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Abstract

Statistical tests for biomarker identification and classification methods for patients group-

ing are two important topics in adaptive designs of clinical trials. In this article, we evaluate

three test methods for biomarker identification: a model-based identification method, the

popular t-test, and the nonparametric Wilcoxon Rank Sum test. For selecting the best

classification methods in Stage 2 of an Adaptive Signature Design, we examine classifica-

tion methods including the recent developed machine learning approaches such as Random

Forest, Lasso and Elastic-Net Regularized Generalized Linear Models (Glmnet), Support

Vector Machine(SVM), Gradient Boosting Machine (GBM), and Extreme Gradient Boost-

ing(XGBoost). Statistical simulations are carried out in our study to assess the perfor-

mance of biomarker identification methods and the classification methods. The best identi-

fication method and the classification technique will be selected based on the True Positive

Rate(TPR,also called Sensitivity) and the True Negative Rate(TNR,also called Specificity).
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1. Introduction

Clinical trials play an important role in medical research, in which participants (usu-

ally human volunteers) receive specific interventions based on the protocol designed

by the researchers. The interventions in a clinical trial could be different medical

products, such as new drugs, new devices, or new procedures that are compared

with a placebo. For example, in a clinical trial evaluating the effect of a new drug

to reduce blood pressure, patients with high blood pressure may receive a certain

dose of the drug to see whether their blood pressure decreases.

Different statistical designs are widely used in clinical trials. For example, in a

randomized controlled clinical design with at least one control group, participants

are randomly assigned to the treatments and the effects of different treatments

are evaluated compared. In a group sequential design, patients are divided into a

number of equal-sized groups, receive treatments sequentially, and the decision to

stop the trial or not is based on repeated significance tests of the accumulated data

after each group is evaluated. In a clinical trial usually the Double-Blind method

is employed to avoid potential bias introduced by human factors, in which both

participants and investigators are unaware who will get which specific treatment.

Adaptive designs in clinical trials were proposed in the late 1970s when Efron

(1971) discussed how to balance a sequential experiment. Wei (1978) introduced a

class of designs for sequential clinical trials, the biased-coin design, for the purpose of

reducing experimental bias and increasing the precision of inference about treatment

effects. The main idea of an adaptive design in clinical trials is that the investigator

may modify trial and/or statistical procedures based on the review of data from

different stages during the experimental process, which may identify clinical benefits

of the treatments more efficiently and increase the success probability of the clinical

development without undermining the validity and integrity of the trial. Chow

et al. (2005) presented some statistical consideration of adaptive methods in clinical

development, in which the authors mentioned that statistical procedures in a clinical

trial including randomization, study design, study objectives/hypotheses, sample

size, data monitoring and interim analysis, statistical analysis plan, and/or methods

for data analysis. Group sequential designs in clinical trials were discussed by many

authors, including Lan and DeMets (1978), Posch and Bauer (1999), Jennison and

Turnbull (1999), and Liu et al. (1999). Chow and Chang (2008) provided a review on

adaptive design methods in clinical trials, in which they pointed out the popularity

of adaptive designs is mainly due to three reasons: reflecting the medical practice

in real world, ethical with respect to both efficacy and safety (toxicity) of the test

treatments under investigation, and flexible also efficient in the early and late phase

of clinical development.

Adaptive Signature Design for clinical trials of targeted agent was proposed in

last ten or more years. For instance, due to the heterogeneous feature of tumor

types in an ontology study, a new generation of agents under development is molec-

ularly targeted. When these agents enter the definitive stage of clinical evaluation,

researchers ideally wish to use reliable assays to select sensitive patients, and re-
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strict eligibility to patients with sensitive tumors perform specific evaluation on the

subset. Freidlin and Simon (2005) proposed an Adaptive Signature Design (ASD)

for generating and prospectively testing a gene expression signature for sensitive

patients. In this proposed design, a signature to identify sensitive patients is not

available. The design combines the prospective development of a pharmacogenomics

diagnostic test (signature) to select sensitive patients with properly powered test

for overall effect. The ASD consists of two steps, signature development and vali-

dation on mutually exclusive subgroups of patients (e.g., half of the population is

used to develop a signature and another half to validate it). In the first step, a

set of candidate predictive biomarkers (genes) are identified using the training data

set. The response variable used in Freidlin and Simon (2005) was binary with as

the probability of response for the patient. A logit model with each gene as the

predictor was fit to the patients in the training set and genes with a significant

coefficient were selected as predictive biomarkers based on a pre-specified type I

error cutoff threshold. In the second step, the predictive biomarkers (or sensitive

genes) identified in stage one were used to classify the patients in the test data set

as sensitive patients and non-sensitive patients. Specifically, the ASD in Freidlin

and Simon (2005) used a machine learning voting(MLV) method to identify the sen-

sitive patient subgroup in the test data set, which involves two pre-specified tuning

parameters R and G. After the patient classification, a test of treatment effect was

performed on the sensitive patient subgroup.

