x3, y) can be

obtained, and the bivariate relations between each of the regressors and the outcome y can

be analyzed. However, estimation of a multiple regression model requires estimability of

all of the entries of the (X ′X) matrix, which this specific matrix sampling design does not

provide.

To conduct regression analysis, we need to observe the cross-entries of theX ′X matrix,

which necessitates the following matrix sampling design.

Table 2: Three questionnaire forms for data collection: Design 2.
Form X1 X2 X3 n

1 + + n1

2 + + n2

3 + + n3
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3.2 Parameter estimation under matrix sampling

Since the components ofX ′X and/orX ′y necessary to obtain the OLS regression estimates

may not be jointly available, more complex estimation strategies may need to be employed.

We study two such strategies.

One possibility is to utilize structural equation modeling (SEM) with missing data, in

which the marginal regression model of interest is formulated by using the regressors as

exogenous variables, the dependent variable is introduced as the only endogenous vari-

able explained by the model (Bollen 1989), and the existing SEM estimation methods are

applied (Yuan & Bentler 2000, Savalei 2010).

Alternatively, since the data are missing by design, and can be treated as MCAR, mul-

tiple imputation (Rubin 1996, van Buuren 2012, MI) can be used to fill in the missing

values, with Rubin’s variance formulae used to combine MI estimates and provide infer-

ence. Of the several existing flavors of multiple imputation, one of the simplest strategies

is imputation under multivariate normality (which we expect to behave in ways similar to

the estimation methods for SEM with missing data under multivariate normality). A less

model-dependent method is predictive mean matching (Little 1988) in which a regression

model is fit for each imputed variable, a linear prediction is obtained for each case with

missing variable, and an imputation is made by choosing the value of the dependent vari-

able from one of the nearest neighbors in terms of the linear prediction score.

4. Set up and notation

All of the derivations in this paper concern the joint matrix of the first and second order

moments of the data:

Ω = E




1

x

y

(1 x′ y
) =


1 µ′x µy

µx E[xx′] E[xy]

µy E[x′y] E[y2]

 ≡

ω00 Ω0x ω0y

Ω′0x Ωxx Ωxy

ω0y Ω′xy ωyy

 (3)

The maximum likelihood estimates of the coefficients in the regression of y on x (ob-

tained, for instance, through SEM modeling using maximum likelihood estimates with

multivariate normal missing data method; or approximated through multiple imputation)

are obtained as

β̂FIML =

(
ω00 Ω̂0x

Ω̂′0x Ω̂xx

)−1(
ω̂0y

Ω̂xy

)
(4)

where Ω̂ is the maximum likelihood estimator of the joint parameter matrix:

Ω̂ =


ω00 Ω̂0x ω̂0y

Ω̂′0x Ω̂xx Ω̂xy

ω̂0y Ω̂′xy ω̂yy

 =



ω00 ω̂01 . . . ω̂0p ω̂0y

ω̂01 ω̂11 . . . ω̂1p ω̂y1
... . . .

...
...

...

ω̂0p ω̂1p . . . ω̂pp ω̂yp

ω̂0y ω̂y1 . . . ω̂yp ω̂yy


(5)
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where x0 = 1 is the regression intercept by convention, so that ω00 ≡ 1, ω̂0j = µ̂j are the

(estimated) means of the j-th explanatory variable, and ω̂0y = µ̂y is the estimated mean of

y.

To derive the likelihood, we need the form-specific submatrices obtained by multiplying

the overall matrix by selector matrices. For instance, in Design 2 above, for the first form,

the relevant covariance matrix is

Cov(x2, x3, y)′ = F1ΩF
′
1, F1 =


0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 (6)

Matrices necessary to form F2ΩF
′
2 and F3ΩF

′
3 are defined in a similar way.

