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Abstract 

For clinical trials with multiple co-primary binary endpoints, we present an efficient 
method in power and sample size estimation. The method involves simulating sufficient 
test statistical vectors and can be easily implemented by a statistical practitioner. Its 
outputs on power and sample size are accurate in comparison with outcomes from 
numerical integration method or from simulating correlated binary endpoints of 
individual subjects. When number of endpoints increase, the complexity of the method 
remains the same. We also illustrate the method for power and sample size estimation 
using Holm and Hochberg procedures for multiplicity adjustment.  
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1. Introduction 

 

Clinical trials generally pose multiple questions in the form of hypotheses whose 
evaluations involve multiple comparisons and tests for multiple endpoints (Dmitrienko et 
al. 2009). The trials may involve comparisons of one or more active arms with a control 
arm in several primary endpoints. The win criteria range from statistically significant for 
at least one comparison to statistically significant for all comparisons in co-primary 
designs. In the design stage, we need to estimate power and sample size with appropriate 
multiplicity adjustments, where there may not have readily available software. 
 
In clinical trials with co-primary endpoints, a non-significant result in any one of the 
specified efficacy endpoints would lead to a non-win scenario for the trial. Examples can 
be found in migraine, acute pain, psoriasis, Alzheimer’s disease, menopausal symptoms, 
and vaccine trials. Offen et al. (2007) and Dmitrienko et al. (2009) reviewed co-primary 
designs with medical and statistical perspectives. Several methods for power and sample 
size calculations have been proposed for clinical trials with multiple co-primary 
endpoints (Xiong et al., 2005; Eaton et al. 2007; Hung and Wang 2009; Song, 2009; 
Kordzakhia et al. 2010; Sozu et al. 2010, 2011; Julious et al. 2012). Xiong et al. (2005) 
proposed a power formula for two co-primary endpoints in superiority clinical trials when 
the endpoints are bivariate normally distributed and their variance–covariance matrix is 
known. Eaton et al. (2007) provided computable bounds of the power function under the 
assumption of multivariate normality. Hung and Wang (2009) gave bounds for sample 
size. Song (2009) discussed sample size calculations with multiple co-primary binary 
endpoints for non-inferiority clinical trials. Kordzakhia et al. (2010) presented a 
generalization in testing co-primary endpoints using a method of balanced adjustment. 
Sozu et al. (2010, 2011) provided formulas for power and sample size calculations with 
multiple co-primary continuous and binary endpoints in superiority clinical trials. In 
addition, Kong et al. (2004) used simulation and presented type I error and power 
estimation in non-inferiority and equivalence trials with correlated multiple endpoints. 
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Bang et al. (2005) calculated sample size for simulation-based multiple-testing 
procedures.   
  
For clinical trials with multiple co-primary continuous endpoints, Sozu et al. (2011) 
provided formulas for power and sample size calculations in case of one to one 
randomization. They included tables for sample sizes using numerical integration. Zhang 
(2012) derived formulas for more general cases and used simulation method to estimate 
power and sample sizes and showed that the differences between the two methods are 
very small in all checked cases. 
 
For clinical trials with multiple co-primary binary endpoints, Sozu et al. (2010) provided 
formulas for power and sample size calculations and illustrated their method for 2 or 3 
endpoints using numerical integration. In this paper, we are going to revisit the problem 
using similar method as in Bang et al (2005). In Section 2, we are going to present power 
and sample size estimation for co-primary binary endpoints in a more general setting. 
Section 2.1 presents notations for co-primary binary design. Section 2.2 presents power 
and sample size formulas by transforming the sufficient test vector for chi-square test into 
a standard random vector under the alternative hypotheses and derives its correlation 
matrix. Section 2.3 lists steps to estimate power and sample size using SAS programs. 
Section 2.4 and 2.5 present numerical examples with  and  endpoints and 
compared with sample sizes in Sozu et al. (2010). For non-negative correlated binary 
endpoints, Section 2.6 outlines an alternative approach for power estimation by 
simulating binary outcomes from individual subjects, which results in similar powers. 
Section 3 generalizes power and sample size estimation for co-primary binary endpoints 
to more general cases not requiring significant of all primary endpoints. Examples for 
sample size with Holm and Hochberg procedure are provided. Section 4 puts forth a 
discussion and conclusion. Sample SAS programs are attached in the appendix.  
 