The development of biomarker-adaptive designs including ASD generally in-

volves three main components: biomarker identification, classifier development, and

performance assessment. In this article we propose to study statistical tests and

methods in the first two components of biomarker-adaptive designs: 1) compare

three test methods for biomarker identification, i.e., the model-based identification

method, the popular t-test, and the nonparametric Wilcoxon Rank Sum test; and

2) extend the classification method comparison performed by Lee et al. (2005) and

compare classification methods including the recent developed machine learning

approaches such as Random Forest, the Lasso and Elastic-Net Regularized Gener-

alized Linear Models(Glmnet), Support Vector Machine(SVM), Gradient Boosting

Machine(GBM) and the Extreme Gradient Boosting(XGBoost). The best identi-

fication method and the classification method will be selected based on the True

Positive Rate (TPR) and the False Positive Rate (FPR).

Rest of this article will be organized as the follows. In Section 2, statistical

structures of classification methods will be studied. Specifically, Gradient Boost-

ing Machine (GBM) defined by Friedman (2001) will be discussed briefly, including

function estimation and numerical optimization in function space. A comparison

procedure for evaluating different test methods in biomarker identification and for

selecting the best classification methods in an adaptive design will be proposed.

Some basic terminologies used in the procedure will be defined, such as True Posi-

tive Rate(TPR,also called Sensitivity) and the True Negative Rate(TNR,also called

Specificity).

In Section 3, Statistical simulations will be carried out to assess the performance
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of biomarker identification methods and the classification procedures, in which train-

ing data and testing data will be generated in different situations for the comparison

of different methods. Specifically, binary response variable in a clinical trial will be

generated by different logistic regression models and using different response rate.

For predictors of the response variable, a large number of genes is generated based

on normal distributions with a uniform random noise term. Subjects in the training

data and testing data are grouped as sensitive patients and non-sensitive patients.

The biomarker test methods and the classification methods will be applied to the

simulated data. The best identification method and the best classification technique

will be selected using the procedure proposed in Section 2.

Discussion and future study related to tests and classification methods in clinical

trials will be presented in Section 4. Instead of a binary response variable, continu-

ous response variables such as survival time of patients after treatments or time to

recurrence of an event will be considered. Corresponding models for a continuous re-

sponse variable such as Cox Proportional Hazard Model or the General Hazard Rate

Model that extend the time-varying covariates and time-dependent effects models

will be investigated in adaptive signature designs and subgroup identification. Ap-

plications of these models and techniques will be discussed too. Furthermore, some

other subgroup identification methods will be investigated, including the Virtual

Twins method proposed by Foster et al. (2011), the subgroup identification based

on differential effect search (SIDES) method introduced by Lipkovich et al. (2011),

and mining data to find subsets of high activity (ARF) by Dhammika and Javier

(2004).

2. Classification Methods and Comparison Procedure

In this Section, we first introduce the statistical structures of boosting-based classi-

fication methods. In particular, we discuss the basic idea and statistical definition

of the Gradient Boosting Machine (GBM) that was defined by Friedman (2001).

The main techniques include function estimation and numerical optimization in

function space. For evaluating different test methods in biomarker identification

and for selecting the best classification methods in an adaptive design, we propose

a comparison procedure to achieve this purpose.

2.1 Gradient Boosting Machine

In statistical classification analysis, a common task is to build a non-parametric

regression model such as a classification tree based on a training data set, which are

used to split new subjects from the testing data set into different groups. In order

to increase the accuracy of classification, researchers in the later 1990s proposed

some machine learning methods that generate many trees and aggregate results

from a sequence of trees. Gradient boosting machines (GBM) are actually a family

of powerful machine-learning techniques that is based on boosting and optimization,
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starting at some weak classifiers and generating the next classifier to improve the

already trained ensemble classifier. The final predictions in GBM are generated by

minimizing an arbitrary differentiable loss function.

Friedman (2001) developed explicit regression gradient boosting algorithm and

discussed the relationship between boosting and optimization of function estimation.

In function estimation, we usually have a random “response” variable y and a set

of random “explanatory” variables denoted by x = {x1, . . . , xn}. Suppose that the

real relationship between y and x is y = F ∗(x) + ε where ε is a random error term.

Based on an observed “training” sample {yi,xi}Ni=1, we want to find an estimate

or approximation F̂ (x) of the function F ∗(x) that minimizes the expected value of

some given loss function L(y, F (x)) over the joint distribution of all (y,x)-values,

F ∗ = argmin
F

Ey,xL(y, F (X)) = argmin
F

Ex[Ey(L(y, F (x)))|x]. (1)

Friedman (2001) pointed out that frequently employed loss functions in practice

include squared-error L(y, F ) = (y − F )2 and absolute error L(y, F ) = |y − F |
for y ∈ R1 for regression models and negative binomial log-likelihood, L(y, F ) =

log(1 + e−2yF ), when y ∈ {−1, 1} for classification.

