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Abstract 
Accessing data for analytics purposes can be facilitated if the data is no longer considered 
personal information. Statistical and computational disclosure control methods can be 
used for that purpose. Another approach that is more suitable under some use cases is 
secure (multiparty) computation. Secure computation is well suited in the context of 
surveillance problems because the computations can be defined and optimized and then 
continuously applied. We will explain how secure computation can be applied in health 
surveillance contexts, with some theoretical and practical results. One project developed 
a secure linking protocol to link different data sets without sharing personal information. 
Public health use cases for secure linking include performing HPV vaccination 
evaluations and Chlamydia testing from general practices. Another example is 
antimicrobial resistant infection surveillance in long term care homes. This allowed the 
collection of colonization and infection data without revealing the rates for any of the 
participating homes. We will also discuss a post-marketing surveillance project where 
rare drug adverse events are modeled using logistic regression by securely pooling data 
from multiple sites.  
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1. Introduction 

There is growing demand to share health data for secondary purposes—purposes other 
than providing health care to patients—including health services research and public 
health. In many cases there is a need or desire to combine data from multiple sources. 
However, combining datasets from different data custodians or jurisdictions to perform 
an analysis on the pooled data creates significant privacy concerns that would need to be 
addressed. Legislation will not typically allow the disclosure of personal health 
information without consent (Health Insurance Portability and Accountability Act 1996, 
Directive 95/46/EC on the protection of individuals with regard to the processing of 
personal data and on the free movement of such data 1995 p. 95). Consent will always be 
limited to a smaller population, most likely from specific socioeconomic subgroups (e.g., 
based on race, education) thereby biasing research (El Emam et al. 2013). Furthermore, 
consent cannot actually address privacy concerns in a meaningful way.  
 
Healthcare organizations are concerned about patient privacy for a variety of reasons. 
The number of organizations affected by health data breaches in a given year ranges from 
19 to 27% according to surveys (HIMSS Analytics 2010, 2012). The costs of a breach are 
significant, with healthcare being the most expensive globally at an estimated $363 per 
capita (Ponemon Institute 2015). Direct costs include escalation and breach notification, 
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hiring external experts, legal fees, and offering identify protection to affected individuals; 
indirect costs include internal efforts to organize the response or investigate the incident, 
and the loss of customers. However, there is also the loss of business opportunities due to 
reputational damage, and possibly litigation initiated by the affected parties. 
 
We will consider two options for sharing health data: risk-based de-identification; and 
secure computation. We will further describe how the latter can be considered in a risk-
based framework, before we review advanced techniques for sharing health data and 
summarize some of our work in this area. 
 
1.1 Risk-Based De-Identification 
The examples of AOL (Barbaro and Zeller Jr. 2006 p. 4417749) and the attack on the 
Netflix Prize (Narayanan and Shmatikov 2008) are often given as examples of failed 
attempts to protect against re-identification when data is used for other purposes, and that 
de-identification is therefore unable to protect data custodians from the inevitability of a 
successful attack. The standards in working with health data would not, however, 
consider the removal of unique or direct identifiers—i.e., pseudonymous data (Health 
informatics. Pseudonymization 2008)—as de-identification, which is all that was done to 
protect these datasets. In a systematic review, we found no examples of attacks on 
properly de-identified heath data where the risk was anything but “reasonable” or “very 
small” (El Emam et al. 2011). 
 
The methods of de-identification should leverage the long history of statistical disclosure 
control methods that consider the relationship (marginal distribution) from key variables 
or quasi identifiers to protect against identity disclosure (Duncan et al. 2011). 
Furthermore, the regulations and guidance documents suggest a framework for de-
identification that is risk based—i.e., that incorporates the context of the data release into 
the risk assessment framework—to have strong assurances that the risk is “reasonable” or 
“very small” (Office for Civil Rights 2012; Information Commissioner’s Office 2012). 
 
We use the term anonymization to mean both masking and de-identification (El Emam 
and Arbuckle 2013), but we will assume that masking unique or direct identifiers is well 
understood and instead focus on risk-based de-identification of the key variables or quasi 
identifiers. Consider the probability of re-identification given that an attacker makes an 
attempt as Pr⁡(reid | attempt) (Marsh et al. 1991). We can therefore formulate the problem 
as the probability of re-identification and an attack using 
 

Pr(reid, attempt) = Pr(reid | attempt) × Pr(attempt). 
 
