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Abstract 
We review recent interpretations of the mean, the mean deviation (MD) and the standard 
deviation (SD) of a set of numbers. For each quantity, the process begins with the empirical 
cumulative distribution function (ECDF) or a suitable transformation of it, and then finds 
the location of a vertical line that renders equal the areas of two regions bounded by the 
line itself, the (transformed) ECDF and the horizontal line 0 or 1. Here, the above 
interpretations are extended to a continuous random variable. These interpretations help 
users of statistics refine their intuition, and anticipate the numerical values of the mean, the 
MD and the SD even before evaluating them using the Calculus. 
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1. Introduction 
 
The mean is the most common measure of location or center, and the standard deviation 
(SD) is the most common measure of the scale or spread in a dataset or a random variable 
(RV). These are extensively used summaries of data/variable. While the mean has a 
familiar depiction as a fulcrum along the horizontal axis which balances the dot plot of the 
raw data, or the graph of the probability mass function (PMF) of a discrete random variable 
(DRV), or the graph of the probability density function (PDF) of a continuous random 
variable (CRV), no such visualization of the SD was available in the literature until 
recently! 
 
Recently, Sarkar and Rashid (2016 a-d) introduced a vertical line method to visualize the 
mean of the raw data based on its empirical cumulative distribution function (ECDF). We 
briefly review the method in Sections 2. In Section 3, we review a visualization of the mean 
deviation (MD), the mean square deviation (MSD) and the SD using the vertical line 
method applied to the ECDF of suitably transformed data. Thereafter, in Section 4, we 
extend the vertical line method of visualizing the MD, the MSD and the SD to a CRV. 
Section 5 documents a summary and some concluding remarks. 
 

2. Methods to Visualize the Mean of a Given Dataset or a CRV 
 
The mean is the most common measure of center. See Pollatsek et al. (1981) and Lesser et 
al. (2014). The (arithmetic) mean of a set of n numbers },,,,{ 321 nxxxx   is defined by 
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For a CRV X with support set S and PDF , the mean is defined as  

	 	          (1b) 
 
Traditionally, the mean is visualized as the location of a fulcrum that balances the dot plot 
of the data, the graph of the PMF of a DRV, or the graph of the PDF of a CRV. See, for 
example, Watier, et al. (2011). Following that tradition, we depict the fulcrum of the mean 
in Figure 1 (a-b) based on the data and the CRV in Examples 1-2. 
 
Example 1. The number of cars sold by a dealership on five weekdays are: 7, 4, 8, 3, 9. 
 
Example 2. A dart is thrown at a circular target of radius one, and if and only if the dart 
hits the target the distance of the point of impact from the center of the circle is recorded. 
Then the recorded distance is modelled by the PDF  2 ,		for	0 1. 
 

 
Figure 1. The mean shown as a fulcrum that balances (a) the dot plot of the data in 

Example 1, and (b) the graph of the PDF in Example 2 
 
 
An alternative interpretation of the mean of a data set involves the ECDF of the data, which 
is a step function given by	 / , where )(xN  is a count of data values that are 

no more than x. Similarly, for a CRV, the mean involves the CDF given by 
 for all real number x. It is well known that the mean can be obtained directly 

from the (E)CDF (by algebraic manipulations for the data and by applying Fubini’s 
theorem for a CRV). In fact, using a common symbol F to represent both the ECDF and 
the CDF, we have 

1      (2a) 
 
 
Although not as widely known, much more is true: For any real number , the mean is  

1  

In particular,  is the unique solution to  so that  

      1       (2b) 
In view of (2b), the mean is the location of a vertical line  that renders equal the 
shaded areas of two regionsone to its left and bounded by itself, the horizontal line y=0,  
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and the (E)CDF, and the other to its right and bounded by itself, the horizontal line y=1,  
and the (E)CDF. See Figure 2. For a detailed proof see Sarkar and Rashid (2016 a).  
 