For the type of functions to be estimated, a common procedure in statistical anal-

ysis is to restrict F (x) as a member of a parameterized class of functions F (x; P),

where P = {P1, P2, . . . } is a finite set of parameters whose joint values identify

individual class members. Friedman (2001) focused on “additive” expansions of

functions with the form:

F (x; {βm, am}M1 ) =
M∑
m=1

βmh(x; am), (2)

where the function h(x; a) in (2) is usually a simple parameterized function of the

input variables x, characterized by parameters a = {a1, a2, . . . }. The individual

terms differ in the joint values am chosen for these parameters. For example, in

the Classification and Regression Tree (CART) method introduced by Breiman

et al. (1984), each of the functions h(x; am) is a small regression tree, in which the

parameters am’s are the splitting variables, split locations and the terminal node

means of the individual trees.

When a parameterized model F (x; P) is chosen instead of a general non-

parametric function F (x), the function optimization problem becomes the following

parameter optimization:

P∗ = argmin
P

Φ(P), (3)

where

Φ(P) = Ey,xL(y, F (x; P))

and

F ∗(x) = F (x; P∗).
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For most F (x; P) and loss function L(y, F ), usually there is no explicit solution

for estimation the function F (x; P). Some numerical optimization methods have to

be used to solve (3), which often involves expressing the solution for the parameters

in the form:

P∗ =

M∑
m=0

pm, (4)

where p0 is an initial guess for the parameters and {pm}M1 are successive increments

(“steps or boosts”), each based on the sequence of preceding steps. The prescription

for computing each step pm is defined by a given optimization method.

More details of this approach and algorithms were presented in Friedman (2001).

2.2 Method Comparison Procedure

In genetics study of human being and animals, usually a large number of genes are

involved. For instance, recent studies estimated the number of genes in human to

be between 19,000 and 20,000. For a given biological state or disease such as cancer,

researchers often need to decide which gene and how many genes are related to the

disease. As we mentioned in Section 1, in this study the following three tests will be

used to screen and identify sensitive genes: a model-base test, the well-know t test,

and the nonparametric Wilcoxon Rank Sum Test. For simplicity of the study, we

consider only one treatment such as a new drug in a clinical trial versus a control

group. The response variable is assumed to be binary with two possibilities: the

patient has a response to the treatment such as a tumor size reduced, or the patient

has no response to the treatment.

It should point out that many other statistical test methods could be used to

detect sensitive genes among a large group of genes, such as the popular stepwise

method and LASSO. However, when several thousand genes are involved in a re-

search, using the stepwise method is time consuming and very slow. LASSO is

relatively quicker but sometimes still select too many sensitive genes (predictors).

A simulation study will be carried out to compare the performance of the three

gene-screening methods in Section 3. Similar to the criteria used in Troyanskaya

et al. (2002), true positive rate (P gsen) and true specificity rate (P gspec) will be cal-

culated for each of the three methods:

P gsen =
Number of sensitive genes identified

Number of known sensitive genes

(5)

P gspec =
Number of non-sensitive genes identified

Number of known non-sensitive genes

In the simulation study, patients with sensitive genes (called sensitive patients)

and without sensitive genes (called non-sensitive patients) will be generated. Six

classification methods will be used on a training data set first then applied to a
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test data set for patient identification. The six classification methods are: Lo-

gistic regression, Support Vector Machine (SVM), Random Forest, the Lasso and

Elastic-Net Regularized Generalized Linear Models (Glmnet), the Gradient Boost-

ing Machine (GBM), and the Extreme Gradient Boosting (XGBoost).

Similar to the gene screening procedure, the true positive rate (P psen) and true

specificity rate (P pspec) defined below will be calculated for each of the six methods

and used to evaluate the performance of the method:

P psen =
Number of sensitive patients identified

Number of known sensitive patients

(6)

P pspec =
Number of non-sensitive patients identified

Number of known non-sensitive patients

3. Simulation Study

In Section one we have discussed three test methods applicable for biomarker-

identification (i.e. sensitive genes in this study) and six methods that are available

for classification in the second stage of an adaptive design. In this section, simula-

tion Study will be conducted to evaluate the performance of these methods. The

best biomarker-identification method and the best subgroup classification method

will be determined based on the results of simulation study. All the procedures, from

data generation to the model fitting, are done by using the statistical computing

package R.

3.1 Simulation Design

In this simulation design we assume that characterized patients with tumors are

randomly assigned to treatment group or control group in a clinical trial. Data

are simulated to describe expression levels of different microarray genes: the higher

mean of gene expression value, the more sensitive the gene is. The number of sensi-

tive genes in a patient determines the sensitivity of this patient. Therefore patients’

response rates to treatment in the simulated data are determined in advance.

