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Abstract

Numerical Weather Prediction (NWP) is the science of forecasting weather or climatic
conditions based on past and present observations using computational methods applied to
mathematical representations of the atmosphere. Temporally, weather forecasts range from
a few hours to a several days in the future, while climate forecasts range from several
months to years (or decades) into the future. Spatially, forecasts can cover small scale,
highly resolved “local” weather conditions to large scale global weather features and
climates.

The foundation of NWP is the conservation of mass, heat, momentum, and water vapor,
along with other gaseous and aerosol materials over a region of interest called the domain
(Pielke 2002; Warner 2011). The conservation equations are nonlinear, partial-differential
equations that are nearly impossible to solve analytically except in a few ideal cases.
Practical solution approaches for these equations employ numerical methods to obtain
approximate forecasts for a domain represented by a finite and generally regular set of
discrete “grid points”. Discretizing the domain means that atmospheric processes occuring
at sub-grid scales cannot be resolved by the modeled physics; however, these unresolved
effects must be accounted for to maintain conservation. Such accounting is done via
parameterizations that address physical effects (terrain, land use, turbulence, moisture, etc.)
which occur at sub-grid scales. Depending on which parts of the atmosphere researchers
consider, there are a number of parametric approaches to model these physical effects. It is
difficult to efficiently explore how these parameterizations interact over a domain to
produce a forecast; however, we require this knowledge to conduct trade-off studies and
inform the selection of parameterization schemes to make the NWP robust for a variety of
weather conditions.

Statistical design of experiments, a technique applied successfully in other areas to large
scale simulation models, shows promise in assisting in a structured exploration of these
parameterized processes in NWP codes. In this article, we develop an extended problem
definition; we present a method for developing a design matrix suitable for that problem:;
and, we illustrate how to apply that design to study the role parameterizations play in a
relevant forecast metric of interest.
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1. Introduction

From the early work of Bjerknes and Richardson (Lynch 2006), Charney’s (1948, 1949)
work on the numerical prediction in the atmosphere, and Smagorinsky’s (1963) landmark
paper on the development of a global circulation model, our ability to forecast weather and
climatic conditions has grown ever more more capable. Yet at the same time, these models,
with all their attendant assumptions and approximations together with the computational
challenges arising from ever finer modeling resolutions, can interact in a number of ways
that introduce even more uncertainty into the forecast (Stevens and Bony 2013). This
complexity challenges those who rely on these models to support decision making (Vecchi
and Villarini 2014) and to assess regional impacts (Hall 2014; Schindler and Hilborn 2015)
despite ever increasing amounts of data (Overpeck et al. 2011). Some of this inherent
uncertainty can be attributed to how these models introduce parametric implementations
of sub-grid physics effects called “parameterizations” (Stensrud 2007). Yet, many of the
parameterizations, while studied in varying levels of detail by their developers, have not
been studied in detail for their role in producing forecasts. It is in this later aspect that we
see a role for experimental design.

Experimental design reaches back to the work of Fisher (1935) who developed the basic
techniques for agricultural science. Other researchers (e.g., Box et al. 1978; Montgomery
1997; and Deming 2000) extended Fisher’s work into areas such as industrial process
understanding and control. Recently, with advances in computational capability,
researchers, e.g., Kleijnen et al. (2005), and Kleijnen (2008), have applied experimental
design to the study of complex simulation codes. In approximently 80 years of research,
experimental design has evolved into a robust and comprehensive collection of
methodologies that allow rigorous experimentation in many complex systems far removed
from Fisher’s initial application. Yet despite the evolution of these techniques there is little
direct evidence to suggest that researchers have emplied these techniques to study
numerical weather prediction (NWP). Absent any direct evidence we note that some (Berci
et al. 2014; Rahimi et al. 2014; or Zhu et al. 2015) have applied experimental design
methods to computational fluid dynamics codes as part of an engineering development
process. We also recognize that computational fluid dynamics codes share many of the
same complexities exhibited by NWP, a fact that suggests that experimental design may
prove useful in weather forecasting and the analysis of the attendant models.

This article serves as an extended, and more complete definition, of a problem presented
at a clinical session held at the recent Conference on Applied Statistics in Defense (Smith
and Penc 2015a). In this session, we expressed our initial thoughts on the exploration of an
existing NWP code via modern experimental design techniques. In Section 2, we present a
process model for a generic NWP code along with an interaction diagram of
parameterizations for a specific NWP model. In Section 3, we present methods that allow
sampling of that process model. In Section 4, we use an approach developed at the Naval
Postgraduate School, Monterey, CA to create an initial design matrix for our problem. In
Section 4, we also complete the problem statement by proposing how we can apply design
of experiments to assessing how these various parameterizations interact to produce a
“skillful” forecast. In Section 5, we summarize our efforts to explore NWP with design of
experiments.
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2. Problem

Since the atmosphere is a fluid, each approach to NWP uses some form of the Navier-
Stokes equations of fluid and thermodynamics together with samples of the current
atmospheric state taken up to a given time to estimate its future state. The Navier-Stokes
equations are nonlinear partial-differential equations that are nearly impossible to solve
analytically except in a few ideal cases. Therefore, practical implementations of NWP
employ numerical methods to obtain approximate solutions at a set of finite, and generally
regular, collection of of discrete “grid points” called a domain (Pielke 2002; Warner 2011).

