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Abstract 

A method of developing generalized parametric regression models for modeling count data 
is proposed and studied.  The method is based on the framework of the T-geometric family 
of distributions. A T-geometric distribution is the discrete analogue of the corresponding 
continuous distribution. The general methodology is applied to derive several generalized 
regression models for count data. These regression models can fit count data with under-
dispersion or over-dispersion. The extension to model truncated or zero inflated data is 
addressed. Some new generalized T-geometric regression models are applied to real world 
data sets to illustrate the flexibility of these models. 
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1. Introduction 

 

Regression model for count data has been and continues to be an important research topic 
for over half century due to its applications in many different disciplines such as actuarial 
science, biostatistics, demography, economic, social sciences and many others.  Early work 
started with the regression models for count data that follow standard Poisson distribution. 
For example, Jorgenson (1961) consider a multiple linear regression analysis for count data 
following the Poisson distribution with applications to number of purchases over a time 
period, and number of failures over a time period. Frome et al. (1973) considered the 
Poisson distribution in the context of non-linear regression analysis for count data where 
the sample mean and sample variance are about equal. An important milestone in the 
development of count data models was the generalized linear models by Nelder and 
Wedderburn (1972), and later elaborated by McCullagh and Nelder (1989). Poisson 
regression is a special case of the generalized linear model by the logarithm transformation 
of the Poisson response variable.  
 
The standard Poisson regression models have the limitation of equ-dispersion; the mean 
and variance of a count data are almost equal.  Many count data do not satisfy the equ-
dispersion property. Instead, they are either over-dispersion (variance > mean) or under-
dispersion  (variance < mean). There has been a rich development of flexible models for 
modeling over-or 
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under-dispersion count data (e.g., Lawless (1987), McCullagh and Nelder (1989), Famoye 
(1993)). For detailed review on count data modeling, one may refer to Hibe (2011) and 
Cameron and Trivedi (2013), and the references therein. 
 
In addition to over- or under-dispersion, there are other types of departures from standard 
Poisson regression models. Cameron and Trivedi (2013) described eight types of 
departures including failure of equ-dispersion, truncation and censoring, zero-inflation 
problem, violation of iid assumption among observations, and others. Various existing 
methods for dealing with the departures are reviewed in Cameron and Trivedi (2013) and 
the references therein.  
 

2. A framework for developing generalized discrete distributions 

 

The proposed method for developing generalized models for count data relies on the 
method of developing discrete generalized distributions proposed by Alzaatreh et al. 
(2013), namely the T-R(W) family. Let ( )Tf t  be a probability density function (PDF) of a 

continuous random variable [ ,  ]T a b , a b   . Suppose further that ( ( ))RW F y

is a monotonic and absolutely continuous function of the cumulative distribution function 
(CDF), ( )RF y , of any random variable R. The CDF ( )YF y  of a new random variable Y is 
given by 

    
 ( ( ))

 
( ) ( ) ( )RW F y

Y T T R
a

F y f t dt F W F y  .    (2.1) 

 
Many continuous distributions have been defined by using the result in (2.1). By taking 

( ( )) ln(1 ( ))R RW F y F y   , (2.1) defines the CDF and PDF of a T-R(W)  random variable 

as: ( ) { ( )}Y T RF y F H y  and ( ) ( ) { ( )}Y R T Rf y h y f H y , where ( )RH y  is the survival 

function to R and ( )Rh y  is the hazard function of R. Further by taking R to be the discrete 

Geometric random variable with ( 1)( ) 1 , 0,1,2,.....y

RF y p y    , where p is the 
probability of failure , Alzaatreh et al. (2012) defined the T-geometric family. The T-
geometric family defines the discrete analogue to the distribution of any continuous non-
negative random variable T. A T-geometric random variable Y has the CDF and PDF, 
respectively: 
   1( ) ( ln )y

Y TF y F p    ,     (2.2) 

   1( ) ( ln ) ( ln )y y

Y T Tf y F p F p    .     (2.3) 
 
Alzaatreh et al. (2012) defined and studied in details the exponentiated-exponential 
geometric distribution (EEGD). Akinsete et al. (2014) defined and studied the 
Kumaraswamy-geometric distribution in detail.  
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A generalized regression model for modeling the response Y following a member of T-
geometric distribution, namely the exponentiated-exponential geometric regression model 
(EEGR) for count data and zero-inflated count data was studied in Famoye and Lee (2016). 
The purpose of this study is to propose a modeling framework for developing models that 
are capable of modeling over- and under- dispersed as well as zero-inflated count data. 
These models can be modified to model truncated and censored data. Kumaraswamy-
geometric regression model (KGR) will be studied in detail. The KGR model will be 
applied to some real world data and compared with the EEGR model and other well-known 
models including generalized Poisson regression (GPR) and Negative binomial regression 
(NBR) for modeling over- or under-disposed count data, as well as zero-inflated count data.  
 