Specifically, assume that there are N patients, each patient has L evaluated

genes, and K of the L genes are “sensitive”. For the ith patient, let πi denote its

response rate and let ti be the treatment that patient receives (ti = 0 for patient

with standard treatment or placebo, ti = 1 for patient with novel treatment).

First gene expressions are generated from normal distributions with different

means, and uniform random noises are added to the gene expressions for the purpose

of approximation the true distributions of gene expressions observed in practice

(see, e.g., Troyanskaya et al. (2002)). Similar to the simulation study conducted in

Freidlin and Simon (2005), in this simulation the response probabilities of patients
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will be generated by the following logistic regression model:

log

(
πi

1− πi

)
= β0 + λti + γ1tixi1 + · · ·+ γKtixil, for i = 1, . . . , n; (7)

where πi denote the probability of response for the ith patient, λ is the base level of

treatment main effect regardless of gene expression of different patients, and the γ’s

are the coefficients of the interaction terms between treatment and sensitive gene

expressions. To simplify the simulation, all gene main effects and the treatment-

expression interactions for the nonsensitivity genes are assumed to be 0.

For further simplicity, in this simulation we assume γ1 = · · · = γk in (7). Then

the response rates for patients generated from (7) will be

πi =
e(β0+λti+γ·

∑K
k=1 tixik)

1 + e(β0+λti+γ·
∑K

k=1 tixik)
(8)

3.1.1 Simulation setup

In this simulation study, gene expressions for 400 patients will be generated first,

with 200 patients in treatment group and the rest 200 patients in control group.

Because of computing power limitations, we assume that each patient has L = 1000

genes. I had tried L = 10, 000 and L = 5, 000, but it would take several days on my

copmputer to get results for one simulation run due to the slow looping in R.

Among the L = 1000 genes, we assume each sensitive patient has K = 10

sensitive genes, which are generated from normal distributions with positive mean

µ1: the larger of the mean µ1 is, the higher response rate of the patient. All

generated genes data are blurred by a set of randomly generated uniform noise.

Non-sensitive patients are defines as these patients with nonsensitive genes that are

generated from normal distributions with mean 0. Uniform random noises are also

added to nonsensitive gene expressions.

Among the 400 patients, we assume 40 patients (10% of the total number of

patients) have sensitive genes thus are sensitive to the treatment, while patients

in the control group are assumed to be all non-sensitive, i.e. with mean 0 of gene

expression.

The simulation setup in this study can be summarized as

• For representing different scenarios, gene expression levels are generated as

follows:

(a) sensitive genes in sensitive patients are generated from multivariate nor-

mal distribution in four different scenarios with different mean µ1 (µ1 =

{1.3, 1, 0.8, 0.6}) and variance σ1 (σ1 = 1).

(b) non-sensitive genes in both sensitive patients and non sensitive patients

are generated from multivariate normal distribution with mean 0 and variance

σ2 (σ2 = 1).

• Random noises are generated from the uniform distribution. Different noise

levels are applied, such as : U(−0.01, 0.01), U(−0.5, 0.5), and U(−1, 1).
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Table 1: Response rates πi for sensitive patients and nonsensitive patients

Sensitive patients Mean of gene

π1 expression m

0.9661 1.3

0.9206 1.0

0.8641 0.8

0.7773 0.6

Nonsensitive patients Mean of gene

π0 expression m

0.2497 0

0.2497 0

0.2497 0

0.2497 0

• Binary response Yi for patient i is generated from the Bernoulli distribution

with probability πi calculated from Model (7).

Set β0 = −1.1, λ = 0.55, γ1 = · · · = γk = 0.3, the response rates for the four

mean scenarios are listed in Table 1.

3.1.2 Simulation Procedure

Step 1: Use logistic model, Wilcoxon-test, t-test to select sensitive genes (p-value

< 0.05 as a sensitive gene).

Logistic model based test: for each gene j fit the single gene logistic model

logit(πi) = µ + λti + βjtixij with treatment-expression interaction term or

logit(πi) = µ + λjti + βjxij without interaction term. Decide a gene j to be

sensitive if the p-value for βj is significant at a specified level. If a sensitive

gene is correctly selected as sensitive, then save the total counts in 500 loops for

L = 1, 000 genes as Ng
l1, if a nonsensitive gene is correctly select as nonsensitive

then save the counts as Ng
l2.