2.1 A Process Model for NWP

Observing that a forecast takes input conditions up to some current time and maps them to
a set of conditions at some future time via a suitably chosen mechanism, we model a
forecast mathematically as:

M:[‘L'_)Ot (1)

where I denotes the set of inputs up to time T with zero being the arbitrary start time; O,
denotes the forecast at some time t assumed to be greater than 7; M the mechanism that
produces the forecast; and the right arrow signifies ‘maps’. For this article, we choose the
term mechanism to be synonymous with the equations of fluid and thermodynamics
implemented in a form that can be solved numerically on a digital computer — the NWP
code. Though frequently used interchangeably, we forego the use of the terms “model” and
“simulation” in favor of the term mechanism to avoid the often overloaded meanings
ascribed to “model” and “simulation” by various communities.

Regardless of the NWP application, whether it be for a weather forecast or a climate
prediction, the mechanism must be initialized. The process of entering observed data into
the mechanism as an estimate of the current atmospheric state, and establishing the lateral
boundary conditions if the forecast is for a region, is called initialization. The set of inputs,
I, is taken to mean the meteorological conditions, e.g., temperature, humidity, wind speed
and direction, etc., that initialize the mechanism M to produce the forecast. We draw this
distinction to make clear the point that parameterizations are conditions placed upon the
mechanism producing the forecast rather than inputs in the sense of observations of the
atmospheric state; although, in the simulation sense of inputs parameterizations are
configurable inputs. We denote the finite set of parameterizations classes as ;.. Here each
class represents specific implementations associated with a single type of sub-grid process.

Because M is a finite approximation (both temporally and spatially) of a continuous
physical process, it introduces numerical errors that grow with time (Lorenz 1963).
Additionally, I, represents measurements of the atmospheric state that also come with
associated, and sometimes unknown, measurement errors. Consequently, we conclude that
the forecast O, is a random variable. For purposes of this article, we define a forecast, under
a specific ¢ € 6y, as:

M(g):I; » O; )

where the various terms have just been defined and the ‘~’ denotes that these are random
variables. While it is tempting to assert that M is a random function owing to the presence
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of “bugs” in the software, we expect that M is deterministic (hence bug free) because of a
continuous development, testing, and maintenance process.

2.2 Parameterizations in a Particular NWP

The discussion thus far has been about generic NWP; however, our interest is in a
community developed NWP modeling system known as the Weather Research and
Forecasting (WRF) model, and specifically the Advanced Research WRF (ARW) version
(Skamarock et al. 2008), hereinafter WRF-ARW. For our purposes, WRF-ARW is
employed to downscale global forecasts to a more highly resolved forecast for a limited
domain or region in space. For this article, the specific location and domain are
unimportant. The WRF-ARW simulation core itself, absent the atmospheric state
initialization data, serves as our mechanism of study.

There are 7-broad classes of physics parameterizations from which a user selects using a
“namelist” to configure WRF-ARW. Within each parameterization class there are a
number of options to choose from to model a particular physical process. To produce a
forecast, a user selects one option per parameterization class at start time via the namelist
which configures WRF-ARW. These configuration options are given in Table 1. We use
@ € 6, to denote a 1x k vector of selections chosen as namelist inputs (one choice per
each of k classes) from Table 1.

Table 1: Cross reference of physics parameterizations to namelist entry along with
physical process represented and number of available options.

Parameterization Namelist Entry Physical Process Options
Microphysics mp_physics Moisture Transport 17
Long wave radiation  ra_lw_physics Long wave solar radiation 6
Short wave radiation  ra_sw_physics Shortwave solar radiation 6
Surface layer physics  sf_sfclay_physics  Near earth effects 9
Surface physics sf_surface_physics Land/atmosphere interface 8
Planetary boundary bl_pbl_physics Turbulent atmospheric 12
layer (PBL) layer near earth
Cumulus physics cu_physics Clouds 6

As the mechanism M (@) executes (in this case WRF-ARW configured with a specific
parameterizations) the schemes for each parameterization class interact at predescribed
intervals (also a namelist input) such that, when coupled with the integration of the fluid
and thermodynamic equations, we obtain a forecast from a given set of input conditions.
These interactions are depicted in Figure 1, along with some of the physical processes
produced such as rain. Also shown are some of the model variables that correspond to the
specific form of the Navier-Stokes equations implemented in the code. Note that in Figure
1, the box labeled “Radiation” handles both the “Long wave” and “Short wave” radiation
schemes identified in Table 1. Likewise, the box labeled “Surface” handles both the
“Surface layer” and “Surface physics” entries. How parameterizations interact is our
research interest in applying statistical design of experiments to the mechanism M of
equation 2.
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Figure 1: Direct interactions of parameterizations in WRF-ARW (Dudhia 2015).