3. T-geometric regression models 

 

The equation (2.3) defines the probability mass function (PMF) of the discrete analogue 
random variable Y for the corresponding continuous random variable. In the following we 
define two regression models for modeling the discrete random variable Y defined from 
(2.3). 
 
3.1 Exponentiated-exponential geometric regression model 

Taking T to be exponeiated-exponental (EE) random variable with CDF: The CDF of the 
EE is given by (Gupta and Kundu, 2001): 
  ( ) (1 )t c

TF t e   , for t > 0, c > 0 and  >0.   (3.1) 
The probability mass function (PMF) of exponentiated-exponential geometric distribution 
(EEGD) is (Alzaatreh et al. ,2012) 

     ( 1)( ) ( ) ( 1) 1 1
c c

y y

Y Y Yf y F y F y p p         

    11 1
c c

y y     , y = 0, 1, 2, …,   (3.2) 

where c > 0 and 0 < p   < 1. The EEGD is unimodal and right skewed. The parameter 
c affects the shape of the distribution, which can be over-dispersed, equi-dispersed or over-
dispersed. Alzaatreh et al. (2012) discussed the conditions when the distribution is over- or 
under-dispersed according to the shape parameter c.  
 
Suppose Y is a count response variable that follows the EEGD in equation (3.2) and is 
associated with a set of covariates. Let 0 1 2 , 1( 1, , , , )i i i i i kx x x x x 

   be a (k – 1)-

dimensional vector of predictor variables. There are two parameters of EEGD (c). The 
parameter  is associated with moments, which is also depend on parameter c. For example, 
for c=1, mean of Y is 1(1 )   and variance of Y is 2(1 )     with variance/mean = 
1/ (1 ) , an over-dispersed distribution. The parameter c is associated with the shape. 
Famoye and Lee (2016) defines the EEGR model assuming that parameter  of EEGD is a 
function of ix  given by ( ) ( , )i ix f x  , where 0 ( , ) 1if x    is a known function of 

ix  and a k-dimensional vector 0 1 2 1( , , , , )k     
  of regression parameters. Since 
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0 <  < 1, the logit transformation of ( , )if x  , ( ) ( , ) / (1 )i ix x

i i ix f x e e
   
 

    , 
is modeled, and the EEGR model is defined as  

     1( | ) 1 [ ( )] 1 [ ( )] ,  0,1,2,i i
c c

y y

i i i i iP Y y x x x y 
       (3.3) 

 
If the shape parameter c is of interest, one can also assume the shape parameter c to be a 
function of the same covariates with ( ) exp( )i ic x x  or a set of m different covariates, 

{zi} with '( ) exp( )i ic z z  . 
 

3.2 Kumaraswamy-geometric regression model 

Akinsete et al. (2014) defined and studied the Kumaraswamy-geometric distribution 
(KGD) by letting the random variable T follow the Kumaraswamy’s distribution with CDF 
and PDF, respectively: 
   ( ) 1 (1 ) ,0 1, 0, 0a b

TF y y y a b       ,   (3.4) 

   1 1( ) (1 ) ,0 1a b

Tf y aby ya y      ,    (3.5) 
The CDF and PMF of the KGD is defined as 
   1( ) 1 {1 (1 ) } , 0,1,2,.....y a b

YF y p y         (3.6) 

 1( ) {1 (1 ) } {1 (1 ) } , 0,1,2,..., 0, 0y a b y a b

Yf y p p y a b           (3.7) 
 
The KGD has three parameters (a ,bp). When bthe KGD reduces to the EEGD. 
Parameters (a, b are shape parameters and parameter p is associated with the moments. 
Akinsete et al. (2014) derived expressions for computing moments. Their numerical results 
indicate about the mean and variance of KGD can be over-, equ- or under-dispersed.  
 