The probability of an attacker attempting a re-identification is given by the context of the 
data release, using a subjective assessment of risk (Morgan et al. 1992; Vose 2008) based 
on expert opinion and precedent (e.g., (Centers for Disease Control and Prevention 2004; 
Statistics Canada 2007; Subcommittee on Disclosure Limitation Methodology 2005). The 
factors that affect an attempt include the security and privacy practices of the data 
requestor (e.g., controlling access, disclosure, retention, and disposition of data, 
accountability and transparency) and contractual obligations (e.g., prohibit re-
identification, prohibit sharing of data without the data custodian’s knowledge, and audit 
requirements). Furthermore, a defensible risk threshold can be determined based on 
precedent by evaluating the potential invasion of privacy (e.g., the sensitivity of the data, 
potential injury, and appropriateness of consent).  
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All of the above factors can be used to formulate a repeatable risk assessment framework 
(El Emam 2013). In fact many standards and guidelines have incorporated such a risk-
based framework in their recommendations for sharing health data (Committee on 
Strategies for Responsible Sharing of Clinical Trial Data; Board on Health Sciences 
Policy; Institute of Medicine. 2015; Health Information Trust Alliance 2015; Information 
Commissioner’s Office 2012; Office for Civil Rights 2012; PhUSE De-Identification 
Working Group 2015; The Expert Panel on Timely Access to Health and Social Data for 
Health Research and Health System Innovation 2015). 
 
1.2 Secure Computation 
Assume that multiple parties want to pool data and compute a function without either 
party knowing their inputs. The basic idea of secure computation is to compute a function 
on encrypted data, without ever decrypting the data to achieve the desired output. 
Cryptographic primitives, or building blocks, to create secure computation protocols can 
come from homomorphic encryption, garbled circuits, secret sharing, or others, each with 
their own advantages and disadvantages.  
 
Homomorphic encryption became practical with the introduction of the Paillier 
cryptosystem because computation time is reasonable, but it has a limited set of 
operations (Paillier 1999). We will discuss this cryptosystem in more detail in the next 
section and in the discussion of practical applications of secure computation for public 
health and post-marketing drug surveillance. Yao’s garbled circuits (Yao 1986) have 
been considered impractical due to computation time and memory requirements, although 
new methods may change this (Gueron et al. 2015; Songhori et al. 2015). A secret 
sharing scheme such as Shamir’s (Shamir 1979) would be computationally efficient in a 
homomorphic scheme (Benaloh 1986) but parties must reveal their shares at the time of 
secret reconstruction (i.e., to get the final output), and therefore other techniques must be 
employed (Desmedt and Frankel 1989). 
 
Secure computation is consistent with guidance provided by regulators as a means to 
protect personal health information while sharing encrypted data for the purposes of 
collaborative analysis. With secure computation the highest levels of security controls are 
implied, and there would be no processing of personal health information by humans. 
With appropriate contractual obligations and measures to ensure there are no leakages of 
personal information from the results themselves (O’Keefe and Chipperfield 2013), 
secure computation can be thought of in a risk-based framework as protected 
pseudonymous data with a very low risk of re-identification. 
 
Secure computation can therefore alleviate one of the key barriers to the establishment of 
large-scale public health surveillance programs. It is also well suited to these programs 
because the computations can be defined and optimized and then continuously applied.  
 

2. Homomorphic Encryption 

The Pallier cryptosystem (Paillier 1999) allows us to perform operations on encrypted 
data, called cyphertext messages, that map to operations on the raw data, called plaintext 
messages. If the plaintext message is 𝑚 , we will use 𝐸(𝑚) to denote the cyphertext 
message. This cryptosystem requires a public key and a private key, known as 
asymmetric cryptography. The public key is used by the parties to encrypt their data, 
whereas the private key, held by a semi-trusted third party, is used to decrypt the results. 
The basic setup is show in Figure 1. 
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Figure 1: Basic two-party setup of a Paillier cryptosystem. 
 
It is worth noting that the Paillier cryptosystem uses randomness in its encryption 
algorithm—encrypting the same message several times will yield different ciphertext 
messages except in rare cases. This ensures that an adversary holding a public key would 
not be able to compare an encrypted message to all possible encrypted counts from zero 
onwards and determine what the original plaintext value is. 
 
The Paillier cryptosystem supports addition and a limited form of multiplication. For two 
plaintext messages 𝑎 and 𝑏, plaintext addition is given by 
 

𝐸(𝑎) × 𝐸(𝑏) = 𝐸(𝑎 + 𝑏), 
 
where the multiplication of cyphertext messages is mod⁡𝑝2, and the addition of plaintext 
messages is mod⁡𝑝 (for  𝑝 the product of two large prime numbers). That is, multiplying 
the two cyphertext messages 𝐸(𝑎) and 𝐸(𝑏) is equivalent to the addition of the plaintext 
messages (which is encrypted). Decrypting the latter reveals the sum. Multiplication of 
two plaintext messages 𝑎  and 𝑏 , however, requires the plaintext message 𝑏  (not the 
cyphertext message) be applied to the cyphertext message 𝐸(𝑎), because it is given by 
 

𝐸(𝑎)𝑏 = 𝐸(𝑎 × 𝑏), 
 
where the exponentiation of cyphertext messages is mod⁡𝑝2, and the multiplication of 
plaintext messages is mod⁡𝑝. That is, the exponentiation of the cyphertext message 𝐸(𝑎) 
by the plaintext message 𝑏 is equivalent to the multiplication of the plaintext messages 
(which is encrypted). Decrypting the latter reveals the product. 
 