2. Two Arm Clinical Trials with Multiple Co-Primary Binary Endpoints 

 

In this section, we set up notations for statistical design with co-primary binary 
endpoints. We use different notations from Sozu et al. (2010) in order to have uniform 
presentation for overall sample sizes for trials with different ratios of randomization 
between two arms (Rosenberger and Lachin 2002). Similar approaches were presented in 
Zhang (2012) for designs with continuous co-primary endpoints. We use the chi-square 
test for comparisons between endpoints in the two arms. By transforming the test statistic 
vectors into standard random vectors under the alternative hypotheses, we derive an 
equation connecting power and sample size, which will be the basis for evaluating power 
using simulation. Then we list steps to simulate correlated random vectors in power 
estimation. Finally, we present numerical results for sample size and compare with Sozu 
et al. (2010). 
 

2.1 Statistical Model 

 

In a randomized clinical trial with two arms, let  or  denote the test or the control 
arms. Overall, the trial randomizes subjects, where  denotes the number of 
subjects randomized to arm  and  denotes the number of 
subjects randomized to arm . There are  co-primary binary endpoints with 
known correlation coefficients.  
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For a subject in arm , the response vector , where ; 
and for a subject in arm , the response vector , where 

.The variables  have value  for response and  for non-response. All 
subjects are assessed for all endpoints. Those endpoints are correlated.  
 
For , we use the following notation for response 
probabilities and correlation coefficients: 

 

 

Since the values for response rates and  range from 0 to 1, the correlation 
coefficients cannot freely take values between -1 and 1. From the above formula, it can 
be easily derived that the correlation coefficients are bounded from below by: 
 

 

 
and from above by  

 

The bounds provide necessary conditions for correlation coefficients between binary 
endpoints.  
 
We are interested in testing the hypotheses with focus on the differences between the 
response rates , where we assume a positive value of  indicates the 
benefit of the test arm  over the control arm ,  
 
For  the null and alternative hypotheses are expressed as 

 

The co-primary design seeks to assert the superiority of the test arm over the control 
arm in all  primary endpoints simultaneously. The trial is designed to reject all  null 
hypotheses at the same time at the one-sided level α (usually 0.025) with the overall 
power ≥  using the pre-specified response rates  and and correlation 
coefficients between two endpoints in both arms and , where  
 

2.2 Power and Sample Size Using Chi-square Test 

 

The test statistic for the chi-square test without continuity correction can be conveniently 
expressed as  score using normal approximation. For arm  or , endpoint , 
the observed response rates can be expressed as  
 

   
 
The pooled observed response rates can be expressed as 
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For the null hypothesis , the test statistic formula is 

 

where the pooled variance under the null hypothesis is expressed as 

  

with  
 

 
The test statistic vector  follows multi-normal distribution 
asymptotically. Its covariance matrix can be derived when the correlation coefficients 
among the  binary endpoints are known.  

. 
The co-primary design rejects all  null hypotheses when all with 
the one-sided test at the significant level α, where  is the upper 100αth percentile of the 
standard normal distribution. The power function is evaluated under the alternative 
hypotheses at pre-specified response rates and correlation coefficients , , 

, for  The overall power can be expressed as  

 

where the transformed test statistic vector follows multivariate 
normal distribution asymptotically with mean vector 0, variance 1, and known correlation 
coefficients. The formula is 

 

where  

 

and the constants are given as 

 

The correlation coefficients can be easily derived as 
 

 

 

where 
  

 
We denote the correlation matrix by 
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. 

 
Sozu et al. (2010) calculated sample sizes for cases with 2 and 3  co-primary 
endpoints using numerical integration in the power equation. In this note, we simulate the 
transformed test statistic vector  to estimate power and sample size. 
The procedures and programs are essentially the same for any number of co-primary 
endpoints. 
 

2.3 Power and Sample Size Estimation by Simulating Test Statistics 

 

For each of the  endpoints, calculate sample sizes for designs using the one-
sided test at level α and with power: (i)  , or (ii) . The overall 
sample size for designs with  co-primary endpoints would be approximately ranged 
between the smallest sample size in (i) and the largest sample size in (ii). In the 
following, we list the steps for power and sample size estimation via simulation of the 
transformed test statistic vector: 
 

(1) Using SAS PROC IML, check whether the correlation matrix for the 
transformed test statistic vector  is positive-definite by 
showing all  eigenvalues are positive. Otherwise adjust the correlation 
coefficients between the binary endpoints to make  positive-definite.  
 