Applying a similar definition as EEGR, we assume the parameter p is associated with the 
covariates with the relation ( ) ( , )i ip x f x   and apply the logit transformation of 

( , )if x  , to define the KGR model as  

 1( | ) {1 [1 ( ( )) ] } {1 [1 ( ( )) ] } ,i iy ya b a b

i i i iP Y y x p x p x


         (3.8) 

where 0,1,2,..., 0, 0iy a b   . Using similar method described above, one can define 
the T-geometric regression model for count data for any continuous distribution.  
 
3.3 Zero-inflated T-geometric regression models 

Excessive zero count data occur in many real world problems. For this situation, a zero-
inflated regression model can be applied (e.g., Famoye and Singh ,2006). A zero-inflated 
T-geometric regression model defines the relationship between Y and covariates in two 
pieces:   

 
(1 ) ( ), 0

( | , )
(1 ) ( ), 1,2,3, ,

i i Y i i

i i i

i Y i i

f y y
P Y y x z

f y y

 



  
  

 
           (3.9) 
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where ( )Y if y  is a T-geometric regression model, e.g., EEGR or KGR, and 0 1i  . 

The probability i  is taken to be a function of covariates 0 1 2 , 1( 1, , , , )i i i i i rz z z z z 
   

and it is defined as logit function exp( ) / [1 exp( )]i i iz z     , where   is an r-

dimensional vector 0 1 2 1( , , , , )r     
  of parameters. The covariates iz  may be a 

subset of the ix  or be completely different from the ix . Other types of departures from 
standard Poisson distribution, such as truncated and censored models can be easily 
modified from the regular T-geometric regression models based on the type of departure. 
 

3.4 Parameter estimates for Kum-Geometric regression model 

The maximum likelihood method is applied to estimate the regression parameters and the 
nuisance parameters. Let a random sample of size n be taken from KGR, with likelihood 
function expressed as 

    1

0

( | , , ) 1 [1 ( ( )) ] 1 [1 ( ( )) ] ,i i

n
b b

y ya a

i i

i

L x a b p x p x 



       (3.10) 

and log-likelihood function  

    
1

1

1

( , , ) log (  | )

log 1 [1 ( ( )) ] 1 [1 ( ( )) ]i i

n

i i

i

n b b
y ya a

i i

i

a b P y x

p x p x








 

     





  (3.11) 

 
By taking the first derivatives with respect to the nuisance parameters (a,b) and the 
regression parameters, 0 1 2 1( , , , , )k     

 setting the first derivatives to zeros and 
solving the equations numerically, we obtain the maximum likelihood estimators for (a,b) 
and  The initial estimates of  is the modified linear regression estimate given by 

1
*̂ ( ) [ ln( 0.5)]X X X Y    , where X is an n   k matrix and Y is an n   1 column vector 

of count response variable. The same approach can be used to find the initial estimate of  
the zero inflated regression parameters . The initial estimate of the shape parameters 
( , )a b  can be taken to be 1 or the final estimates from fitting the KGD to the count response 
variable Y without the covariates. The PROC NLMIXED procedure in SAS is applied to 
obtain the parameter estimates for KGR and ZIKGR. In a similar fashion, the second partial 
derivatives of the log-likelihood can be obtained, forming the elements of the score Fisher's 
information matrix.  
 
3.5 Goodness-of-fit statistics and comparison test 

Various goodness test statistics will be applied for selecting models such as Root Mean 
Square Error, AIC, BIC and others. When a model involves nuisance parameters, a 
common practice in model selection is to compare full and reduced models based on the 
different values of the nuisance parameters. Likelihood ratio test is applied to test the 
significance of the nuisance parameter. For EEGR, the parameter c can be treated a 
nuisance parameter. While, for the KGR, both parameters (a,b can be treated as nuisance 
parameters.   
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When comparing models derived from different modeling techniques, the measures 
RMSE, BIC or AIC are computed to compare the model performance. Alternatively, 
Vuong’s (1989)  Kullback-Liebler Information Criterion can also be applied to 
discriminate between two models that are not nested.  
 