Wilcoxon-test: for each gene j, test its expression by treatment group and

control group. Decide gene j to be sensitive if the p-value for Wilcoxon test

statistic “Wg” less than a specified level. If a sensitive gene is correctly selected

as sensitive, then save the total counts iin 500 loops for L = 1, 000 genes as

Ng
w1, if a nonsensitive gene is correctly identified as nonsensitive then save the

total counts in 500 loops for L = 1, 000 Ng
w2.

t-test: for each gene j, test its expression by treatment group and control

group. Decide gene j to be sensitive if the p-value for Student test statistic

“Tg” is less than a specified level. If a sensitive gene is correctly selected as
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sensitive, save the total counts in 500 loops for L = 1, 000 genes as Ng
t1, if

a nonsensitive gene is correctly identified as nonsensitive then save the total

counts in 500 loops for L = 1, 000 genes Ng
t2.

Step 2: Combine response Y, TRT variable and the selected genes into new data

set and then divide it into two halves, “trainDF” and “testDF”. E.x. after per-

forming t-test, the selected genes together with response and treatment variables

form six training data sets: “trainDF t lg”, “trainDF t rf”, “trainDF t gbm”,

“trainDF t svm”, “trainDF t glm”, “trainDF t xgb”; and six testing data sets:

“testDF t lg”, “testDF t rf”, “testDF t gbm”, “testDF t svm”, “testDF t glm”,

“testDF t xgb”. In total we setup 18 “trainDF” data sets and 18 “testDF” data

sets. (6 ∗ 3 = 18 models).

Step 3: For each classification method, after getting 3 training set in the last step,

the predicting step on “testDF”can be carried out. The response rates of all patients

in “testDF” can be calculated. Patient with response rate of at least 0.5 is defined

as sensitive patient, otherwise the patient is non sensitive. So far, if an originally

sensitive patient is correctly selected by those classification models as sensitive,

then count the correct identification time and save total counts. E.x. in one single

classification step by using Support vector machine, number of sensitive patients

correctly detected in test set “testDF t svm” is Np
t svm1

out of total 20 sensitive

patients; number of nonsensitive patients correctly selected as nonsensitive in test

set “testDF t svm” is Np
t svm2

out of total 180 non sensitive patients.

3.2 Simulation Results

The two criteria that will be used to assess efficiency of each test method and each

classification method are Sensitivity and Specificity.

(i)Sensitivity of gene (P gsen) is the estimated probability that a sensitive gene

is identified as sensitive. E.x. gene sensitivity for t-test is: P gsen = Ng
t1/(1000∗

1%)

(ii)Sensitivity of patient (P psen) is the estimated probability that a sensitive

patient is classified as sensitive. E.x. patient sensitivity for t-test is: P psen =

Np
t1/(100 ∗ 20%).

(iii)Specificity of gene(P gspec) is the estimated probability that a nonsensi-

tive gene is identified as nonsensitive. E.x. specificity for t-test is: P gsen =

Ng
t2/(1000 ∗ 99%)

(iv)Specificity of patient(P pspec) is the estimated probability that a nonsensi-

tive patient is classified as nonsensitive. E.x. patient specificity for t-test is:

P pspec = Np
t2/(100 ∗ 80%).
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3.2.1 Results on comparing three gene identification methods

Table 2 is a summary of the average of gene sensitivity and specificity in 1000 repeats

under Model 7. Columns are results by the three methods of LR, t-test, Wilcoxon

RST. Rows indicate four scenarios that the mean values of gene expression are of

different levels {1.3, 1.0, 0.8, 0.6}. Uniform noises 0, U(−0.01, 0.01), U(−0.5, 0.5),

and U(−1, 1) are added to the generated covariate data. The simulation results

show that the logistic model-based method outperformed the Wilcoxon Rank Sum

test and the popular t-test, which is expected since the response variable was gen-

erated by the logistic regression model.

Table 2: Simulation results of Gene sensitivity and specificity by the three identifi-

cation methods under Model 7 with uniform noises added to the generated covariate

data

Mean of Logistic Wilcoxon t-test

Gene expression regression Rank Sum

P gsen P gspec P gsen P gspec P gsen P gspec

U=0

m = 1.3 0.9975 0.9520 0.9288 0.8622 0.9524 0.9496

m = 1.0 0.9715 0.9518 0.9129 0.8625 0.8167 0.9500

m = 0.8 0.9021 0.9518 0.8736 0.8629 0.6418 0.9499

m = 0.6 0.7433 0.9519 0.7701 0.8623 0.4264 0.9497

U(-0.01,0.01)

m = 1.3 0.9977 0.9521 0.9291 0.8626 0.9529 0.9498

m = 1.0 0.9734 0.9518 0.9122 0.8625 0.8152 0.9499

m = 0.8 0.8998 0.9516 0.8715 0.8624 0.6388 0.9501

m = 0.6 0.7462 0.9518 0.7697 0.8628 0.4279 0.9501

U(-0.5,0.5)

m = 1.3 0.9967 0.9517 0.9239 0.8629 0.9375 0.9501

m = 1.0 0.9686 0.9519 0.8895 0.8624 0.7838 0.9501

m = 0.8 0.8908 0.9519 0.8289 0.8629 0.6091 0.9502

m = 0.6 0.7420 0.9517 0.6929 0.8627 0.3973 0.9502

U(-1,1)

m = 1.3 0.9935 0.9519 0.8898 0.8624 0.8766 0.9499

m = 1.0 0.9575 0.9516 0.7982 0.8627 0.6886 0.9499

m = 0.8 0.8769 0.9518 0.6853 0.8625 0.5128 0.9501

m = 0.6 0.7471 0.9517 0.5208 0.8627 0.3331 0.9501
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3.2.2 Results on comparing six patients classification methods