(2) Let the number of the simulated trials be  (we will use  in all 
examples). Use SAS PROC IML to generate  independent K-dimensional 
vectors of random numbers from normal 
distribution with means  and variance-covariance matrix  Each  
represents a transformed outcome statistic for a simulated trial under the 
alternative hypotheses. Specifically, for , the components of the 
independently distributed random vectors satisfy   

 
 

. 
 

(3) Let  be the sample size for the trial. For , find cases which lead to 
rejection of all co-primary null hypotheses at the one-sided level α, ie, those that 
satisfy the following condition 

.  
The simulated power is the proportion of all such vectors among the  vectors of 
random numbers.  
 

(4) For a design to achieve power , the sample size is estimated as the 
smallest integer  such that the associated estimated power is greater than or 
equal to .  

 

2.4 Numerical Examples for  Co-primary Endpoints 
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In the following, the sample size estimation is based on the chi-square test at the one-
sided level .  
 
Sozu et al. (2010) Table III presented sample sizes for 34 cases of different combinations 
of response rates and correlation coefficients for  co-primary binary endpoints. For 
the first 21 cases using the chi-square test with sample sizes ranging from  to , 
we estimate sample size using simulation method and present outputs in Table 2.1. In all 
21 cases  the differences between their results using numerical integration and our results 
using simulation for sufficient test statistic vectors are within  and . In most 
cases, there is no difference or the difference is  
 

Table 2.1: Sample Size with  Co-primary Binary Endpoints, 1:1 Randomization, 
One-sided Level  and Power  

 

 
Primary 
Endpoint  

 
Response  

Rate 

Sample Size for 
Individual Endpoint 

with Power 

 
Correlation 
Coefficients 

 
Sample 

Size 
       

       
1 0.70 0.50 188 244 -0.3 247 
2 0.70 0.50 188 244 0.0 244 
     0.3 239 
     0.5 233 
     0.8 218 
       
1 0.87 0.70 182 238 0.0 241 
2 0.70 0.50 188 244 0.3 235 
     0.5 230 
       
1 0.90 0.70 124 160 0.0 162 
2 0.90 0.70 124 160 0.3 158 
     0.5 154 
     0.8 145 
       
1 0.95 0.90 870 1142 0.0 1142 
2 0.95 0.90 870 1142 0.3 1116 
     0.5 1089 
     0.8 1019 

 
In Phase 3 clinical trials, studies can be designed to have higher power and more more 
subjects in the active treatment arm. The targeted response rates for the co-primary 
endpoints may not be the same in one or both arms. The correlation coefficients between 
endpoints may be different for the active and control arms under the alternative 
hypothesis. We present examples for sample size estimation in the next table using 
simulation approach.  
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Table 2.2: Sample Size with  Co-primary Binary Endpoints, 2:1 Randomization, 
One-sided Level  and Power  

 
 

Primary 
Endpoint  

 
Response  

Rate 

Sample Size for 
Individual Endpoint 

with Power 

 
Correlation 
Coefficients 

 
Sample 

Size 
        

        
1 0.30 0.10 188 228 0.0  0.0 227 
2 0.30 0.10 188 228 0.3 0.3 225 
     0.5 0.5 222 
     0.7 0.3 221 
     0.7 0.7 216 
     0.95 0.95 201 
     0.999 0.999 191 
        
1 0.30 0.10 188 228 0.0 0.0 252 
2 0.25 0.08 225 273 0.3 0.3 250 
     0.5 0.5 246 
     0.7 0.3 246 
     0.7 0.7 242 

 
The following graph power over sample size for different correlation coefficients.  

 
Figure 2.1: Power and Sample Size Using Chi-square Test for  Co-primary Binary 
Endpoints, 2:1 Randomization, One-sided Level , Equal Correlation 
Coefficients in Both Arms, Response Rates  

 

2.5 Numerical Examples for  Co-primary Endpoints 

 
Sozu et al. (2010) Table IV presented sample sizes for 24 cases for  co-primary 
binary endpoints. For the first 14 cases with chi-square test, we estimate sample sizes 
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using the simulation approach. In all the 14 cases, the differences between their results 
and our results are within  and .  

