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Abstract 

One property of student growth data that is often overlooked despite widespread 
prevalence is incomplete or missing observations. As students migrate in and out of 
school districts, opt out of standardized testing, or are absent on test days, there are many 
reasons student records are fractured. Missing data in growth models can bias model 
estimates and growth inferences. This paper presents empirical explorations of how well 
missing data methodologies recover attributes of would-be complete student data used for 
teacher evaluation. Missing data methods are compared in the context of a Student 
Growth Percentiles (SGP) model used by several school systems for accountability 
purposes. Using a real longitudinal dataset, we evaluate the sensitivity of growth 
estimates to missing data and compare the following missing data methods: listwise 
deletion, likelihood-based imputation using an expectation-maximization algorithm, 
multiple imputation using a Markov Chain Monte Carlo method, multiple imputation 
using a Predictive Mean Matching method, and inverse probability weighting. 
Methodological and practical consequences of missing data are discussed. 
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1. Introduction 
 
Most statistical procedures are designed for complete datasets.  Consequently, analyzing 
student achievement data prone to missing observations may impact model findings and 
subsequent data-driven decisions. As students migrate in and out of school systems, leave 
high school, or are absent from testing, there are many reasons student records are 
fractured. If not properly accounted for, incomplete student data may be an invisible 
covariate affecting evaluation inferences in student growth models. Further research is 
necessary to ensure student growth models mitigate bias due to missing data.  The 
purpose of this study is to present empirical explorations of how well missing data 
methodologies recover attributes of would-be complete student data used for teacher 
evaluation.   
 
The Student Growth Percentiles (SGP) model (D. W. Betebenner, 2011) was selected as a 
focus of this review since over 30 states have chosen to adopt it in some capacity.  This 
model is normative in nature and produces student percentile ranks as its growth metric.  
Although this study explores missing data in the context of an SGP model, many 
concepts are applicable to the broader category of growth models. 
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2. Overview of Missing Student Data 
 
2.1 Motivation 
Missing data is a frequent problem for most researchers. In theory, the best way to 
mitigate the consequences of missing data may be to prospectively design a study that 
minimizes the potential for incomplete observations.  In practice, often the data collection 
process is a balance of cost, control, and feasibility that results in an imperfect final 
product with missing observations.  Large and small-scale research projects alike are 
susceptible to missing data due to attrition, participant error, data collection glitches, and 
data entry problems.  Longitudinal data utilized in student growth models is especially 
vulnerable to missing observations as the reasons above are compounded over multiple 
years in addition to mobility in and out of the district.  As there are likely unobserved 
covariates in every student achievement data set (e.g. student motivation), missing data 
methodology is relevant to most educational researchers (D. Rubin et al., 2004). 
 
Concern about missing data is warranted given how prevalent this issue tends to be.  In a 
review of missing data in VAMs, McCaffery found large school districts were missing at 
least one score from between 42 – 80% of students (D. F. McCaffrey & J. Lockwood, 
2011). The distribution of missing student scores was inconsistent across teachers.  On 
average, 37% of teacher rosters contain fully complete student records but this varies 
from 0 to 100% in every grade. Additionally, missing data occurred in non-random 
patterns that are especially relevant when selecting a missing data methodology.   
 
Fortunately, statistical packages make many missing data handling techniques readily 
available to researchers.  Unfortunately, the most common default procedure, listwise 
deletion (or complete case analysis), is only appropriate for specific situations that are 
unverifiable (Peugh & Enders, 2004; Roth, 1994).  This can be troubling as some 
researchers may not be aware of the bias they introduce by accepting default settings.  
Either explicitly or implicitly, all researchers account for missing data and should be 
aware of the consequences of their chosen method. 
 
2.1 Missing Data Mechanisms 
Rubin’s taxonomy of missing data mechanisms has become the standard classification 
scheme cited in most research (Donald B. Rubin & Wiley, 1987).  He specified three 
mechanisms: Missing Completely at Random (MCAR), Missing at Random (MAR), and 
Missing Not at Random (MNAR).  Data are MCAR when the probability of missing 
observations is independent of any other variable (latent or observed).  Essentially, data 
are arbitrarily missing and thus the observed data can be considered a random sample of 
the complete dataset.   
 