The limited form of multiplication is due to the use of a private key, but complex 
protocols can nonetheless be written to work around this limitation. We will see this in 
the examples that follow, especially the secure protocol to implement generalized linear 
models. 
 

3. Secure Linking 

Linking can be used to perform record lookup, or database matching for deduplication. 
Often, however, the best fields for linking are ones that cannot be disclosed (e.g., social 
security number, medical record number, health insurance number, and first and last 
name). The goal of secure linking is to link without sharing sensitive or personal 
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information, and this is not limited to just the fields used for linking. In many cases 
registries, for example, cannot learn new information about patients without consent or 
additional authorization. Revealing to another party which patients are in a registry may 
itself be a disclosure if membership to the registry is sensitive—membership could imply 
treatment for drug abuse, mental health treatment, or social assistance.  
 
In our secure linking protocol (El Emam and Arbuckle 2013 chap. Secure Linking) we 
use secure computation with a semi-trusted third party (sTTP)—trusted to run the 
protocol, but unable to obtain sensitive or personal information about patients even if it 
wanted to. Because the data and the computations on the data are protected by 
encryption, the parties do not need to trust one another or the sTTP. None of the parties 
involved can “peak” into the data or the computations. Furthermore, a breach at any one 
site would not reveal the identity or personal information of patients.  
 
Referring to Figure 1, the first step in our secure linking protocol is for the key holder to 
generate private and public keys, and to distribute the public key to the data custodians 
who will use it to encrypt the link variables. The encrypted data will then be shared with 
a central aggregator, or one data custodian sends encrypted data to the other. A 
homomorphic equality test is then run on the pooled encrypted data. The encrypted match 
results are then sent to the key holder, who uses the private key to decrypt the results. 
 
This secure protocol is used by the Institute for Clinical Evaluative Sciences (ICES) for 
linking de-identified data (matching on insurance number, name, and date of birth), and 
was proposed to determine Chlamydia screening and testing rates with a public health 
agency (matching electronic medical records from family doctors to lab testing). It was 
also proposed for a human papillomavirus (HPV) vaccine initiative impact assessment, 
where more details about the protocol can be found (El Emam et al. 2012a). 
 

4. Secure Surveillance 

The collection and analysis of data for the purposes of health monitoring and intervention 
requires access to relevant health data. Privacy legislation and concerns can hamper these 
efforts, even when it is permissible to use the data for the purposes of public health. 
Secure protocols can, however, overcome many of these barriers by ensuring no sensitive 
or personal information is disclosed at the point of data collection or during the 
calculation of relevant statistics. 
 
4.1 Prevalence of ARO’s 
Using a secure data collection system, providing strong privacy and confidentiality 
assurances, we were able to conduct a point prevalence study to assess rates of 
antimicrobial resistant organisms (ARO) in long term care homes in Ontario (El Emam et 
al. 2014). Although there is stigma attached to the identification of residents carrying 
ARO’s in long term care homes, secure computation allowed the collection of 
colonization and infection data without revealing the rates for any of the participating 
homes. This addressed the need to collect data about the prevalence of ARO’s in long 
term care homes for public health surveillance and intervention purposes. 
 
The basic framework of the secure data collection system can be seen in Figure 2. Long 
term care homes provided the counts, which were encrypted at the point of collection. 
These encrypted counts were then combined by a data aggregator using secure 
computation, which then passed the intermediate results to the key holder for decryption. 
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Secure computation was used to determine the mean colonization or infection rates and 
the standard deviation, by region and facility size, and to run a two-sample randomization 
test (randomized t-test) for non-response bias. 
 
 

 
Figure 2: Computing point prevalence using a Paillier cryptosystem. 
  
All long term care homes in the province were asked to provide colonization or infection 
counts for methicillin resistant Staphylococcus aureus (MRSA), vancomycin-resistant 
enterococci (VRE), and extended-spectrum beta-lactamase (ESBL) as recorded in their 
electronic medical records, and the number of current residents. We give an example of 
the results for MRSA only in Table 1, where the empty cells are due to minimum cell size 
requirements. 
 
Table 1: MRSA cases per 100 residents, where ρ is the regional prevalence. 
 
 Regions 
No. of 
beds 

North East Central 
East 

Toronto Central 
West 

West ρ s.d. 