Define the unit selector vector that picks up the estimates of the means e0 = (1, 0, . . . , 0),

which is the unit vector with 1 in the “zeroth” position corresponding to the intercepts in

the parameter matrix Ω. In addition to e0 selecting the first order moments, define the unit

selection vectors ey = (0, 0, 0, 0, 1)′ as the unit vector selecting the last row/column of

Ω corresponding to the y-parameters, and ej = (0, . . . , 0, 1, 0, . . .) is a unit vector with

1 in the j-th position corresponding to the j-th variable (with the convention of indexing

starting at zero). Then we observe that

F ′1 = (e2, e3, ey)

F ′2 = (e1, e3, ey)

F ′3 = (e1, e2, ey) (7)

5. Likelihood and derivatives

5.1 Likelihood

Indexing the forms by k, and observations within forms by i, the likelihood can be written

as

lnL(ω;X) =

3∑
k=1

nk∑
i=1

{
−1

2
tr(FkF

′
k) ln(2π)− 1

2
ln det(FkΩF

′
k)

− 1

2

[
(x′i, y)− e′0ΩF ′k

]
(FkΩF

′
k)
−1[(x′i, y)′ − FkΩe0

]}
(8)

where nk is the number of observations on which the k-th form is collected, and Fk is the

selector matrix corresponding to the k-th form.

Derivations of the asymptotic properties of the MLE estimate Ω̂ are based on the matrix

differential (Magnus & Neudecker 1999)

dΩ =dω00 e0e
′
0 +

p∑
j=1

dω0j (e0e
′
j + eje

′
0) + dω0y (e0e

′
y + eye

′
0) +

p∑
j=1

dωjj eje
′
j

+

p∑
j=1

∑
i6=j

dωij (eie
′
j + eje

′
i) +

p∑
j=1

dωyj (eye
′
j + eje

′
y), (9)
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After some tedious algebra, the following information matrix E∇2 lnL(ω;X) results.

E
[∂2 lnL(ω;X)

∂ω0s∂ω0t

]
= −

3∑
k=1

nkτ
(k)
st , (10)

E
[∂2 lnL(ω;X)

∂ω0s∂ωuu

]
= 0, (11)

E
[∂2 lnL(ω;X)

∂ω0s∂ωuv

]
= 0 (12)

The zero expected cross-derivatives indicate that the estimates of the multivariate nor-

mal means and the variance-covariance parameters are independent. (This may not be the

case in general if the missing data mechanism coded by the matrices Fk is not MCAR, and

instead related to the data values.)

E
[∂2 lnL(ω;X)

∂ωss∂ωuu

]
= −1

2

3∑
k=1

nk
[
τ (k)su

]2 (13)

E
[∂2 lnL(ω;X)

∂ωss∂ωuv

]
= −

3∑
k=1

nkτ
(k)
su τ

(k)
sv (14)

E
[∂2 lnL(ω;X)

∂ωst∂ωuv

]
= −

3∑
k=1

nk
[
τ (k)su τ

(k)
tv + τ (k)sv τ

(k)
tu

]
(15)

τ
(k)
st = e′sF

′
k(FkΩF

′
k)
−1Fket (16)

where τ (k)st is the (s, t)-th entry of the inverse of the form-specific covariance matrix; and

indices s, t, u, v can enumerate the explanatory variables xj and the response y. As xi
and y are considered jointly multivariate normal at this point, there is no separation into

dependent and explanatory variables.

Putting these entries together into a matrix, and using the standard maximum likelihood

estimation theory results, the asymptotic variance of the maximum likelihood estimates of

vech Ω is given by

As.V[ω̂] = −E
[
∇2 lnL(ω;X)

]−1 (17)

5.2 The delta method derivation of the asymptotic variance of β̂

Let us now return to the task of estimating the coefficients of the regression equation

y = β′x+ ε

via (4). The asymptotic variance-covariance matrix of β̂FIML can be obtained from the

asymptotic covariance matrix of Ω̂ using the delta-method, i.e., linearization of the relation
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(4):

dβ =−

(
ω00 Ω0x

Ω′0x Ωxx

)−1(
0 dΩ0x

dΩ′0x dΩxx

)(
ω00 Ω0x

Ω′0x Ωxx

)−1(
ω0y

Ωxy

)
+

+

(
ω00 Ω0x

Ω′0x Ωxx

)−1(
dω0y

dΩxy

)
(18)

where the individual components of dΩ can be obtained from (9). Thus

∂β

∂ω0j
=−

(
ω00 Ω0x

Ω′0x Ωxx

)−1(
0 e′j

ej 0

)(
ω00 Ω0x

Ω′0x Ωxx

)−1(
ω0y

Ωxy

)