Table 3 shows the average sensitivity and specificity of patient classifications in 500

replicates under Model 7 with uniform noises U(−0.01, 0.01) added to the generated

covariate data. Columns are the results by the six classification methods of Glmnet,

Random Forest, GBM, LR, XGBoost and SVM. Rows indicate the four scenarios

that the mean values of gene expression are of different levels {1.3, 1.0, 0.8, 0.6}. In

each scenario, results from the three identification methods are presented.

Table 3: Simulation results of patients’ sensitivity and specificity by the six clas-

sification methods under Model 7 with uniform noises U(−0.01, 0.01) added to the

generated covariate data

.
Mean of Gene Sensitivity Glmnet Random GBM Logistic XGBoost SVM

Gene test and Forest Regression

expression method Specificity

m = 1.3

LG
P p
sen 0.8415 0.9894 0.9151 0.6951 0.9796 0.9196

P p
spec 0.8311 0.8382 0.8317 0.7970 0.8421 0.8542

WRT
P p
sen 0.9030 0.9870 0.9390 0.5327 0.9722 0.7184

P p
spec 0.8691 0.8489 0.8464 0.7830 0.8419 0.8616

t-test
P p
sen 0.9437 0.9891 0.9662 0.7568 0.9857 0.8988

P p
spec 0.8780 0.8609 0.9068 0.8140 0.8451 0.8770

m = 1.0

LG
P p
sen 0.7411 0.9140 0.8313 0.6393 0.9262 0.7629

P p
spec 0.8305 0.8331 0.8305 0.8019 0.8379 0.8585

WRT
P p
sen 0.7940 0.9078 0.8417 0.5228 0.911 0.5346

P p
spec 0.8657 0.8415 0.8369 0.7791 0.8350 0.8828

t-test
P p
sen 0.7871 0.8816 0.8406 0.6629 0.9261 0.6224

P p
spec 0.8647 0.8462 0.8953 0.8149 0.8380 0.8928

m = 0.8

LG
P p
sen 0.6543 0.7295 0.6812 0.6048 0.8425 0.6172

P p
spec 0.8280 0.8376 0.8318 0.8023 0.8364 0.8548

WRT
P p
sen 0.6770 0.7245 0.7016 0.5285 0.8030 0.3548

P p
spec 0.8538 0.8556 0.8427 0.7796 0.8314 0.9069

t-test
P p
sen 0.6057 0.6869 0.6882 0.5994 0.7974 0.4232

P p
spec 0.8562 0.8501 0.8964 0.8111 0.8305 0.8970

m = 0.6

LG
P p
sen 0.5235 0.5610 0.5591 0.5518 0.7115 0.4142

P p
spec 0.8306 0.8365 0.8347 0.8063 0.8369 0.8778

WRT
P p
sen 0.5232 0.5073 0.5356 0.5134 0.6364 0.1659

P p
spec 0.8454 0.8578 0.8432 0.7788 0.8328 0.9464

t-test
P p
sen 0.4439 0.4820 0.4993 0.5205 0.6117 0.1924

P p
spec 0.8504 0.8482 0.8923 0.8044 0.8232 0.9382
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Figure 1 presents the same results in Table 3 from the three test methods and the

six classification methods, where different shapes and colors are used for the average

sensitivity and specificity of patient classifications in 500 replicates under Model 7

with uniform noises U(−0.01, 0.01) added to the generated covariate data. From

the plots it is very clear that XGBoost outperformed other classification methods

in terms of higher sensitivity, with the GBM and Random Forest the close second.

SVM has higher average specificity than other five methods but with quite low

sensitivity, especially for the cases m = 0.8 and m = 0.6.

Figure 1: Simulation results of patients’ sensitivity and specificity by the six clas-

sification methods under Model 7 with uniform noises U(−0.01, 0.01)
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Table 4 lists the average sensitivity and specificity of patient classifications in 500

replicates under Model 7 with uniform noises U(−0.5, 0.5) added to the generated

covariate data. Columns are the results by the six classification methods of Glmnet,

Random Forest, GBM, LR, XGBoost and SVM. Rows indicate the four scenarios

that the mean values of gene expression are of different levels {1.3, 1.0, 0.8, 0.6}.
Again in each scenario, results from the three identification methods are presented.