3. Experimental Design

Montgomery (1997, p. 1) defines an experiment as “test or series of tests in which
purposeful changes are made to the input variables of a process or system so that we may
observe and identify the reasons for changes in the output response.” This definition holds
regardless of whether one studies a physical system such as crops in the field or in a
simulation code. Our objective is to design an experiment that enables us to extract as much
information as we can, as efficiently as possible, from sampling the output of the
mechanism at suitably chosen settings drawn from 8,.. We are mindful of the typical role
experimental design plays in simulation analysis which is forming a meta-model of the
simulation response. However, it is worth noting a principle that Cioppa and Lucas (2007)
ascribe to Santner et al. (2003) for selecting designs that “allow one to fit a variety of
models and provide information about all portions of the experimental region.” By
remembering this principle and reflecting it in our designs, we can add to our data set as
our exploration progresses, and make the appropriate choice of meta-model as the data
reveals it without relying upon meta-model specific assumptions a priori to create our
design.

The barrier to applying design of experiments (DoE) to simulations rests largely on the fact
that much of the theory behind DoE was developed to study real world applications and
then adapted to the simulation world (Kleijnen et al. 2005). However, recent years have
seen significant advances by a number of researchers (among them McKay et al. 1979;
Sacks et al. 1989a; Sacks et al. 1989b; Law and Kelton 2000; Kleijnen et al. 2005; and
Kleijnen 2008) in the development and cataloging of approaches and designs for simulation
experiments, for example the SEED Center for Data Farming at the Naval Postgraduate
School (2016) in Monterey, CA. Section 3 draws on the work done at the SEED Center
and applies these approaches to numerical weather prediction codes.

3.1 Initial Attempts at an Experimental Design

A design matrix is a n X k matrix of n design points (vice runs) taken at various settings
called levels that we denote as [ for each of k factors. Taking WRF-ARW as the mechanism
M (eq. 2) we wish to study, and inspecting both the documentation (Skamarock et al. 2008)
and Table 1 reveal that each of the k parameterization classes (6},) to be categorical factors,
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and each scheme within a class to be a categorical variable. In addition to the
parameterizations, we note from the documentation that there are a number of other factors,
largely quantitative, that are of potential interest; however, for this particular effort, we
restrict ourselves to the purely categorical parameterizations identified for the k
parameterized physical processes shown in Table 1.

The categorical nature of Table 1 suggests a design based on Latin Squares or Taguchi
methods (Montgomery 1997). Treating each of the k parameterization classes as a factor
would allow a Latin Square design to identify factor effects but not factor interactions;
while a Taguchi approach would allow us to identify both factor and two-factor
interactions, but no higher order interactions. It is clear from both Figure 1 and our
knowledge of atmospheric physics that interactions between classes of parameterizations
are likely; however, it is also reasonable to suppose that higher order, those beyond two
factor, interactions exist so it appears neither design method is suitable for our purposes.

One approach that will allow us to explore a high dimensional, categorical design space is
some form of a [* factorial design where there are [ levels per each of k factors, the simplest
case being [ = 2 (Montgomery 1997). For the [ = 2,3 and 4 cases there are cataloged
designs available; however, the downside to the factorial approach is that for many of the
factors in Table 1, [ is quite large, so to find an appropriate design we would need to
generate designs and search through those designs using some heuristic to find one suitable
for our needs. In our case, there are on the order of three million different factor-level
combinations for the classes identified in Table 1 so a heuristic search through this space
is uncertain to produce a suitable design. We need an approach that allows us to explore
this huge space of combinations efficiently, yet at the same time recognizes the
computational expense of creating an extensive run set. In other words, a method that limits
the number of design points () that we need to draw a statistically valid conclusion about
the impact of parameterizations on our forecast producing mechanism.