∂β

∂ω0y
=

(
ω00 Ω0x

Ω′0x Ωxx

)−1(
1

~0

)

∂β

∂ωjj
=−

(
ω00 Ω0x

Ω′0x Ωxx

)−1(
0 ~0′

~0 eje
′
j

)(
ω00 Ω0x

Ω′0x Ωxx

)−1(
ω0y

Ωxy

)

∂β

∂ωij
=−

(
ω00 Ω0x

Ω′0x Ωxx

)−1(
0 ~0′

~0 eie
′
j + eje

′
i

)(
ω00 Ω0x

Ω′0x Ωxx

)−1(
ω0y

Ωxy

)

∂β

∂ωyj
=

(
ω00 Ω0x

Ω′0x Ωxx

)−1(
0

ej

)

∇ωβ =
( ∂β

∂ω01
,
∂β

∂ω02
, . . . ,

∂β

∂ωy0
,
∂β

∂ω11
,
∂β

∂ω12
, . . . ,

∂β

∂ωy1
,
∂β

∂ω22
, . . . ,

∂β

∂ωyp
, 0
)

(19)

where the derivatives are with respect to the components of the vectorization vech Ω, of

which the last term is ∂β
∂ωyy

= 0. By the standard multivariate delta-method results (Newey

& McFadden 1994, van der Vaart 1998),

As.V[β̂] = ∇ωβ V[ω̂]∇′ωβ (20)

6. Example: Big Five Inventory

In our application, we wanted to analyze the relation between mental health outcomes and

the Big Five personal traits:

• Openness to experience (inventive/curious vs. consistent/cautious)

• Conscientiousness (efficient/organized vs. easy-going/careless)

• Extraversion (outgoing/energetic vs. solitary/reserved)

• Agreeableness (friendly/compassionate vs. challenging/detached)

• Neuroticism (sensitive/nervous vs. secure/confident)
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These personal traits have been found in numerous studies to be related to academic

performance, disorders, general health, and many other behaviors and outcomes. The stan-

dard Big Five scale consists of 44 items, some of which are reverse worded and reverse

scored to minimize the risk of straightlining, and with items from different subscales mixed

throughout the scales. Each item is a 5 point Likert scale with a clear midpoint.

In the population of interest, the Big Five traits are expected to have the following

correlations, based on preceding research:

Cov[x] =



1 0.26 0.47 0.20 −0.16

0.26 1 0.28 0.46 −0.28

0.47 0.28 1 0.20 −0.35

0.20 0.46 0.20 1 −0.37

−0.16 −0.28 −0.35 −0.37 1


≡ ΣBig5 (21)

We thus consider a regression model

yi = β0 + β1xi1 + . . . β5xi5 + εi

where xi1, . . . , xi5 are subscale scores of the Big Five traits. Measurement error in these

scores is ignored, although more accurate methods are available to account for it (Skrondal

& Laake 2001).

A balanced multiple matrix sampling design would consist of ten forms, each adminis-

tering the outcome y and two of the Big Five subscales:

Table 3: Multiple matrix sampling design with five explanatory variables.

Form 1 2 3 4 5 6 7 8 9 10

O + + + +

C + + + +

E + + + +

A + + + +

N + + + +

y + + + + + + + + + +

7. Simulation 1: Parameter space exploration

In this simulation exercise, we explore the parameter space of regression coefficients to

gauge the degree of variability of sample size determination results. Asymptotic variance

resulting from (20) is used to obtain the sample sizes for the tasks outlined in Section 2.1.