 

Table 2.2: Sample Size with  Co-primary Binary Endpoints, 1:1 Randomization, 
One-sided Level  and Power  

Primary 
Endpoint 

Response 
Rate 

Sample Size for 
Individual Endpoint 

with Power 

Correlation 
Coefficients 

Total 
Sample 

Size 

     
 = 
 

 

1 0.70 0.50 188 276 (-0.3, -0.3, 0.0) 281 
2 0.70 0.50 188 276 (-0.3, -0.3, 0.3) 278 
3 0.70 0.50 188 276 (-0.3, -0.3, 0.5) 274 
     (-0.3, -0.3, 0.8) 266 
     (0.0, 0.0, 0.0) 278 
     (0.0, 0.0, 0.3) 274 
     (0.0, 0.0, 0.5) 270 
     (0.0, 0.0, 0.8) 262 
     (0.3, 0.3, 0.3) 268 
     (0.3, 0.3, 0.5) 264 
     (0.3, 0.3, 0.8) 256 
     (0.5, 0.5, 0.5) 258 
     (0.5, 0.5, 0.8) 250 
     (0.8, 0.8, 0.8) 234 

 
In general when number of co-primary endpoints increases, power will decrease. The 
following graph plots one such case with  co-primary endpoints.  

 
Figure 2.2: Power and Sample Size Using Chi-square Test for Co-primary Designs, 2:1 
Randomization, One-sided Level , Response Rates  in Active and 0.10 in 
Control Arms, Correlation Coefficients 0.30 between Two Endpoints in Both Arms 
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2.6 Power Estimation by Simulating Correlated Binary Outcomes from 

Individual Subjects 

 
When sample size is fixed, an alternative way to estimate power is to simulate correlated 
binary outcomes from individual subjects.  Park et al (1996) gave a simple way to 
represent non-negative correlated binary variables using correlated Poisson variables. 
Park et al presented formulas for deriving Poisson parameters for two binary endpoints 
and gave an algorithm for three or more endpoints. In most clinical trials, since the binary 
endpoints are positively correlated, we can use their method for simulation.  
 
In the following, we are going to restrict to  co-primary binary endpoints. A similar 
approach applies to any number of binary endpoints with non-negatively correlation 
coefficients. We are using the same notations as in the previous sections. For arms 

respectively, let the response rates be  and  for the two endpoints, their 
correlation coefficient , and sample size . In the following, we list steps 
for power estimation by simulating correlated binary outcomes of individual subjects: 
 

(1) Calculate constants used in simulating Poisson random variables:  
 
 

 
 

(2) Let the number of the simulated trials be  (we use  in all examples). 
In one SAS data step, we output  three-dimensional independent Poisson 
random vectors. For arms  or , the 3 components of each vector come 
from independent Poisson distribution ,  and 

 with means , , and  respectively. One 
simulated trial uses  vectors for arm  and  vectors for arm C. 
 

(3) For arms  or , define binary random variables as , 
and , where  is the indicating function at integer 0. 
The binary variables and have response rates  , and correlation 
coefficient . 
 

(4) For each simulated trial with vectors for arm A and vectors for arm C, use 
SAS proc freq to calculate p-value from chi-square test. 
 

(5) Count number of simulated trials having one-sided p-values  for both 
endpoints. The estimated power for the co-primary design is the percentage of 
those significant trials among the total  trials. 
 

We use the above approach to estimate power using sample sizes in Table 2.1 and 2.2. 
The estimated powers are presented in the following table for the first 7 and the first 5 
cases with non-negative correlation coefficients in Table 2.1 and Table 2.2, respectively. 
In all cases we checked, the estimated power from simulating correlated binary outcomes 
from individual subjects are near the target power (80% or 90%) used in sample size 
estimation using sufficient statistic vectors. 
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Table 2.5: Power Estimation with   Co-primary Binary Endpoints Using One-
sided Chi-square Test at Level  for Selected Cases in Table 2.1 and 2.2 

 

Primary 
Endpoint 

Response 
Rate 

Correlation 
Coefficients Sample Size Estimated 

Power [a] 
        % 

         
1 0.70 0.50 0.0 0.0 244 122 122 79.97 
2 0.70 0.50 0.3 0.3 239 120 119 80.06 
   0.5 0.5 233 117 116 79.61 
   0.8 0.8 218 109 109 79.60 
         
1 0.87 0.70 0.0 0.0 241 121 120 80.03 
2 0.70 0.50 0.3 0.3 235 118 117 80.66 
   0.5 0.5 230 115 115 81.17 
         
1 0.30 0.10 0.0 0.0 227 151 76 90.51 
2 0.30 0.10 0.3 0.3 225 150 75 90.18 
   0.5 0.5 222 148 74 90.58 
   0.7 0.3 221 147 74 90.29 
   0.7 0.7 216 144 72 90.31 

Note [a]: Percentage of trials with significant outcomes for both endpoints using chi-
square test at one-sided level among  simulated trials. 
 