Data are MAR when the probability of missing observations is independent of the 
missing variable itself, but related to another variable. As the missingness is conditional 
on another variable in the dataset, there are a variety of methods available to restore 
attributes of the would-be complete dataset using information from other non-missing 
variables.  More relaxed than the MCAR condition, most missing data procedures require 
data to be MAR.  There are no formal diagnostic tests to detect a MAR mechanism. 
 
Data are MNAR when the probability of missing observations is a function of the missing 
variable itself. For example, data are missing not at random if all test scores below a 
specific score were not recorded and thus are missing from the analysis. Because 
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missingness mechanisms cannot be verified, statisticians can conduct sensitivity analyses 
assuming different mechanisms to determine how robust their findings are.    
 

3. Design and Methods 
 
3.1 Data 
To illustrate the consequences of different missing data handling techniques for student 
growth data, this study analyzes Measures of Academic Progress (MAP) mathematics 
achievement scores.  Study data included 3rd and 4th grade mathematics achievement 
scores, student demographic characteristics, and classroom rosters.  Actual test scores 
were chosen over simulated data to ensure the relationship between past and future 
performance accurately reflects what exists in practice.  Though simulating scores could 
provide additional statistical control over missing data patterns/mechanisms, these 
controls may not translate to practice settings where data is often more complicated. 
 
3.2 Evaluation Design 
Using a real longitudinal dataset of student records, the following steps were 
implemented: 

1. Artificially Censor Observations: remove observations based on their 
likelihood of being observed in a reference population of similar students.   

2. Implement Missing Data Methods: separately implement the following missing 
data methodologies:  

• Listwise Deletion  
• Imputation using an Expectation Maximization algorithm  
• Multiple Imputation via a traditional Markov Chain Monte Carlo method 
• Multiple Imputation via a Predictive Mean Matching method  
• Inverse Probability Weighting 

3. Analyze Growth using the SGP Framework: calculate quantile regression 
estimates for each dataset, compute student growth percentiles for each student 

4. Compare Results: compare growth estimates to the would-be complete data  
(benchmark/true) values. 

 
4. Growth Model Specification 

 
4.1 Evaluation Scenario 
To isolate the effect of missing data from confounding variables, this analysis 
concentrates on evaluations across a single subject and grade.  For an evaluation scenario 
with one prior year of data, 4th grade mathematics growth was evaluated from a baseline 
of 3rd grade mathematics achievement.   
 
4.2 Benchmark Growth Model 
The SGP model implements quantile regression techniques to model the complex 
relationship between historical and future achievement trajectories. This process can be 
accomplished using the SGP package for the R programming environment (D. V. 
Betebenner, Adam;  Domingue, Ben; Shang,Yi 2014). From this data, a matrix of scale 
scores and corresponding quantiles can be created for each percentile band. Student 
growth percentiles are defined as: 
 

SGP = Pr (Current achievement | Prior Achievement)*100 
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A student’s growth percentile is determined by identifying the quantile with the value 
closest to the student’s observed score. Before artificially censoring observations, growth 
estimates were calculated to serve as a benchmark for comparing missing data methods.   
Five copies of the censored dataset were used to impose each of the 5 missing data 
methods in this study.  After pre-processing data using each missing data method, growth 
was calculated using a student growth percentiles model.  No demographic characteristics 
are used in the growth analysis; 3rd and 4th grade mathematics scores are the only 
variables used in the SGP model. To generate student growth estimates, theτth quantile 
of 4th grade mathematics achievement, represented as 𝑄 𝜏  𝑋 = 𝑥 = 𝑥′!𝛽(𝜏) is solved 
by the following: 
 

𝛽(𝜏)  = 𝑎𝑟𝑔 min
!∈!!

𝑃! 𝑦! − 𝑥!!𝛽
!

!!!

 

 
where 0 < τ < 1 (Chen, 2005; Koneker, 2005).  This means τ = .25 represents the 25th 
percentile, τ = .5 represents the median or 50th percentile, and τ = .75 represents the 75th 
percentile. The SGP model estimated quantiles 1 through 99 and compared quantile 
regression estimates to fitted values.  A student’s SGP was determined by the closest 
quantile curve to their actual score given their prior test history.  
 