Simulation 1 consists of the following steps.

1. Population regression parameters are simulated from β ∼ N(0, I5).
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2. To provide the scale of the residual variance, the fraction of explained variance is

set to R2 = 0.15, a moderate effect for behavioral and social science data, and the

associated residual variance σ2ε is calculated based on this value of R2.

3. The complete data variances stemming from (2) are recorded.

4. The multiple-matrix-sampled data variances stemming from (20) are recorded.

5. Sample size to reject the test of overall significance H0 : β1 = . . . = β5 = 0 at 5%

level with 80% power is recorded.

6. Sample size to detect an increase in R2 by 0.01 (i.e., from 0.15 to 0.16), through a

uniform multiplicative increase in the values of the regression parameters, keeping

the residual variance σ2ε constant, at 5% level with 80% power, is recorded.

7. Sample size to detect an increase in R2 by 0.01 (i.e., from 0.15 to 0.16), through an

increase in the value of the coefficient βj , j = 1, . . . , 5, keeping the residual variance

σ2ε constant and other regression parameters constant, at 5% level with 80% power,

is recorded.

8. Fraction of missing information (FMI) is computed as one minus the ratio of the

variance of regression parameter estimate with complete data (obtained in step 3) to

the variance of regression parameter estimate with missing data (obtained in step 4)

1,000 Monte Carlo draws of the β vector, and subsequent analytical computation of

asymptotic variances and power, were done. Results are presented graphically. Figure 1

presents the sample sizes obtained in steps 5–7 of the parameter exploration. A striking

feature of the plot is wide variability of the sample sizes as a function of the specific con-

figuration of parameters. While the lower limit of the sample size necessary to detect an

overall increase in R2 by 0.01 is about n = 82K, the median value is n = 110K, the

95th percentile is n = 220K, and the maximum (worst case scenario) identified in this

simulation is n = 400K. The patterns of the coefficients of the worst case scenarios typi-

cally indicate large coefficients of opposite signs of the positively correlated variables (x1
through x4), or large coefficients of similar size of one of the positively correlated factors

(x1 through x4) and a high value of factor x5 that is negatively correlated with all other

subscales. This wide range of variability makes it difficult to provide a definite recommen-

dation concerning the sample size for the study to the stakeholders. A conservative value

based on a high percentile (80% or 90%) can be recommended, to protect against bad pop-

ulation values of regression parameters at the expense of a potentially unnecessary increase

in costs.

Figure 2 presents the exploration distribution of the fraction of missing information

due to the missing data. FMI for the intercept is generally low, below 0.2. FMI for re-

gression slopes are generally high, in the range of about 70% to 80%. Given the structure

of the missing data shown by the multiple matrix sampling design in Table 3, each of the

150



predictor variables is observed in 40% of the data (informing the diagonal entries of the

X ′X matrix), and each pairwise combination of the regressors is observed in 10% of the

data (informing the off-diagonal entries). This yields an expected information loss for the

predictor variables somewhere between 60% and 90%.

(a) (b)

(c) (d)

Figure 1: Sample size to ensure the necessary detectable effect. (a) Overall test H0 : R2 =

0; (b) R2 increase due to overall explanatory power increase from R2 = 0.15 by 0.01; (c)

R2 increase due to an increase in explanatory power fromR2 = 0.15 by 0.01 due to x1; (d)

R2 increase due to an increase in explanatory power from R2 = 0.15 by 0.01 due to x5.

8. Simulation 2: Performance in finite samples

To study the performance of estimation methods based on SEM estimation with missing

data, and on multiple imputation procedures, a simulation with microdata was also per-

formed. For each simulation draw, the following steps were taken.