3. Power and Sample Size Estimation Using Holm and Hochberg Procedures 

for Multiplicity Adjustment 

 
In designs with multiple primary endpoints and the win scenario does not necessarily 
require statistically significant in all of them, one may need procedures for multiplicity 
adjustment in order to control family-wise Type I error rate. For those procedures based 
on univariate p-values, sample size and power can be conveniently estimated using the 
same approach as in Section 2 for the co-primary designs. In Section 3, we are going to 
present results for correlated binary endpoints using Holm and Hochberg procedures for 
trials with one active arm and one control arm using binary endpoints. The same 
approach applies to more general procedures and designs with more than one active arm 
versus one control arm. 
 
For Holm and Hochberg procedures, the win scenario is to claim significant in at least 
one primary endpoint. During the study design stage, we generally evaluate: (i) power for 
claiming significance of at least one endpoint, and (ii) power for claiming significance in 

endpoints. Sample sizes can be estimated to have power ≥  using either 
power definitions (i) or (ii) at the pre-specified alternative response rates and  and 
correlation coefficients between two endpoints and where  
 
For easy presentation, we are going to restrict to  binary endpoints and use the 
same notations as in Section 2. Let the two null hypotheses be  and for 
comparisons of the two primary endpoints between the active and the control arms and 
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the corresponding one-sided p-values be  and  Denote  and 
 for the most and the least significant comparisons. 

 
The Holm procedure involves the following two steps: 

 Step 1. If , reject the corresponding null hypothesis and go to the next 
step. Otherwise retain both null hypotheses and stop. 

 Step 2. If , reject the corresponding null hypothesis. Otherwise retain the 
hypothesis and stop. 
 

The Hochberg procedure involves the following two steps: 
 Step 1. If , reject both null hypotheses and stop. Otherwise retain the 

corresponding null hypothesis and go to the next step. 
 Step 2. If , reject the corresponding hypothesis.  Otherwise retain the 

hypothesis and stop. 
 
The win scenarios are to claim significant in at least one endpoint. During study design 
stage, there is interest to evaluate two different kinds of powers: (i) power for claiming 
significance of at least one endpoint, and (ii) power for claiming significance of both 
endpoints. Sample sizes can be estimated to have power ≥  using either power 
definitions (i) or (ii) at the pre-specified alternative response rates and  and 
correlation coefficients between two endpoints and where  
 
For endpoint  define critical regions at either  or  level as the following:  

 
 

where  is the upper 100αth percentile of the standard normal distribution  
 
The power for claiming significance of at least one endpoint can be expressed as 

 
and 

,  
for Holm and Hochberg procedures, respectively. 
 
The power for claiming significance of both endpoints can be expressed as 

 
and 

,  
for Holm and Hochberg procedures, respectively. 
 
Similar steps as those for co-primary designs in Section 2.3 can be used to estimate 
power and sample size for Holm and Hochberg procedures.  
 

4. Discussion and Conclusion 

 

For design of clinical trials with co-primary binary endpoints, we show that power and 
sample size estimation can be accurately and efficiently carried out through simulation of 
sufficient test statistic vectors. For cases with 2 or 3 binary co-primary endpoints, the 
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differences are small in sample sizes compared to those using numerical integration. In 
addition, differences in power are small compared to those using simulation of correlated 
binary outputs from individual subjects. In the appendix, we provide a SAS program for 
power and sample size estimation for two co-primary binary endpoints by simulating 
sufficient test statistic vector. The methods can be easily adapted to other cases with 
multiple correlated binary endpoints such as those using Holm or Hochberg procedures 
for multiplicity adjustment. The complexity of the simulation approach is essentially the 
same for different numbers of correlated binary endpoints, and the calculating time won’t 
increase dramatically with large sample sizes. In practice, we recommend estimating 
power and sample size by simulating sufficient test statistic vectors. In addition, one may 
verify the power by simulating individual outputs with non-negative correlation 
coefficients. Similar approach can also be applied to designs with more than one active 
arms and a control arm.  
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Appendix 1 