4. Applications 

 

The data set to be analyzed is the 1977-1978 Australian Health Survey data with n = 5190 
single-person households obtained from the Journal of Applied Econometrics 1997 Data 
Archive. The interest is to model the numbers of Doctor’s visits in the past 2 weeks on 
health utilization (DOCVISIT) using (a) social-economic variables: SEX, AGE, AGESEQ, 
INCOME, (b) health insurance status indicators: LEVYPLUS, FREEPOOR, FREEREPA, 
(c) recent health status measures: ILLNESS, ACTDAYS, and (d) long-term health status 
measures: HSCORE, CHCOND1, CHCOND2. Details for twelve predictor variables are 
given in Cameron and Trivedi (2003). Mullahy (1997) and Cameron and Johnson (1997) 
used the data to illustrate univariate count regression models. The response variable 
DOCVISIT is highly over-dispersed and excessively zero-inflated with mean 0.3017 and 
variance 0.637 and percent of zeros 79.79%.  
 
The strategy of modeling the DOCVISIT is as follows. We first fit the response variable 
using EEGD, KGD and GPD without covariates and assess the adequacy of EEGD over 
the sub model geometric distribution (GD), KGD over the sub model EEGD, and GPD 
over the sub model Poisson distribution (PD). The GPR regression defined in Famoye 

(1993) has ( | ) ( )i i iE Y x x and  
2( | ) ( ) 1 ( )i i i iV Y x x c x   , where the parameter 

where parameter c is any real number that describes the under-, equ- or over-dispersion of 
the response with c <0, =0 or > 0, respectively. The three hypotheses are: 
 

(I) Test EEGD over GD:  0 : 1 against : 1aH c H c    

(II) Test KGD over EEGD: 0 : 1 against : 1aH b H b   

(III) Test GPD over PD: 0 : 0 against : 0aH c H c   

The asymptotic Wald test, 0
ˆ ˆ( ) / . .( )z s e    , is used to test these hypotheses. The 

maximum likelihood estimates of the parameters of fitted EEGD and KGD distributions 
are summarized in Table 1. The parameter estimates indicate that the response DOCVISIT 
is over-dispersed. The estimates of the shape parameters are used as the initial estimate for 
the regression model with covariates.  

The next in our analysis is to fit the regression models without and with covariates, 
then, test if the hypothesis that each response variable is zero-inflated over non-zero 
inflated by testing the following hypothesis:  

 
(IV) 0 : All ' 0  agaist  : Not all ' 0,  1,2, , 1,i a iH s H s i r     ,  
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where 0 1 2 1( , , , , )r     
 is the parameter vectors for modeling the zero-inflated 

component. The log-likelihood ratio test is used to test the hypothesis (IV). For this health 
care application, number of parameters for the zero-inflated component is (r-1) = 12, which 
is the degrees of freedom for the log-likelihood ratio test. The results of the above four 
hypotheses tests are summarized in Table 2, There are three tests for the Hypothesis (IV). 
We provide only the comparison between EEGR and ZIEEGR in the summary table, since 
the results from the other two model comparisons are very similar. Table 2 indicates the 
following conclusion for the DOCVISIT response variable: 
 

i) EEGD fits better than GD,  
ii) KGD fits better than EEGD, 
iii) GPD is better than PD model, 
iv) The zero-inflated component is statistically significant. 

 
Based on the above conclusion, we fit ZIEEGR, ZIKGR and ZIGPR, and summarize the 
parameter estimates in Tables 3.  
 
The actual percent of zero is 79.79%. The estimated percent of zero from each of the three 
models are, respectively, 80.64% from ZIGPR, 80.15% from ZIEEGR and 80.25% from 
ZIKGR. To compare ZIEEGR and ZIPGR, the Kullback-Liebler Information Criterion 
proposed by Vuong (1989) is used, since ZIEEGR and ZIEEGR are two independent 
models. The results are summarized in Table 4. The likelihood ratio test indicates the 
ZIKGR fits better than ZIEEGR for all three responses, while the performance between 
ZIEEGR and ZIGPR are not significantly different.  
 