1. Sample size is set to n = 1, 000 (i.e., 100 observations per form).

2. Multivariate non-normal factor scores are simulated:
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(a) The non-normal principal components of x1, . . . , x5 are simulated as

f1 = − lnu1 − 1, u1 ∼ U [0, 1] (22)

f2 = (2b− 1)(− lnu2 − 1), b ∼ Bernoulli(0.5), u2 ∼ U [0, 1]

(23)

f3, f4, f4 ∼ N(0, 1) (24)

so that each principal component has a mean of 0 and variance of 1, with all

the underlying random variables being drawn independently of each other. The

first component f1 has a marginal exponential distribution with a heavy right

tail, ensuring the overall skewness of each factor. The second component has

(a)

(b)

(c)

Figure 2: Fraction of missing information: (a) intercept; (b) slope of x1; (c) slope of x5.
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a bimodal distribution with two exponential components and heavy tails. The

remaining three components are normal.

(b) The factor values are reconstructed as

x1

x2

x3

x4

x5


=

5∑
j=1

uj
√
λjfj (25)

where ΣBig5 = U ′ΛU is the eigenvalue decomposition of the target covariance

matrix (21) of the Big Five factors.

3. The outcome is obtained as y = 0.3x1 + 0.3x4 + ε, ε ∼ N(0, 1.248602) where the

specific value of the residual variance was chosen to ensure that R2 = 0.15 in the

population.

4. The regression model with the complete data is fit to obtain the benchmark for FMI

calculation.

5. The values of regressors were deleted in accordance with the multiple matrix sam-

pling design in Table 3.

6. The normal theory based SEM model for missing data was fit; regression parameter

estimates and their asymptotic standard errors based on the inverse Hessian were

recorded.

7. M = 50 complete data sets were imputed using multivariate normal imputation

model.

8. The regression model was estimated using the first M = 5 data sets, in accordance

with the traditional recommendation regarding the number of imputed data sets. Re-

gression parameter estimates and their asymptotic standard errors based on the Ru-

bin’s rules were recorded.

9. The regression model was estimated using all of the M = 50 data sets. Regression

parameter estimates and their asymptotic standard errors based on the Rubin’s rules

were recorded.

10. M = 50 complete data sets were imputed using predictive mean matching imputa-

tion model for each of the missing variables.

11. The regression model was estimated using the first M = 5 data sets, in accordance

with the traditional recommendation regarding the number of imputed data sets. Re-

gression parameter estimates and their asymptotic standard errors based on the Ru-

bin’s rules were recorded.
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12. The regression model was estimated using all of the M = 50 data sets. Regression

parameter estimates and their asymptotic standard errors based on the Rubin’s rules

were recorded.

There were 1,200 Monte Carlo samples drawn.

Figure 3: Sampling distributions of the parameter estimates β̂1 across different methods.

Figure 3 reports the simulated distributions of the estimates of parameter β1. The pop-

ulation value of 0.3 is shown as a vertical line on the plot. As expected, the complete data

regression model demonstrates higher efficiency. Estimates based on the multivarate nor-

mal methods are biased up, while those based on MI with predictive mean matching are

biased down. Distributions of the estimates based on the multivariate normal methods are

more spread out than the asymptotic variance based on (20), while those based on PMM

MI are less spread out, with apparent efficiency gains extracted from higher moments of

the data. The plots in Figure 3 are truncated, with about 3% of the Monte Carlo simulations

outside the right range of the plot (the value of β1 = 0.6), and about 1% of the Monte Carlo

simulations outside the left range of the plot (the value of β1 = 0) for each of the methods

based on multivariate normality. Details for β̂1 and other regression coefficient estimates

are provided in Table 4.

Figure 4 provides the Monte Carlo distributions of the standard errors reported for the

missing data methods. The dotted vertical line is the asymptotic standard error based on