 

Power and sample size estimation by simulating test statistic vectors: a SAS program for 
 co-primary binary endpoints 

 
* Input design parameters for power and sample size estimation; 
%let pi_A1=0.30;  * Arm A response rate for endpoint 1; 
%let pi_A2=0.25;  * Arm A response rate for endpoint 2; 
%let rho_A12=0.7;* Arm A endpoints 1 and 2 correlation coefficient; 
%let pi_C1=0.10;  * Arm C response rate for endpoint 1; 
%let pi_C2=0.08;  * Arm C response rate for endpoint 2; 
%let rho_C12=0.3; * Arm C endpoints 1 and 2 correlation coefficient; 
%let q_A=0.6667;  * Proportion of subjects randomized to arm A; 
%let q_C=0.3333;  * Proportion of subjects randomized to arm C; 
%let nmin=230;     * Total sample size low bound; 
%let nmax=250;    * Total sample size upper bound; 
%let alpha=0.025;  * One-sided significant level; 
%let ntrial=50000; * Total number of simualted trials; 
%let seed=778899; * Seed for generating random numbers; 
 
data d0; 
  q_A = &q_A; q_C = &q_C; alpha=&alpha;  
  z_alpha=-probit(alpha); ntrial=&ntrial; 
  pi_A1 = &pi_A1; pi_A2 = &pi_A2; rho_A12 = &rho_A12; 
  pi_C1 = &pi_C1; pi_C2 = &pi_C2; rho_C12 = &rho_C12; 
  pi_AC1 = q_A*pi_A1 + q_C*pi_C1; pi_AC2 = q_A*pi_A2 + q_C*pi_C2;   
  ph_AC1_0 = sqrt(pi_AC1*(1-pi_AC1)*(1/q_A + 1/q_C)); 
  ph_AC2_0 = sqrt(pi_AC2*(1-pi_AC2)*(1/q_A + 1/q_C)); 
  ph_AC1_1 = sqrt(pi_A1*(1-pi_A1)/q_A + pi_C1*(1-pi_C1)/q_C); 
  ph_AC2_1 = sqrt(pi_A2*(1-pi_A2)/q_A + pi_C2*(1-pi_C2)/q_C); 
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  r_AC12 = (rho_A12*sqrt(pi_A1*(1-pi_A1)*pi_A2*(1-pi_A2))/q_A + 
rho_C12*sqrt(pi_C1*(1-pi_C1)*pi_C2*(1-pi_C2))/q_C)/(ph_AC1_1*ph_AC2_1);  
  fAC_1 = ph_AC1_0/ph_AC1_1; fAC_2 = ph_AC2_0/ph_AC2_1; 
  gAC_1 = abs(pi_A1 - pi_C1)/ph_AC1_1; 
  gAC_2 = abs(pi_A2 - pi_C2)/ph_AC2_1; 
  CALL SYMPUT('r_AC12', PUT(r_AC12, best.)); 
run;   
 
proc iml; 
  Mean = {0, 0};        
  I={1 0, 0 1}; 
  J={0 1, 1 0}; 
  Cov = I + &r_AC12*J;  
  call eigen(egvalue, egvector, cov); print cov egvalue egvector;  
  ntrial = &ntrial; call randseed(&seed); 
  W = RandNormal(ntrial, Mean, Cov); varNames = "W1":"W2"; 
  create sd0 from W[colname=varNames]; append from W; close sd0; 
quit; 
 
data sd1; if _n_=1 then set d0; set sd0; run; 
 
data sd2; 
  set sd1; 
  do n=&nmin to &nmax; 
 wac1_alpha = fAC_1*z_alpha - gAC_1*sqrt(n); 
 wac2_alpha = fAC_2*z_alpha - gAC_2*sqrt(n);  
    output; 
  end; 
run;   
 
proc sort data=sd2 out=sd3; by n ntrial; run; 
 
data sd4; 
  set sd3; by n; retain sigcnt; 
  if first.n then sigcnt=0; 
  sigcnt = sigcnt + (W1>=wac1_alpha)*(W2>=wac2_alpha); 
  if last.n then do; sigpcent = sigcnt*100/ntrial; output; end; 
  label n="Total Sample Size for both arms" 
    sigpcent="Power (percent of significant simulated trials)"; 
run; 
 
proc print; run; 
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