Table 4: Simulation results of patients’ sensitivity and specificity by the six classifi-

cation methods under Model 7 with uniform noises U(−0.5, 0.5) added to covariates

.
Mean of Gene Sensitivity Glmnet Random GBM Logistic XGBoost SVM

Gene test and Forest Regression

expression method Specificity

m = 1.3

LG
P p
sen 0.8415 0.9871 0.9059 0.6963 0.9734 0.9027

P p
spec 0.8311 0.8396 0.8340 0.8031 0.8420 0.8513

WRT
P p
sen 0.9030 0.9778 0.9199 0.5406 0.9616 0.6784

P p
spec 0.8691 0.8473 0.8446 0.7831 0.8426 0.8671

T-test
P p
sen 0.9437 0.9787 0.9458 0.7648 0.9807 0.8533

P p
spec 0.8780 0.8587 0.9033 0.8112 0.8447 0.8789

m = 1.0

LG
P p
sen 0.7411 0.8881 0.8154 0.6334 0.9154 0.7608

P p
spec 0.8303 0.8288 0.8218 0.8069 0.8348 0.8508

WRT
P p
sen 0.7940 0.8897 0.8230 0.5295 0.8808 0.5050

P p
spec 0.8657 0.8374 0.8345 0.7822 0.8317 0.8813

t-test
P p
sen 0.7871 0.8583 0.8140 0.6711 0.8993 0.5964

P p
spec 0.8647 0.8386 0.8928 0.8112 0.8353 0.8891

m = 0.8

LG
P p
sen 0.7411 0.7319 0.6824 0.6013 0.8309 0.5821

P p
spec 0.8305 0.8275 0.8267 0.8005 0.8321 0.8584

WRT
P p
sen 0.7940 0.7145 0.6732 0.5169 0.7799 0.3410

P p
spec 0.8657 0.8380 0.8369 0.7807 0.8287 0.9045

t-test
P p
sen 0.7871 0.6473 0.6370 0.5861 0.7722 0.4007

P p
spec 0.8647 0.8414 0.8924 0.8053 0.8255 0.8957

m = 0.6

LG
P p
sen 0.5327 0.5271 0.5278 0.5386 0.7037 0.4103

P p
spec 0.8316 0.8404 0.8329 0.8055 0.8316 0.8762

WRT
P p
sen 0.5057 0.4934 0.5144 0.5087 0.6083 0.1335

P p
spec 0.8461 0.8454 0.8414 0.7820 0.8248 0.9540

t-test
P p
sen 0.4382 0.4794 0.4972 0.5158 0.5891 0.2044

P p
spec 0.8526 0.8439 0.8903 0.8035 0.8226 0.9320

103



Figure 2 presents the same results in Table 4 from the three test methods and the

six classification methods, where different shapes and colors are used for the average

sensitivity and specificity of patient classifications in 500 replicates under Model 7

with uniform noises U(−0.5, 0.5) added to the generated covariate data. Similar to

the results in Figure 1, XGBoost outperformed other classification methods in terms

of higher sensitivity, with the GBM and Random Forest the close second. SVM has

higher average specificity than other five methods but with quite low sensitivity,

especially for the cases m = 0.8 and m = 0.6.

Figure 2: Simulation results of patients’ sensitivity and specificity by the six clas-

sification methods under Model 7 with uniform noises U(−0.5, 0.5)
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Table 5 presents the average sensitivity and specificity of patient classifications

in 500 replicates under Model 7 with uniform noises U(−1, 1) added to the generated

covariate data. Columns are the results by the six classification methods of Glmnet,

Random Forest, GBM, LR, XGBoost and SVM. Rows indicate the four scenarios

that the mean values of gene expression are of different levels {1.3, 1.0, 0.8, 0.6}. In

each scenario, results from the three identification methods are presented.

Table 5: Simulation results of patients’ sensitivity and specificity by the six classi-