4.3 Analytic Sample 
To determine the magnitude of missingness to impose on the would-be complete dataset, 
missingness was examined in a reference population of students in a different grade at the 
same school.  7% of students had incomplete mathematics achievement data in the 
reference population; therefore 7% of current year mathematics scores were also 
censored in the analytic sample of 4th grade students. Several differences were observed 
between censored and non-censored students.    
 

 
 
Figure 1: Censored and observed distributions of 3rd and 4th grade scores; concentration ellipses 
are plotted at .5 and .8 and OLS regression lines are overlaid for censored and observed student 
cohorts 
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5. Results 
 
Correlation results in Table 1 show SGPs derived from all 5 missing data methods were 
comparable to the benchmark SGP values.  For the 3 imputation-based missing data 
methods (EM Imputation, MI via a MCMC method, and MI via a PMM method), 
imputed values were used to estimate growth quantiles of the overall distribution of 4th 
grade students. SGPs were not reported for students with imputed scores since predicting 
individual scores is not the purpose of imputation. 
 

Table 1. SGP Correlations 

  Benchmark Listwise 
Deletion 

EM 
Imputation 

MI via a 
MCMC 
method 

MI via a 
PMM 

method 

Inverse 
Probability 
Weighting 

Benchmark  0.996 *** 0.997 *** 0.997 *** 0.996 *** 0.979*** 

Listwise Deletion 0.996 ***  0.997 *** 0.997 *** 0.997 *** 0.983*** 

EM Imputation 0.997 *** 0.997 ***  0.995 *** 0.998 *** 0.979*** 

MI via a MCMC 
Method 0.997 *** 0.997 *** 0.995 ***  0.995 *** 0.980*** 

MI via a PMM 
method 0.996 *** 0.997 *** 0.998 *** 0.995 ***  0.981*** 

Inverse 
Probability 
Weighting 

0.979*** 0.983 *** 0.979 *** 0.980 *** 0.981 ***  

***p<.001 
 
The figure below shows the relationship between true/benchmark student growth 
percentiles derived using the full data and estimates derived using the censored analytic 
samples. 

 
Figure 2: True (benchmark) and observed SGPs for each missing data method 
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Correlations are not the only criteria for comparing growth estimates derived under each 
missing data method. By itself, a correlation does not indicate how many percentile 
values students change (e.g. the same correlation value could represent a shift from the 
1st to 2nd growth percentile values or a shift from the 1st to 52nd growth percentile).  
Framing model differences using the actual SGP metric provides additional context.  To 
supplement correlation findings, Table 2 provides he average absolute values for SGP 
residuals for each missing data method. 
 

Table 2. Differences between Benchmark SGPs and Missing Data SGP Estimates 
  Mean Absolute Residual 
Listwise Deletion 1.764 
EM Imputation  1.203 
MI via a MCMC method 1.558 
MI via a PMM method 0.968 
Inverse Probability Weighting 1.948 

 
 
In this study, listwise deletion data produced the largest mean absolute error, followed by 
inverse probability weighting, while multiple imputation via the semi-parametric PMM 
method produced the smallest mean absolute error in growth estimates. 
 
 

6. Conclusions and Future Work 
 
The literature on missing data methodologies for student growth models is sparse; 
therefore, patterns of missingness were explored using a real dataset of mathematics 
achievement scores and student characteristics.  In general, the results favored imputation 
methods over deletion and weighting approaches when the criteria were 1) the correlation 
to benchmark SGP values, 2) the smallest mean absolute residuals.  Similarities between 
models are not surprising since a relatively small amount of missingness was imposed.  
Still, this study demonstrates the utility of missing data methods in improving growth 
estimates when the amount of missing observations is relatively small. 
 
A logical extension of this work would be to manipulate the percent of missingness 
imposed on the analysis to determine if missing data methods perform differently.  This 
information can guide practitioners as they choose a method for their specific context. 
Given the complex nature of school systems, results from this study may not generalize 
across different growth models, assessments, grades, or magnitudes of missingness. 
However, these findings may generate starting points for discussion when implementing 
student growth models that rely on incomplete student records. 
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