1-60 1.57 3.17 0.72 - 3.31 8.38 3.87 3.24 
61-120 1.07 2.04 1.80 - 2.73 7.88 3.34 2.85 
121-180 0.56 2.54 1.08 0.91 3.15 7.83 2.94 2.58 
180+ - 2.37 1.68 2.58 2.91 8.63 2.61 2.10 
ρ 0.79 2.42 1.44 1.86 3.00 8.04   
s.d. 0.46 0.38 0.42 1.15 0.22 0.37   
 
Data was collected online during the October-November 2011 period. Overall, 82% of 
the homes in the province responded, which is much higher than in previous attempts to 
collect data (without the use of secure computation). The microbiological findings and 
their distribution were consistent with available provincial laboratory data reporting test 
results for AROs in hospitals.  
 
The burden of ARO in long term care settings in Ontario had not been measured at the 
time of our study. There is no current requirement to report ARO colonization and 
infection rates to the public or to public health authorities. When surveillance data is 
unavailable, it can be difficult to make informed decisions and to identify needs. 
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4.2 Rare Adverse Drug Events 
Logistic regression is commonly used in the analysis of adverse drug events. Data needs 
to be pooled, however, to detect rare events and ensure sufficient population 
heterogeneity to ensure the safety and effectiveness of a drug for subpopulations. We 
therefore developed a secure distributed logistic regression protocol using a single 
analysis center with multiple sites providing data (similar to the previous example) for 
post-marketing surveillance. We also extended the protocol to use generalized estimating 
equations (GEE) to account for correlated data, other generalized linear models (GLM), 
and survival models (El Emam et al. 2012b). 
 
To estimate a generalized linear model (Agresti 2002), we can use the Newton-Raphson 
method and iteratively compute the parameter estimates 𝑏 using 
 

𝑏(𝑡 + 1) = 𝑏(𝑡) − [𝐼(𝑡)]−1𝑢(𝑡), 
 
where 𝑢(𝑡) is the score vector and 𝐼(𝑡) is the information matrix for iteration 𝑡. With 
multiple sites contributing data (horizontally partitioned, so that they have the same 
covariates and coding formats), the score vector and information matrix are in fact 
computed individually at each site, and combined later. That is, for 𝑖 sites, 
 

𝑢(𝑡) = ∑𝑢𝑖(𝑡)

𝑖

⁡⁡and⁡⁡⁡𝐼(𝑡) = ∑𝐼𝑖(𝑡)

𝑖

. 

 
Unfortunately attempting to pool the intermediate statistics leaves the sites open to many 
potential disclosures. These disclosures can come from the information matrix, the 
covariance matrix, indicator variables, even the iterations themselves (for a summary of 
these potential disclosures see the appendix to El Emam et al. (2012b)). A core tenet of 
cryptography is to avoid any and all leakages of information—otherwise it could be used 
to find a way to extract the secrets that are meant to be protected. 
 
Secure computation can be used to hide all of the intermediate computations. Our 
protocol, called Secure Pooled Analyis acRoss K-Sites (SPARK), uses the secure 
building blocks of addition, multiplication, dot product, matrix multiplication, matrix 
inverse, and two-norm distance and comparison, many of which we extended for the 
purposes of implementing SPARK. The protocol to implement secure distributed logistic 
regression was also evaluated to assess its computational performance on a variety of 
datasets, as performance is a common concern with the use of secure computation. Even 
on commodity hardware the time it took to fit a logistic regression model of one million 
records across five sites was only about five minutes (disregarding the communication 
time between sites). 
 
The simplest example of a secure building block being used in the protocol is shown for 
matrix addition in Figure 3. In this case we simply need to multiply the individual 
cyphertext messages which are the matrix elements. Of course, the complete 
implementation of SPARK for a GEE or GLM is more complicated than this example 
would suggest. Nonetheless it shows that from the simple properties of the Paillier 
cryptosystem basic building blocks can be derived that allow for more complicated 
analysis to be performed. 
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Figure 3: Pooling score vector and information matrix is simply homomorphic addition. 
 

5. Conclusions 

Secure computation—with the appropriate contractual obligations and disclosure controls 
on the output of computations—can be seen in a risk-based framework as protected 
pseudonymous data with a very low risk of re-identification, thereby making it consistent 
with regulatory guidance. It allows for the pooling of data for statistical purposes without 
the need to disclose personal information, and protects data custodians in the case of 
breach since the raw data and computations are encrypted. Examples of secure protocols 
for the collection, sharing, and computation of statistics exist and are practical in real 
settings. In particular, secure computation has been effectively demonstrated for cases of 
public health surveillance where there is a need to securely collect and analyze data for 
the purposes of health monitoring and intervention.  
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