fication methods under Model 7 with uniform noises U(−1, 1) added to covariates

.
Mean of Gene Sensitivity Glmnet Random GBM Logistic XGBoost SVM

Gene test and Forest Regression

expression method Specificity

m = 1.3

LG
P p
sen 0.8019 0.9506 0.8865 0.6765 0.9526 0.8774

P p
spec 0.8245 0.8255 0.8217 0.8006 0.8336 0.8383

WRT
P p
sen 0.8331 0.9334 0.8629 0.5342 0.9308 0.6677

P p
spec 0.8579 0.8288 0.8283 0.7824 0.8308 0.8548

t-test
P p
sen 0.8657 0.9407 0.8783 0.7297 0.952 0.7899

P p
spec 0.8746 0.8403 0.8934 0.8127 0.8354 0.8619

m = 1.0

LG
P p
sen 0.7002 0.8156 0.7729 0.6393 0.8724 0.6857

P p
spec 0.8272 0.8127 0.8191 0.8007 0.8311 0.8516

WRT
P p
sen 0.6980 0.7759 0.7366 0.5070 0.8240 0.4244

P p
spec 0.8483 0.8202 0.8300 0.7815 0.8229 0.8897

t-test
P p
sen 0.6710 0.7523 0.7148 0.6304 0.8434 0.5149

P p
spec 0.8554 0.8288 0.8874 0.8037 0.8252 0.8849

m = 0.8

LG
P p
sen 0.6191 0.6713 0.6436 0.5798 0.7864 0.5655

P p
spec 0.8279 0.8254 0.8202 0.8019 0.8289 0.8555

WRT
P p
sen 0.5903 0.5863 0.5776 0.5148 0.6883 0.2771

P p
spec 0.8421 0.8417 0.8252 0.7813 0.8173 0.9132

t-test
P p
sen 0.5505 0.5711 0.5508 0.5421 0.6923 0.3273

P p
spec 0.8445 0.8395 0.8833 0.8094 0.8154 0.8973

m = 0.6

LG
P p
sen 0.5163 0.4980 0.5218 0.5233 0.6612 0.3947

P p
spec 0.8295 0.8392 0.8278 0.8067 0.8308 0.8778

WRT
P p
sen 0.4584 0.4217 0.4515 0.4809 0.5509 0.1250

P p
spec 0.8399 0.8537 0.8371 0.7864 0.8240 0.9555

t-test
P p
sen 0.4282 0.4235 0.4670 0.4808 0.5419 0.1677

P p
spec 0.8443 0.8443 0.8935 0.8149 0.8185 0.9406
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Figure 3 presents the same results in Table 5 from the three test methods and the

six classification methods, where different shapes and colors are used for the average

sensitivity and specificity of patient classifications in 500 replicates under Model 7

with uniform noises U(−1, 1) added to the generated covariate data. Results in this

Figure are similar to the results shown in Figures 1 and 2.

Figure 3: Simulation results of patients’ sensitivity and specificity by the six clas-

sification methods under Model 7 with uniform noises U(−1, 1)

Based on the simulation results, we conclude the model-based test is the best

choice for initial covariate selection. For patient classification, XGBoost outper-

formed other methods in terms of higher sensitivity, performance of GBM and

Random Forest is quite robust in both sensitivity and specificity, and SVM has the

highest specificity but with quite low sensitivity. These three classification methods,
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XGBoost, GBM, and Random Forest, should be used and compared further in real

data analysis.

4. Future Study

In our simulation study logistic models were assumed for the relationship between

binary response and covariates. However in real world the types of covariates,

response, and models could vary. So we may also consider continuous response such

as survival time of patients after treatments or time to recurrence of an event. For

continuous response, Cox Proportional Hazard Model or the General Hazard Rate

Model that extends the time-varying covariates and time-dependent effects models

could be used in ASD and subgroup identification.

In the comparison procedure discussed in Section 2, we use biomarker identi-

fication methods to search on the covariate space of genomic data and use most

recent machine learning classification methods to identify subgroup then perform

treatment effect analysis on the classified subgroup. There are several exploratory

approaches of subgroup identification reported in recent years, which utilize tree-

based methods such as the basic CART algorithm or random forest and meanwhile

incorporating evaluation of treatment effect during the identification process. These

methods, including the Subgroup identification based on differential effect search

(SIDES) method, ARF (Activity Region Finder) and Virtual Twins, aim at find-

ing a specific covariate subspace, with which patients would expect to have higher

treatment effect than the counter subset. These give us a new insight for our “test

+ classification” procedure. We would try to borrow their ideas in the second stage

of our enriched ASD, compare the results of using our selected methods to evaluate

treatment effect and results by replacing the Random Forest, GBM, XGBoost with

these three methods in the classification step.

In the future research, we plan to study the above three subgroup identifica-

tion methods carefully. In the traditional subgroup identification approaches, in-

cluding the machine learning methods Random Forest, GBM, and XGBoost, high-

dimensional covariate space of patients, such as the space spanned by thousands

of genes, are participated into subspaces with much lower dimensions, such as sub-

spaces generated by very few sensitive genes or biomarkers. After the covariate

space partition, the treatment effect on patients with a specific set of covariates,

such as patients with sensitive genes under treatment vs other patients, is eval-

uated. Subgroup identification procedures such as SIDES take a more localized

partition of the covariance space and focus on identification of ‘interesting’ areas in

the covariate space, such the areas specified by I(x1 < c1) and I(x2 > c2) where

the treatment effect is likely to be large. In my future study, both the traditional

subgroup identification methods and the covariate local-focused methods will be

apply to real data analysis. Results from the two types of subgroup identification

methods will be evaluated and compared.
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