 

Table 1: The maximum likelihood estimates of fitted distributions of DOCVISIT  
without covariates 

EEGD ˆ( . .)s e    ˆ( . .)c s e    

 0.3558(0.0143) 0.5092(0.0307)  
KGD ˆ( . .)p s e   ˆ( . .)a s e   ˆ( . .)b s e   
 0.0342(0.0050) 0.2170(0.0397) 0.3272(0.0167) 

 
 

Table 2: Full and Sub model comparisons: (p-value) 
 

 Wald’s Z-test p-value 
Hypothesis (I) z=(0.5092-1)/0.0307=-15.99  < 0.0001* 
Hypothesis (II) z=(.3272-1)/0.0167=-40.29  < 0.0001* 
Hypothesis (III) z=(0.5142-0)/0.0461=11.16  < 0.0001* 
Hypothesis (IV) z=(6398.0-6194.8)=203.2  < 0.0001* 
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Table 3: Parameter estimates (standard errors in parentheses)  
for modeling DOCVISIT response variable 

 
Table 4: Model comparisons between ZIKGR and ZIEEGR using likelihood ratio test 

and Vuong Test for comparing ZIEEGR and ZIGPR 
ZIKGR Vs. ZIEEGR ZIEEGR Vs. ZIGPR 
= 4.86 (p-value = 0.0275)* z=0.9140 (p-value = 0.3707) 

 
 
 

5. Conclusions 

 
A method for developing generalized regression models for count data and zero-inflated 
count data is proposed using the T-geometric framework. Two models based on this 
method are investigated in detail. One is the EEGR model, which was first studied in 
Famoye (2016). The other is a generalization of the EEGR model, namely the KGR model. 
To illustrate the potential of this method, we analyze the 1977-1978 Australian health care 
data. The response variable, DOCVISIT is modeled using three different count regression 
models EEGR, KGR and GPR and their modifications of ZIEEGR, ZIKGR and ZIGPR. 
These three models can be used to model under-dispersed or over-dispersed count data. 
The models EEGR and KGR are more versatile than the NBR model, which can handle 
only over-dispersed data. For the application we analyze in this article, the ZIKGR 
performs the best, while the ZIEEGR performs equally well as the ZIGPR.The method 
proposed in this paper can be applied to develop other types of generalized regression 
models for discrete responses, which provide a broad selection of generalized modeling 
techniques in addition to the current available regression models for discrete data. 

Variable 
ix / iz  

ZIGPR ZIEEGR ZIKGR 

 ̂  ̂  ̂  ̂  ̂  ̂  
Constant -1.225(0.300)*    0.647(0.758) -1.595(0.309)* 0.732(0.678) 1.670(1.978)                0.710(0.753) 
Sex 0.018(0.085) -0.581(0.230)* -0.001(0.087) -0.532(0.205)* 0.007(0.054)              -0.553(0.232)* 
Age 2.010(1.572) 10.507(4.420)* 2.436(1.609) 10.29(3.923)* 1.146(1.027)              10.229(4.388)* 
Agesq -2.076(1.675) -13.61(5.040)* -2.643(1.712) -13.35(4.457)* -1.190(1.101)            -13.274(5.006)* 
Income -0.205(0.135)  -0.348(0.349) -0.248(0.138) -0.379(0.313) 0.129(0.088)              -0.371(0.353) 
Levyplus -0.107(0.117) -0.662(0.267)* -0.083(0.119) -0.545(0.236)* -0.080(0.075)              -0.675(0.277)* 
Freepoor -0.492(0.286)   0.094(0.666) -0.489(0.294) 0.171(0.604) -0.294(0.190)               0.073(0.732) 
Freerepa -0.194(0.143) -1.383(0.451)* -0.215(0.145) -1.278(0.385)* -0.129(0.094)              -1.378(0.445)* 
Illness 0.050(0.030) -0.683(0.159)* 0.049(0.031) -0.544(0.119)* 0.027(0.020)               -0.626(0.160)* 
Actdays 0.105(0.008) -1.792(0.665)* 0.100(0.008)* -1.494(0.380)* 0.075(0.007)*             -1.546(0.471)* 
Hscore 0.024(0.014) -0.104(0.056) 0.023(0.014) -0.100(0.047)* 0.016(0.009)               -0.096(0.053) 
Chcond1 0.001(0.110) -0.117(0.282) 0.008(0.112) -0.096(0.244) 0.019(0.070) -0.061(0.285) 
Chcond2 0.066(0.123) -0.467(0.416) 0.042(0.125) -0.513(0.366) 0.076(0.078) 1.251(0.403) 
 ĉ  = 0.2767(0.035)* ĉ = 1.6945(0.143)* â  = 1.2513(0.104)* 
   b̂  = 13.1000(26.579) 
LogL –3103.69 –3097.38 -3094.95 
AIC 6261.4 6248.8 6245.9 
BIC 6438.3 6425.7 6429.4 
RMSE 0.7459 0.7406 0.7364 
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