(20), 0.0791. The dashed lines are empirical means of the standard errors. All distributions
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Table 4: Monte Carlo means, [95% confidence intervals] for the means and 〈standard

deviations〉 for regression parameter estimates.
Method β̂1 β̂2 β̂3 β̂4 β̂5

Complete 0.3002 0.0016 0.0006 0.3002 0.0015

data [0.298,0.303] [-0.001,0.004] [-0.002,0.003] [0.298,0.303] [-0.001,0.004]

regression 〈 0.0418 〉 〈 0.0408 〉 〈 0.0440 〉 〈 0.0414 〉 〈 0.0413 〉

SEM with 0.3277 -0.0203 -0.0130 0.3324 0.0096

MVN [0.320,0.336] [-0.028,-0.013] [-0.022,-0.004] [0.324,0.340] [0.003,0.017]

missing data 〈 0.1414 〉 〈 0.1356 〉 〈 0.1588 〉 〈 0.1429 〉 〈 0.1249 〉

MI using 0.3369 -0.0253 -0.0173 0.3393 0.0091

MVN model, [0.329,0.345] [-0.033,-0.017] [-0.027,-0.008] [0.331,0.347] [0.002,0.016]

M = 5 〈 0.1390 〉 〈 0.1415 〉 〈 0.1645 〉 〈 0.1435 〉 〈 0.1259 〉

MI using 0.3430 -0.0314 -0.0208 0.3466 0.0109

MVN model, [0.334,0.352] [-0.040,-0.023] [-0.031,-0.011] [0.338,0.355] [0.003,0.018]

M = 50 〈 0.1556 〉 〈 0.1507 〉 〈 0.1760 〉 〈 0.1531 〉 〈 0.1336 〉

MI using 0.2661 0.0356 0.0261 0.2666 -0.0056

PMM model, [0.262,0.270] [0.032,0.039] [0.022,0.030] [0.263,0.271] [-0.009,-0.002]

M = 5 〈 0.0707 〉 〈 0.0679 〉 〈 0.0758 〉 〈 0.0707 〉 〈 0.0631 〉

MI using 0.2678 0.0361 0.0251 0.2671 -0.0043

PMM model, [0.264,0.272] [0.032,0.040] [0.021,0.029] [0.263,0.271] [-0.008,-0.001]

M = 50 〈 0.0676 〉 〈 0.0656 〉 〈 0.0719 〉 〈 0.0665 〉 〈 0.0591 〉
Population 0.3 0 0 0.3 0

〈 0.0791 〉 〈 0.0856 〉 〈 0.0926 〉 〈 0.0824 〉 〈 0.0832 〉

are skewed with heavy right tails. The distributions of the standard errors based on multi-

variate data contain outliers outside the range of the plot (3% of the SEM with missing data

results; 6% of the results for MI using the multivariate normal model with M = 5; 8% of

the results for MI using the multivariate normal model with M = 50; the range of the plots

is from 0 to 3× the asymptotic standard error, 0.0791). Distributions of the standard errors

for the multivariate normal methods are significantly higher that this asymptotic standard

error, which reflects, to some extent, the greater variability of the estimates observed above

in Figure 3 and Table 4. Distributions of the standard errors for the PMM MI method are

significantly lower that the asymptotic standard error, which reflects, to some extent, the

lower variability of the estimates based on this method. A higher number of multiple im-

putations M = 50 vs. M = 5 helps to stabilize the variance estimates, particularly in the

case of PMM.

Coverage of the nominal 95% confidence intervals is analyzed in Table 5. Despite the

shortcomings of both the point estimates and the standard errors noted above, things seem
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to balance out and provide confidence interval coverage fairly close to the target.

Table 5: Coverage of the nominal 95% coverage intervals.
Method β̂1 β̂2 β̂3 β̂4 β̂5

Complete data regression 95.5% 95.4% 95.1% 95.8% 97.3%

SEM with MVN missing data 97.8% 98.6% 97.3% 98.7% 98.4%

MI using MVN model, M = 5 93.3% 93.8% 93.0% 93.3% 96.8%

MI using MVN model, M = 50 92.8% 93.4% 93.2% 93.1% 97.9%

MI using PMM model, M = 5 94.4% 95.6% 94.5% 95.0% 94.2%

MI using PMM model, M = 50 96.3% 96.6% 95.8% 96.8% 97.2%

Estimated fractions of missing information reported by the software are shown on Fig-

ure 5. The dotted line is the value based on asymptotic variance, 73.6%. Dashed lines are

the empirical FMI, based on the ratios of the Monte Carlo variance of β̂1 based on a given

missing data method to the variance of β̂1 based on the complete data. The latter empir-

ical FMI is greater than the theoretical one for the MI methods based on the multivariate

normality assumption, and lower than the theoretical one for the PMM MI methods. The

methods based on multivariate normality appear to underestimate FMI, as the distributions

of the reported empirical FMI appear to the left of the true value (dashed line). The FMI