 
Figure 2. The mean shown as a vertical line  that renders equal areas of two shaded 

regions: (a) for the data in Example 1 and (b) for the CRV in Example 2 
 

 
3. Visualizing the MD, the MSD and the SD for the Given Dataset 

 
The deviations of the n numbers in the dataset from their mean are | ̅|. The 
average of all deviations from the mean is called the MD, and is given by                     

∑ | ̅| 	∑ 	     (3) 

 
To visualize the MD, we can first construct the ECDF  of the deviations. This is done 
by simply reflecting the portion of  to the left of the vertical line ̅ at the mean, about 
that line, with the reflection falling to the right side of this line, and then sorting the 
resultant rectangles of heights 1/n, with the narrowest at the bottom and the widest at the 
top. However, the sorting of rectangles is ony optional. See Figure 3(a), which implements 
sorting, and Figure 3(b), which skips sorting. To find the MD, we search for a vertical line 

̅ that equalizes the areas of regions to its left and right that are bounded by the line 
itself, the horizontal lines y=0 and y=1, and the ECDF  , or the reflected ECDF  
(without sorting). 
 

 
 

Figure 3. Using either (a) the ECDF   of deviations, or (b) the reflected ECDF  of the 
data we obtain the MD for the data in Example 1 

 
Let us next review the geometric visualization of the MSD and the SD for a set of n given 
numbers. The sample variance of the set of numbers is defined by 
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Variance ∑ ̅ 					  (4a) 

and the sample MSD is defined by 

MSD ̃ ∑ ̅ 					   (4b) 

 
Thus, the sample variance is just a multiple  / 1 	of the sample MSD, since  

̃ 	 ̃ 				    (4c)           

 
Taking the positive square roots of (4a) and (4b), we obtain the sample SD  and the sample 
RMSD ̃ respectively. For various interpretations of ̃ and , see Sarkar and Rashid (2016 
a–c).  
 
For a geometric visualization of the MSD, one can construct the ECDF  of (scaled) 
squared deviations as explained below. Proofs are given in Sarkar and Rashid (2016 d). 
 
The ECDF  of the deviations form a collection R of rectangles whose widths equal the 
deviations and heights equal	1/ . We transform each rectangle in R by changing only its 
width, but keeping it left aligned at d=0 and maintaining its height unaltered as follows: 
Choose R to be a suitable positive magnitude (for example, let R be the largest deviation 
from the mean), and fix it. Let d be the width of any one rectangle in R. We construct the 
third proportional to R and d; that is, we seek a value  such that : : . Thus, a 
rectangle of width d changes into a new rectangle of width / . Applying this width-
transformation to each rectangle in R, using the same R, we obtain the ECDF  of the 
scaled (that is, divided by R) squared deviations. Henceforth, the horizontal axis also 
represents / . 
 
Over , shown in Figure 4(a), we superimpose the vertical line ̅ that equalizes the 
areas of the shaded regions to its two sides and bounded by itself, two horizontal lines y=0, 
y=1 and . Then the vertical line ̅ represents the scaled MSD given by  

̅        (5) 

 
Finally, to obtain the (unscaled) RMSD, we construct the mean proportional between ̅ 
and R, as explained in the paragraph below, since  

√ ̅	 ∑ 	 ∑ ̃			     (6) 

 
Indeed, to construct the mean proportional √  between  and  (with 0), we 
draw a right triangle with one leg /2 and hypotenuse /2. Then the other 
leg of that right triangle has length √ . Such a right triangle, showing the mean 
proportional between ̅ and R, is depicted below the horizontal axis in Figure 4(a). 
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Figure 4. (a) The scaled MSD and the (unscaled) RMSD  ̃ √ ̅ . 	 and (b) the scaled 

MSD and (unscaled) SD √ ̅.  for the data in Example 1 
 
Also, starting from Figure 4(a), if we join (0, 1) to ̅ , 1/  by a line and extend it to meet 

the horizontal axis, it will do so at a distance ̅  (which is a scaled variance) 

from the origin. The mean proportional between ̅ and R gives the (unscaled) SD s. See 
the right triangle below the horizontal axis in Figure 4(b).  
 
Expression (6) justifies why we can choose R to be any arbitrary positive number. Its effect 
is eliminated in the end, and we obtain the unscaled RMSD ̃  and the unscaled SD s. 
However, to avoid needing additional space to draw  and to ensure precision in drawing, 
we recommend choosing R to be the largest deviation from the mean. Alternatively, if one 
chooses R to be the MD, the above described geometric visualization also vividly 
demonstrates that ̃ . 
 