3.2 Would a Latin Hypercube Approach Work?

McKay et al. (1979) first applied Latin Hypercube sampling to a computer code to
adequately cover the input space to a computer code. The strength of Latin Hypercube
sampling lies in the ease in which these designs can be generated for any number of factors
k with given numbers of levels [; however, very few of these generated designs have
desirable properties such as “orthogonality” (Cioppa and Lucas 2007). Orthogonality
means that the pairwise correlation between factors is zero. Moreover, the typical
application of Latin Hypercubes is to explore quantitative factors to take advantage of the
space filling properties inherent in Latin Hypercubes. Recently, researchers at the Naval
Postgraduate School have developed the means to generate Latin Hypercube designs for
essentially arbitrary numbers of design points for a given number of quantitative, discrete
and categorical factors (Naval Postgraduate School 2016) that have, to some
approximation, desired properties such as orthogonality and balance.

An early expansion of Latin Hypercube designs were completed by Cioppa and Lucas
(2007) who augmented the work of Ye (1998) to produce a larger, though still restricted,
m-—1
2 )
guantitative factors, where m is integer chosen such that the number of factors k = 2™ —
2, and the quantity in parenthesis is the number of combinations taken pairwise. Hernandez
et al. (2012), extended the method developed by Cioppa and Lucas via a mixed integer
linear program to produce “nearly orthogonal” Latin Hypercubes (NOLH) designs for

catalog of designs constrained to dimension 2™ — 1 design points by m + (
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almost any k < n condition, where n is the number of simulation runs, or design points, in
the computing budget. Hernandez et al. (2012) relaxed the requirement for orthogonality
and constrained the maximum off diagonal correlation between factors to a small non-zero
value; hence, the term “nearly orthogonal” appended to the Latin Hypercube design.

The last extension to this work that we need was made by Vieira et al. (2011; 2013) to
produce NOLH mixed designs with good balance and orthogonality. Here, the term
“mixed” implies that the factors can be any combination of categorical, discrete or
guantitative, and the term “balanced” means that the distribution of factor-levels appear
more or less uniformly for a given factor column in the design matrix. The Naval
Postgraduate School (2016) has developed an array of Microsoft Excel and Java based
tools that automate creation of design matrices based on these expansions (Cioppa and
Lucas 2007; Vieira et al. 2011; Hernandez et al. 2012; Vieira et al. 2013) for a nearly
arbitrary number of factors. In the following section, we propose a design matrix based on
these tools.

4. A Latin Hypercube Design Matrix for NWP

For the design tools created by the Naval Postgraduate School, one tool is the “best” off-
the-shelf choice we can make to illustrate our point. Based on the work of Vieira et al.
(2013), the “NOB_Mixed_512DP_v1” spreadsheet (Vieira 2012) produces a design for
512 design points, and up to 300 mixed categorical, discrete and continuous factors. It has,
however, one limitation for our purpose: for categorical factors, use of this tool is limited
to at most 11 levels. Regardless, we will use this tool to produce a design matrix with 512
design points using the 7 categorical factors identified in in Table 1 by restricting the
microphysics and planetary boundary layer (PBL) schemes to 11 levels. This restriction is
not entirely arbitrary. The WRF-ARW community established a preferential ordering for
the namelist options based on suitability criteria that depends on, in part, the domain, the
larger scale weather features, etc. For our levels, we will select schemes based on that
criteria until we have chosen 11. A portion of the design matrix so created is given as Table
2.

Table 2: First 10 design points of a 512 x 7 design matrix created using
NOB_Mixed_512DP_v1.xls (Vieira 2012) for the namelist categories in Table 1.
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Each row of Table 2 constitutes both a row in our design matrix and a unique ¢ that we
apply to the the mechanism in equation 2 to produce a forecast. For example, the first row
means evaluate our mechanism with the long wave radiation scheme set to the second
option, the short wave to the sixth option, and so forth. Computing the Pearson correlation
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coefficient for all 512 design points shows that the design is indeed nearly orthogonal, with
a maximum off diagonal correlation coefficient of about 1.25%, and very nearly balanced
(each level appears nearly equally often in each column of the design matrix).

Clearly, the approach developed at the Naval Postgraduate School is capable of producing
a solution that satisfies our desire to explore the mechanism M. However, the particular
tool (Vieira 2012) produces a design with far more design points than we need. Subsequent
work will implement the mixed-integer linear programming approach Vieira et al. (2013)
developed to directly create a design matrix from the k parameterization classes (6) but
with far fewer design points.

5. Summary

We demonstrated that the techniques of experimental design allow us to explore the
mechanism for producing a forecast when that mechanism is the WRF-ARW NWP core
by showing that we can create a design matrix developed from the various parameterization
classes. Thus, we accomplished our main goal with this article. However, these off-the-
shelf tools produce designs which contain far more design points than are computationally
feasible for our problem. Therefore, to create a design matrix with fewer design points, we
must implement the means (Vieira et al. 2013) to construct that matrix. In doing so, we
expect to create more compact designs that will also allow us to consider certain
combinations of parameterization schemes which the documentation and literature
suggests are problematic.
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