Figure 4: Sampling distributions of the standard errors of β̂1 across different methods.
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that come out of PMM MI appear to be more accurate. An increase in the number of com-

pleted data sets from M = 5 to M = 50 helps to improve stability of the FMI estimates,

making the distributions of the empirical FMI more concentrated.

Figure 5: Reported fraction of missing information.

9. Concluding remarks

This paper provides an analytical framework for analysis of regression models (and, more

generally, other statistical methods that are based on the covariance matrices of observed

items or scales) that allows for quick power analysis avoiding computationally intensive

simulations.

Revisiting the initial motivation of burden reduction, the results are underwhelming.

Is burden really reduced by multiple matrix sampling in the example considered? Out of

five explanatory variables (based on approximately 8 survey items each) and one outcome,

only three variables are collected on each of the matrix sampled instrument forms. This

translates to about 50% burden reduction per respondent. However, given that the loss

of information quantified by the fraction of missing information (FMI) is about 75-80%,

the data collection sample sizes would need to be about 4–5 times larger compared to the

traditional data collection of all items at once. Unless the response rate drops sharply by a

factor of more than two due to the increase in questionnaire length, the total public burden

is increased.
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The sample sizes necessary to detect the required effect sizes in increased R2 demon-

strate long tails in the exploration of parameter spaces. These long tails make it difficult to

plan for the worst-case scenarios associated with “unfortunate” regression parameter con-

figurations. Should a specific decision need to be made based on the parameter explorations

akin to those undertaken in Section 7, the trade-off between the survey costs due to large

sample sizes and risks of having an underpowered study should the coefficient estimates be

found to have an “unfortunate” configuration should be carefully discussed with the survey

stakeholders to find the most appropriate course of action.

We conducted a finite sample simulation with non-normal data and several missing data

methods, and determined that the methods that assume multivariate normality generally

perform poorly, and generate a non-negligible proportion of really bad outliers. In com-

parison, semiparametric multiple imputation by predictive mean matching with sufficiently

large number of imputed data sets seem to work best.

Our work can be extended in a number of additional dimensions. The derivations of

asymptotic variances are based on the working assumption of multivariate normality and

using the inverse information matrix to estimate variances. With non-normal data, the prob-

lem can be formulated in terms of estimating equations, and sandwich variance estimators

should be formed. As our simulation demonstrated, asymptotic standard errors based on

inverse information matrix are inadequate for the analysis methods that we used, leading to

underestimates with misspecified normality-based methods, and overestimates with a more

accurate semiparametric method.

The current paper assumed independence of respondents. In practice, complex survey

features such as strata, clusters, unequal probabilities of selection, and weight calibration

would affect asymptotic properties of the estimates. In particular, the sandwich variance

estimation will be required. Many practical survey statistics issues may also interact with

multiple matrix sampling in unusual ways. How would differential nonresponse by form

affect the results? What should we do when a stratum has fewer than two cases of a given

form? These and other questions related to design-based inference would need to be an-

swered when multiple matrix sampling is applied in practice.

Finally, in terms of ensuring adequate measurement properties, we note that psychome-

tric properties are usually established and validated for scales, but not necessarily subscales

that respondents are exposed to in multiple matrix sampling instruments. In particular, if

the order of the items, or the degree of mixing of items from the different subscales of the

Big Five Inventory is important for the validity of the scale and its subscales, these proper-

ties may be violated when shorter subscales are administered that require the respondent to

answer similar questions more frequently.
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