 
3. Visualizing the MD, the MSD and the SD for a CRV 

 
For a CRV, the CDF  is a strictly increasing, continuous function, and hence it is 
invertible. The inverse-CDF  can be visualized simply by looking at the set of points 

, : ∞ ∞ , since this set is exactly the same as , : 0 1 .  
This point of view is advantageous for visualizing the MD, the MSD and the SD of a CRV 
even when it is difficult to obtain the CDF  of the deviations and  of the scaled squared 
deviations. 
 
For a CRV, a typical deviation is | |, the MD is defined as 

δ | | 	 	                                                              (7) 
and the MSD (also called the variance) is defined as  

MSD 																																																																				(8) 
 
As done in Figure 3(a)-(b) for a set of numbers, we can also visualize the MD of a CRV 
either after constructing the CDF  of the deviations or by simply reflecting the CDF  
about the mean vertical line . Since the set | |, : ∞ ∞  is the 
same as | |, : 0 1 , we have equivalent expressions for the MD as 

δ 	 | |	 2 	 							(9) 
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Likewise, we can visualize the MSD of a CRV either after constructing the CDF  of the 
scaled squared deviations or after suitably transforming the reflected CDF . Since the set 

, : ∞ ∞  is the same as , : 0 1 , we 
have equivalent expressions for scaled variance as 

̅ 	 	                 (10) 

 
Finally, by taking the mean proportional between ̅ and , we obtain the SD of the CRV. 
 
Recall from Figure 2(b) the CDF of the CRV X in Example 2. Figure 5 shows the MD, the 
scaled MSD and the SD of X using the vertical line method applied to CDF G of deviations 
and CDF H of scaled squared deviations. Figure 6 shows the same quantities based on 
only , without constructing the CDF G or CDF H at all!  
 
 

Figure 5. (a) The CDF G of deviations yields the MD, and (b) the CDF H of scaled squared 
deviations yields the (scaled) MSD= /  and the (unscaled) SD √ ̅.  for the CRV 
in Example 2 
 
 

 
Figure 6. Visualizing (a) the mean and the MD, and (b) the scaled MSD and the (unscaled) 
SD of the CRV in Example 2, using only , its reflection and its scaled square 
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4. Discussion 

In order to visualize the mean, the MD, the MSD and the SD of a data set, Sarkar and 
Rashid (2016 d) constructed a vertical line that equalizes the areas of two sets of rectangles.  
This method utilizes the ECDF Fn of the data, the ECDF Gn of the deviations and the ECDF 
Hn of the (scaled) squared deviations, all of which are constructible using two-dimensional 
Euclidean methods. In this paper, we have extended the vertical line method to visualize 
the mean, the MD and the SD of a CRV on a bounded support. Admittedly, in this case, 
the CDFs F, G and H are constructed approximately by plotting the functional values 
against finitely many arguments, and then joining the plotted points freehand. But a 
statistical software, such as R, can draw these graphs with ease by joining successive points 
on a finely-gridded scatter plot.  
 
For a CRV on an unbounded support, finding the vertical line that equalizes the areas on 
its two sides is more challenging, since the area of an unbounded region is difficult to 
approximate visually. Also, the visualization of the SD requires a wise choice of R. 
Therefore, we alert the practitioner to take special care in dealing with a CRV on 
unbounded support. We illustrate the visualization of the mean, the MD and the SD for a 
CRV on an unbounded support in Example 3, where we have chosen R as twice the MD, 
although any other choice is permissible.  
 
Example 3. Suppose that a CRV X has the standard exponential(1) distribution. Then its 
PDF is ,	for	0 ∞; its CDF is 1 ,	for	0 ∞; and its 
inverse-CDF is ln 1 ,	for	0 1.  
 

 
Figure 7. Visualizing (a) the mean and the MD and (b) the SD of an exponential(1) 

variable, using only the inverse-CDF, its reflection and scaled square 
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The vertical line method is also useful in demonstrating many other properties of a RV—
either discrete or continuous—such as truncation, transformation, skewness, kurtosis, 
Markov inequality, Chebyshev’s inequality, Jensen’s inequality, etc.  
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